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How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper
presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is
introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the
unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively
increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation
operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange
information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience
from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective
evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm
achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems.

1. Introduction

Optimization problems widely exist in real life, especially
in engineering applications [1–4]. The optimization problem
with only one objective is called single-objective optimization
problem. The optimization problem with more than one ob-
jective to be simultaneously solved is called multiobjective
optimization problem (MOP). In practical optimization
applications, there is a great demand for optimizing multiple
objectives simultaneously. As a heuristic searching method,
evolutionary computation has already been successfully used
in the field of MOPs and gradually develops into a hot re-
search direction, named evolutionary multiobjective opti-
mization (EMO) [5–8].The search technique based on popu-
lation is proved to have a good ability of global searching and
can find a set of solutions in one-shot operation. Thus, evo-
lutionary computation achieves comparable results in solving
nonconvex, nonlinear, discontinuous anddifferentiable prob-
lems and overcomes the deficiency of traditional mathemati-
cal programming [9–13].

The first study on multiobjective evolutionary algorithm
(MOEA) is probably the vector evaluated genetic algorithm

(VEGA) [14]. Since then, MOEAs have obtained increasing
attention, and the amount of literatures about MOEAs has
increased in which many MOEAs were designed one after
another, such as multiobjective genetic algorithm (MOGA)
[15], niched Pareto genetic algorithm (NPGA) [16], and non-
dominated sorting genetic algorithm (NSGA) [17]. These
algorithms are regarded as the typical representatives of the
first generation of MOEAs which are characterized by using
Pareto ranking-based selection and fitness sharing strategy
[18]. The second generation of MOEAs are characterized by
using elite strategy, including strength Pareto evolutionary
algorithm (SPEA) [19], improved version of SPEA (SPEA2)
[20], Pareto envelop-based selection algorithm (PESA) [21],
niched Pareto genetic algorithm 2 (NPGA2) [22], and non-
dominated sorting genetic algorithm II (NSGA-II) [23].
Recently, researches on evolutionary multiobjective opti-
mization present new characteristics. The concepts of simu-
lated annealing [24], particle swarm [25], quantum [26, 27],
and messiness [28] were proposed and introduced into the
framework of evolutionary algorithms. At the same time,
many new-type evolutionary mechanisms were introduced,
including regularity-model-based multiobjective estimation

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 539128, 23 pages
http://dx.doi.org/10.1155/2014/539128



2 The Scientific World Journal

of distribution algorithm (RM-MEDA) [29] and multiob-
jective evolutionary algorithm based on decomposition
(MOEA/D) [30].

The concept of artificial immune systems (AIS) was first
put forward in 1996. Since then, AIS have stepped into a
high-speed development period and become one of the hot
topics in the field of artificial intelligence. AIS that get the
inspiration from biological immune systems attempt to
develop computational tools for solving science and engi-
neering problems. Some AIS-based multiobjective optimiz-
ation algorithms have been proposed [31–34], including
immune optimization algorithm for constrained nonlinear
multiobjective optimization problems [34], a hybrid immune
multiobjective optimization algorithm [31], and chaos-based
multiobjective immune algorithm [32]. Recently, a multi-
objective immune algorithm with nondominated neighbor-
based selection (NNIA) was proposed by Gong et al. [35].
From the comparison with representative algorithms, it is
apparent that NNIA is an effective immune multiobjective
algorithm in solving MOPs. Although the employment of
elite strategy improves the convergence rate of MOEA, it
leads to the loss of population diversity as well. Like the
common problem existing in evolutionary algorithms, pre-
mature convergence also hauntsNNIA. Itmay be trapped into
local optimal solution, thus the population diversity of NNIA
needs to be improved.

An enhanced version of nondominated neighbor-based
immune algorithm with a multipopulation coevolutionary
strategy is proposed for improving the population diversity.
Subpopulations employ evolutionary operations indepen-
dently; thus the unique characteristics of each subpopulation
can be effectively maintained. During evolutionary search,
information exchanges among subpopulations thus expand-
ing the search range of the entire population. As a matter of
fact, most of the evolutionary algorithms employ regular
operations throughout the whole evolutionary process, and
few of them take advantage of online discovered information.
The adaptive operator which dynamically applies evolution
operations to subpopulations based on the online discov-
ered information is designed. Therefore, evolutionary search
becomes more directional and purposeful and the unneces-
sary waste of computational cost is reduced.

The remainder of this paper is organized as follows. The
problem statement is described in Section 2. Section 3 pre-
sents the proposed algorithm in detail. Section 4 presents
experimental results, ZDT problems, DTLZ problems, and
some extensional problems are adopt, and the sensitivity of
the introduced parameter, the scalability of the proposed
algorithm, and the comparison of running time are also
investigated in this section. Finally, we outline the conclu-
sions of this paper.

2. Problem Statement

Themathematical description of multiobjective optimization
problems can be expressed as follows [36, 37]:

min 𝑦 = 𝐹 (𝑥) = (𝑓
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straint. Based on these mathematical descriptions, several
important definitions of multiobjective optimization prob-
lems are given as follows.

Definition 1 (feasible solution and feasible solution set). For a
certain decision variable vector 𝑥 ∈ 𝑋, if it satisfies both
equality constraints and inequality constraints, then 𝑥 can be
called a feasible solution.The feasible solution set is made up
of all the feasible solutions, which can be denoted as 𝑋

𝑓
,
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Definition 3 (Pareto-optimal solution and Pareto-optimal
set). For a certain feasible solution 𝑥∗, if and only if it satisfies
the condition:¬∃𝑥 ∈ 𝑋

𝑓
: 𝑥 ≻ 𝑥

∗, then 𝑥∗ can be regarded as
the Pareto-optimal solution. The Pareto-optimal set is made
up of all the Pareto-optimal solutions in the decision space,
which can be denoted as

𝑃
∗
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Definition 4 (Pareto-optimal front). The corresponding
image of the Pareto-optimal set in the objective space is called
the Pareto-optimal front, which can be denoted as
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(4)

In solving MOPs, it is expected that the set of nondomi-
nated solutions obtained by the proposed algorithm can well
approximate the true Pareto-optimal front and the diversity
of the solutions can be maximized.

3. Multipopulation Coevolution
Multiobjective Immune Algorithm

Many new-type evolutionary methods have been introduced
into the area of MOEAs. Immune-based algorithm is one of
these late-model methods. Artificial immune systems (AIS)
get the inspiration from biological immune systems. They
have learnable, parallel, and distributed characteristics, there-
fore possessing an efficient information processing ability.
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Figure 1: Population evolution of NNIA.

AIS-based algorithms have attracted a lot of attention and
have been applied to many complex MOPs, including con-
strained nonlinear MOPs and dynamic MOPs [38, 39].
Recently, Gong et al. [35] presented a multiobjective immune
algorithm with nondominated neighbor-based selection
(NNIA), which is one of the representative immune-based
multiobjective algorithms.

3.1.TheOriginal NNIA. InNNIA, a nondominated neighbor-
based selection and a crowding-distance-based proportional
cloning were proposed. The fitness of a nondominated indi-
vidual is assigned according to its crowding distance. The
individualwith greater crowding distance is reproducedmore
times and then less-crowded regions will have more chances
to be searched, which improves the search ability of NNIA on
less-crowded regions. Besides, only a minority of nondomi-
nated individuals will be selected to form an active popula-
tion, and then a series of evolutionary operations are applied
to this active population.Therefore,NNIAevolves very fast by
performing evolutionary operations on a small-scale active
population. The specific framework of population evolution
in a single generation at time 𝑡 in NNIA is shown in Figure 1.

From Figure 1, it is easy to observe that the evolutionary
search in NNIA is very fast and effective due to its specific
framework. Although such efficient mechanism achieves a
high evolutionary rate, it introduces errors as well. Due to the
efficient mechanism, population diversity is quickly de-
creased, and the resulting solutions may fall into local opti-
mum, which is not a rare case. Under normal circumstances,
the use of the elite strategy in MOEAs will lead to the loss of
population diversity. The special evolutionary framework of
NNIA further exacerbates this knotty problem. Table 1 shows
the results of NNIA on ZDT2 and ZDT4, where NNIA
performs 30 independent runs and the maximum size of the
active population is 20. However, NNIA always obtains only
one nondominated solution on ZDT2 and ZDT4 during 30
runs.The solutions obtained byNNIA are always trapped into
local optimum on ZDT2 and ZDT4, which demonstrates the
assertion of the analysis above.

Table 1: The situation of falling into local optimum.

Test problems ZDT2 ZDT4
Times of falling into local optimum 12 times 10 times
The number of nondominated solutions 1 1

3.2. Description of the Proposed Algorithm. In this paper, we
present an enhanced multipopulation coevolutionary strat-
egy for nondominated neighbor-based immune algorithm,
called CONNIA. Different from the traditional evolution, co-
evolution recognizes the simultaneous existence of competi-
tion and cooperation among populations, which provides a
theoretical basis for maintaining the population diversity.

3.2.1. Adaptive Operator. When it comes to the adaptive
operator in the field of MOEAs, it mainly refers to adaptively
tuning some parameters, such as population size, crossover
probability, and mutation probability. However, the adjust-
ment of evolutionary strategy based on evolutionary con-
ditions is seldom involved. The major contribution of the
designed adaptive operator is that each subpopulation adap-
tively selects corresponding operators during the evolution,
which makes the evolution become more purposeful and
directional. Therefore, the need for unnecessary computing
resource existing in random search is avoided effectively.

After performing a series of evolutionary operations on
each subpopulation, a way for measuring the evolutionary
condition is to identify the nondominated solutions of each
subpopulation.The set coverage metric is employed for mea-
suring the relationship between two subpopulations [40]. If
a subpopulation has a higher value of the set coverage metric,
it contributes more to the formation of the entire approxi-
mated Pareto front. The adaptive operator which consists of
two different cases is designed on the basis of measuring
the relationship between two subpopulations. Different evo-
lutionary operators are designed for different cases. A thresh-
old is introduced to decide which case is activated.The influ-
ence of the threshold on the performance is analyzed in
Section 4.3.

Case 1. If the difference of the set coverage metric between
subpopulations is not obvious, a local search operator would
be employed. Two subpopulations perform independently
evolutionary operations and search within different solution
space for maintaining the diversity of the entire population.
Meanwhile, some appropriate perturbations are applied
around the obtained nondominated solutions for seeking the
possible better solutions and reducing the probability of get-
ting into local optimum.

Case 2. If the difference of the coverage metric between sub-
populations is obvious, a cooperation operator would be em-
ployed. The information exchanges among subpopulations,
which reflects a mutually beneficial relationship bet-ween
two subpopulations. The subpopulation with lower value of
the set coverage metric could make use of the reference
experience from another subpopulation to improve its own
evolution. Two subpopulations make progress together by
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means of cooperation to ultimately complete the evolutionary
task.

3.2.2. Local Search Operator and Cooperation Operator. We
get the inspiration from traditional differential evolution
(DE) operator [41] to design the local search operator and the
cooperation operator. DE operator uses the differences
between the structures of antibodies to guide the antibody
variation and make the generated antibody closer to the
optimal point.

Local Search Operator. Assume that 𝑃
𝑡
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𝑡
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𝑡
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is generated through the following operation:

𝑧
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= 𝑦
𝑖
+ 𝑈 (−1, 1) ∗ (𝑦

𝑖
− 𝑥
𝑖
) , (5)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑈(⋅, ⋅) is a uniformly distributed random
number. As we know, there may be some better solutions
around the obtained Pareto-optimal solutions, particularly in
the case that the obtained Pareto-optimal solutions are trap-
ped into local optimum. The designed local search operator
inflicts appropriate disturbances around the obtained Pareto-
optimal solutions, and then the opportunity of finding some
better solutions is increased. After the local search operation,
𝑎 (𝜇+𝜆) selection strategy is adopted [42].This elite strategy
ensures the effectiveness of the local search operation and
accelerates the rate of evolutionary search.

Cooperation Operator. Assume that there are two populations
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where 𝑖 = 1, 2, . . . , 𝑛,𝑈(⋅, ⋅) is a uniformly distributed random
number. By applying the cooperation operator, subpopula-
tions gain the opportunity to exchange information, thus
expanding the search range of their own. The subpopulation
with larger value of the set coverage metric may possess more
effective convergence information. In this case, the subpopu-
lationwith lower value of the set coveragemetric can improve
its evolutionary capacity by gaining the experience from the
outstanding antibodies in another subpopulation. This dir-
ected cooperation operator provides good evolutionary paths
towards antibodies, thereby making antibodies evolve faster
when compared with the noncooperation strategy.

The designed local search operator and cooperation oper-
ator reflect a mutually beneficial relationship between sub-
populations. Both operators transmitting information among
antibodies within the same generation are combinedwith tra-
ditional evolutionary operators such as crossover and muta-
tion, for transmitting information effectively.

3.2.3. Multipopulation Coevolutionary Nondominated Neigh-
bor-Based Immune Algorithm. The details of the proposed
algorithm are described in this part. To be specific, the fol-
lowing parts are designed. (1) As each subpopulation evolves
independently, the differences between subpopulations can
be well kept. (2) By means of information exchange among
subpopulations, the search range of each subpopulation can
be effectively expanded. (3)Theway of information exchange
depends on the gap of the set coverage metric between sub-
populations. Such online-decision strategy has an adaptive
character, which improves the global search efficiency. The
main steps of CONNIA are presented as follows.

Step 1. Generate two initial subpopulations 𝑃
𝑎0
and 𝑃

𝑏0
.

Step 2. The nondominated antibodies of the two subpopu-
lations 𝑃

𝑎𝑡
and 𝑃

𝑏𝑡
form two nondominated populations 𝐷

𝑎𝑡

and 𝐷
𝑏𝑡
, respectively. Then the two nondominated popula-

tions are combined together to form the entire nondominated
population 𝑇

𝑡
.

Step 3. If the terminal condition is satisfied, export 𝑇
𝑡
as the

output. Stop; otherwise, 𝑡 = 𝑡 + 1.

Step 4. Select the individuals which have more contributions
to the population diversity from 𝐷

𝑎𝑡
and 𝐷

𝑏𝑡
, respectively.

Then the selected individuals form two active populations
𝐴
𝑎𝑡
and 𝐴

𝑏𝑡
.

Step 5. Two clone populations 𝐶
𝑎𝑡

and 𝐶
𝑏𝑡

are formed by
applying cloning to 𝐴

𝑎𝑡
and 𝐴

𝑏𝑡
, respectively.

Step 6. Perform recombination andmutation on𝐶
𝑎𝑡
and𝐶

𝑏𝑡
;

then obtain two resulting populations 𝐶
𝑎𝑡
and 𝐶

𝑏𝑡
.

Step 7. If the condition of information exchange is satisfied,
perform cooperation operator between 𝐶

𝑎𝑡
and 𝐶

𝑏𝑡
. Other-

wise, perform guided local search operator on 𝐶
𝑎𝑡
and 𝐶

𝑏𝑡
,

respectively. Then recalculate the nondominated solutions of
𝐶


𝑎𝑡
and 𝐶

𝑏𝑡
, respectively.

Step 8. Get subpopulations 𝑃
𝑎𝑡
and 𝑃
𝑏𝑡
by combining 𝐶

𝑎𝑡
and

𝐷
𝑎𝑡
, 𝐶
𝑏𝑡
and𝐷

𝑏𝑡
, respectively; go to Step 2.

3.3. Solution Pruning Based on Crowding Distance. In the
proposed algorithm, the crowding distance [23] is used to
estimate the density around a solution and the contribution
of a solution to the diversity of objective function values. The
definition of the crowding distance is described as follows:

𝐷 (𝑥) =

𝑘

∑

𝑖=1

𝑓
𝑖
(𝑥

) − 𝑓
𝑖
(𝑥

)

𝑓
max
𝑖

− 𝑓min
𝑖

, (7)

where 𝑓max
𝑖

and𝑓min
𝑖

are the maximum andminimum values
of the 𝑖th objective and 𝑘 is the number of objective functions.
𝑓
𝑖
(𝑥

) and 𝑓

𝑖
(𝑥

) are the values of the 𝑖th objective of the top

two nearest points to 𝑥. If 𝑥 is an extreme point, 𝐷(𝑥) = ∞.
Otherwise, the crowding distance of 𝑥 is calculated by (7).
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Figure 2: The static method of solution pruning.

The density around a dominant antibody is estimated by
calculating its crowding distance.The larger the crowding dis-
tance of a dominant antibody is, the sparser the distribution
around it will be, which also means that the contribution of
this antibody to the population diversity is relatively greater.
When it is required to delete some solutions, the antibody
with small crowding distance will be deleted firstly. The tra-
ditional way of solution pruning is to calculate the crowding
distance of all solutions only once, and then some solutions
are deleted based on such one-shot result. However, such
mechanism is unreasonable sometimes.

After calculating the crowding distance of all points
shown in Figure 2(a), it is evident that two black extreme
points have the largest crowding distances. In addition to
black points, four blue points have larger crowding distances
than other points. Points are sorted according to the crowding
distance, from black points, blue points, green point, to red
points in a decline order. Assume that four points need to be
deleted, and then the red and green points are deleted by
using the original static method. It is obvious that the
points after pruning are not well-distributed as shown in
Figure 2(b). It has been mentioned that the dynamic way is
more reasonable than the traditional staticmethod [43]. After
deleting a point, recalculate the crowding distance of the
remaining points and sort them based on the recalculated
crowding distance.

3.4. Computational Complexity Analysis of CONNIA. As-
sume that the maximum size of the dominant population is
𝑛
𝑑
, the maximum size of the active population is 𝑛

𝑎
, and the

size of the clone population is 𝑛
𝑐
. The time complexity for

CONNIA in a single generation without information
exchange can be calculated as follows.

The time complexity for identifying nondominated indi-
viduals in the population is 𝑂((𝑛

𝑐
+ 𝑛
𝑑
)
2
); the worst time

complexity for dynamic selection is ∑𝑛𝑑
𝑖=𝑛𝑎

𝑂(𝑖 log 𝑖); the time
complexity for cloning is𝑂(𝑛

𝑐
); the worst time complexity for

updating the dominant population is∑𝑛𝑑+𝑛𝑐
𝑖=𝑛𝑑

𝑂(𝑖 log 𝑖); and the
time complexity for recombination and mutation is 𝑂(𝑛

𝑐
).

Therefore the worst total time complexity is:

𝑛𝑑

∑
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𝑂 (𝑖 log 𝑖) +
𝑛𝑑+𝑛𝑐
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𝑂 (𝑖 log 𝑖) + 2𝑂 (𝑛
𝑐
) + 𝑂 ((𝑛

𝑑
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𝑐
)
2

) .

(8)

Owing to the fact that the operational rule of the symbol
“𝑂” can be simplified, the worst time complexity of one gen-
eration without information exchange for CONNIA can be
written as: 𝑂((𝑛

𝑐
+ 𝑛
𝑑
)
2
).

The time complexity for CONNIA in a single generation
with information exchange can be calculated as follows.

The time complexity for identifying nondominated indi-
viduals in the population is 𝑂((𝑛

𝑐
+ 2𝑛
𝑑
)
2
); the worst time

complexity for dynamic selection is ∑𝑛𝑑
𝑖=𝑛𝑎

𝑂(𝑖 log 𝑖); the time
complexity for cloning is𝑂(𝑛

𝑐
); the worst time complexity for

updating the dominant population is ∑2𝑛𝑑+𝑛𝑐
𝑖=2𝑛𝑑

𝑂(𝑖 log 𝑖); and
the time complexity for recombination andmutation is𝑂(𝑛

𝑐
).

So the worst total time complexity is:

𝑛𝑑

∑

𝑖=𝑛𝑎

𝑂 (𝑖 log 𝑖) +
2𝑛𝑑+𝑛𝑐
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𝑐
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𝑑
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𝑐
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) .

(9)

Owing to the fact that the operational rule of the symbol
“𝑂” can be simplified, theworst time complexity of one gener-
ation with information exchange for CONNIA can be written
as 𝑂((𝑛

𝑐
+ 2𝑛
𝑑
)
2
).

In real applications, the key factor to decide whether a
technique can be applied is the running time. The further
research on the practical running time of the proposed algo-
rithm will be presented in Section 4.9.

4. Experimental Study

In this section, we compare CONNIAwith three state-of-the-
art MOEAs, including NNIA, NSGA-II, and SPEA2, on
benchmarkMOPs. Besides, some extensional problems based



6 The Scientific World Journal

on the benchmark MOPs are also tested. It is well known
that the parameter setting has significant impact on MOEAs.
Therefore, the parameter setting of the four algorithms is con-
sistent with the original references and has some adjustments
appropriately. For SPEA2, the size of the population is 100; the
size of an external population is 100. For NSGA-II, the size
of the population is 100. For NNIA, the maximum size of the
dominant population is 100; the maximum size of an active
population is 20. For CONNIA, the maximum sizes of the
two dominant subpopulations are both 50, and themaximum
sizes of the two active subpopulations are both 10. A given
number of function evaluations are used as the stopping crite-
ria. We obtain statistical experimental results by running the
four algorithms 30 times independently. To simplify the
expression, Arabic numerals 1, 2, 3, and 4 are used to denote
CONNIA, NNIA, NSGA-II, and SPEA2.

4.1. Evaluation Metrics. To evaluate various performances of
the compared algorithms, some numerical metrics are
adopted, including generation distance [44], spacing [45],
maximum spread [36], hypervolume [19, 46], and the cover-
age of two sets [40].These numericalmetrics are summarized
as follows.

Generation Distance.Themetric whichmeasures the distance
from the approximate Pareto-optimal front to the true
Pareto-optimal front is defined as follows:

GD (𝑃, 𝑃
∗
) =

∑V∈𝑃 𝑑 (V, 𝑃
∗
)

|𝑃|
, (10)

where 𝑃∗ is a set of uniformly distributed points in the objec-
tive space along the Pareto front,𝑃 is an approximation to the
Pareto front, |𝑃| is the number of solutions in 𝑃, and 𝑑(V, 𝑃∗)
is the minimum Euclidean distance between a point V in 𝑃

and the solutions in 𝑃∗.

Spacing. The metric measures the uniformity of nondomi-
nated solutions in the objective space and is described as
follows:

𝑆 = √
1

|𝐴| − 1

|𝐴|

∑

𝑖=1

(𝑑 − 𝑑
𝑖
)
2

, (11)

where 𝑑
𝑖
= min{∑𝑘

𝑚=1
|𝑓
𝑚
(𝑎
𝑖
) − 𝑓
𝑚
(𝑎
𝑗
)|}, (𝑎

𝑖
, 𝑎
𝑗
∈ 𝐴; 𝑖, 𝑗 = 1,

2, . . . , |𝐴|), 𝑑
𝑖
is the distance between the solution 𝑖 and

another solution which is nearest to 𝑖, and 𝑑 is the average
value of all 𝑑

𝑖
s.

Maximum Spread. The metric measures how “well” the true
Pareto-optimal front is covered by the approximate Pareto-
optimal front. It can be described as follows:

MS = √ 1

𝑚

𝑚

∑

𝑖=1

{
min(𝑓max

𝑖
, 𝐹

max
𝑖

) −max(𝑓min
𝑖

, 𝐹
min
𝑖

)

𝐹
max
𝑖

− 𝐹min
𝑖

}

2

,

(12)

where 𝑚 is the number of objectives and 𝑓max
𝑖

and 𝑓min
𝑖

are
the maximum and minimum values of the 𝑖th objective in

the approximate Pareto-optimal front, respectively. 𝐹max
𝑖

and
𝐹
min
𝑖

are the maximum andminimum values of the 𝑖th objec-
tive in the true Pareto-optimal front, respectively.

Hypervolume.Themetricmeasures the “volume” in the objec-
tive domain covered by a set of nondominated solutions.The
definition of the metric is

HV = volume(
𝑛𝑃𝐹

⋃

𝑖=1

V
𝑖
) , (13)

where 𝑛
𝑃𝐹

is the number of nondominated solutions; for any
nondominated solution 𝑖, a hypercube can be formed with a
reference point and the solution 𝑖 as the diagonal corners of
the hypercube. Finally, the HV is the amount of domain
occupied by the union of hypercubes.

Coverage of Two Sets. This metric measures the dominant
relationship between two approximate Pareto-optimal sets 𝐴
and 𝐵. The definition of the metric is described as follows:

𝐼
𝐶
(𝐴, 𝐵) ≜

|{b ∈ 𝐵; ∃a ∈ 𝐴 : a ⪰ b}|
|𝐵|

, (14)

where the symbol “⪰” means domination. Note that both
𝐼
𝐶
(𝐵, 𝐴) and 𝐼

𝐶
(𝐴, 𝐵) have to be considered simultaneously,

because the relationship between them is not completely
linear.

4.2. Test Problems. To verify the versatility of the proposed
algorithm, five ZDT [47] and five DTLZ problems [48] with
diverse complexities in the field of multiobjective optimiza-
tion are selected. Table 1 demonstrates that NNIA may fall
into local optimum in solving ZDT2 and ZDT4. So as to
further explore the performance of CONNIA in solving some
extreme problems, five test problems based on ZDT2 and
ZDT4 are designed.

The related problems based on ZDT2 are described as fol-
lows. When 𝑝 equals the values of 2 and 3, the corresponding
problems are named ZDT21 and ZDT22, respectively. Con-
sider the following:

𝑔 (x) = 1 + 9(
(∑
𝑛

𝑖=2
𝑥
𝑖
)

(𝑛 − 1)
)

0.25

,

𝑓
1
(x) = 𝑥

1
, 𝑓

2
(x) = {𝑔 (𝑥) [1 − ( 𝑥

1

𝑔 (𝑥)
)

𝑝

]}

1/𝑝

.

(15)

The shape of the Pareto-optimal front changes with the
value of 𝑝. When 𝑝 is greater than 1, the formative Pareto-
optimal front is convex. If not, the formative Pareto-optimal
front is concave. The curvature of the Pareto-optimal front
also changes with the value of 𝑝. In Figure 3(a), we use Arabic
numerals 1, 2, and 3 to concisely denote the Pareto-optimal
fronts of ZDT2, ZDT21, and ZDT22, respectively.

Similar to the related problems based on ZDT2, the
related problems based on ZDT4 are described as follows.
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Figure 3: The true Pareto-optimal fronts of the related problems based on ZDT2 and ZDT4, respectively.
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Figure 4: Mean values of GD and spacing versus the introduced parameter in solving DTLZ3 and ZDT4 by the proposed algorithm.

When 𝑞 equals the values of 0.5, 2, 5, and 0.2, the correspond-
ing problems are named ZDT4, ZDT41, ZDT42, and ZDT43,
respectively. Consider the following:

𝑓
1
(x) = 𝑥

1
, 𝑓
2
(x) = 𝑔 (𝑥) [1 − ( 𝑥

1

𝑔 (𝑥)
)

𝑞

] , 𝑥
1
∈ [0, 1] ,

𝑔 (x) = 1 + 10 (𝑛 − 1) +
𝑛

∑

𝑖=2

[𝑥
2

𝑖
− 10 cos (4𝜋𝑥

𝑖
)] ,

𝑥 ∈ [−5, 5] , 𝑖 = 2, . . . , 𝑛, 𝑛 = 10.

(16)

The shape of the Pareto-optimal front changes with the
value of 𝑞. When 𝑞 is greater than 1, the formative Pareto-
optimal front is convex. If not, the formative Pareto-optimal
front is concave. The curvature of the Pareto-optimal front

also changes with the value of 𝑞. In Figure 3(b), we use Arabic
numerals 1, 2, 3, and 4 to concisely denote the Pareto-optimal
fronts of ZDT4, ZDT41, ZDT42, and ZDT43, respectively.

4.3. Sensitivity to the Introduced Parameter. The influence
of the threshold is discussed in this part. Considering the
representative of multi-objective problems with two-objec-
tives and three-objectives, respectively, ZDT4 andDTLZ3 are
selected for parameter analysis. Figure 4 shows that the mean
values of GD and spacing are rather stable in dealing with
ZDT4, whatever the value of the threshold is. However, the
mean values of GD and spacing change greatly with the vari-
ation of the threshold in solving DTLZ3. Figure 4 indicates
that the proposed algorithm is not sensitive to the threshold
on simple problems. The performance has some differences
with the variation of the threshold on difficult problems.



8 The Scientific World Journal

0 5 10 15 20 25
6

6.05

6.1

6.15

6.2

6.25

6.3

6.35

6.4

6.45

6.5

DTLZ2

H
V

Number of function evaluations (×2000)
0 5 10 15 20 25

Number of function evaluations (×2000)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
ZDT2

H
V

(a)

0 5 10 15 20 25
6

6.05

6.1

6.15

6.2

6.25

6.3

6.35

6.4

6.45

6.5

DTLZ2

H
V

Number of function evaluations (×2000)
0 5 10 15 20 25

Number of function evaluations (×2000)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
ZDT2

H
V

(b)

0

0.02

0.04

0.06

0.08

0.1

C
ov

er
ag

e o
f t

w
o 

se
ts

DTLZ2

1 2 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e o
f t

w
o 

se
ts

ZDT2

(c)

Figure 5: (a) The error bar of HV of the nondominated antibodies in final population with different number of function evaluations by
CONNIA. (b) The error bar of HV of the nondominated antibodies in final population with different number of function evaluations by
CONNIA. (c) Box plots of the coverage of the two sets obtained by CONNIA with and without information exchange.

When the cooperation among subpopulations happenswith a
small value of the threshold, the information among subpop-
ulations will keep coincidence with each other which leads to
the ineffectiveness of the cooperation. On the contrary, when
the late cooperation appears with a large value of the thresh-
old, the differences among subpopulations are apparent.

Thus, there is little chance for the inferior subpopulation to
gain experience from the superior one.

4.4. Comparison of CONNIA with and without Information
Exchange. The cooperation operator reflects a mutually ben-
eficial relationship between two subpopulations. By applying
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Figure 6: Continued.
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Figure 6: The approximate Pareto-optimal fronts obtained by CONNIA, NNIA, NSGA-II, and SPEA2 in solving the 9 test problems.

the cooperation operator, two subpopulations gain the oppor-
tunity to exchange information and expand the search range
of the entire population. The subpopulation could make use
of the reference experience from each other to improve its
own evolution. This directed cooperation operator provides
good evolutionary paths towards antibodies, thereby making
antibodies evolve faster.

In this part, the effectiveness of information exchange
among subpopulations is discussed. The proposed algorithm
without information exchange is denoted by CONNIA.
Figures 5(a) and 5(b) show the error bars of hypervolume
metric of nondominated antibodies in final population with
different number of function evaluations by CONNIA and
CONNIA, respectively. From Figures 5(a) and 5(b), some
conclusions can be obtained: (1) the evolution curves of
CONNIA are more flat than those of CONNIA; (2) the

standard deviation of the error bar obtained by CONNIA
becomes near to zeros; (3) with the same number of function
evaluations, CONNIA obtains a higher value of HV metric
than CONNIA. Figure 5(c) shows the box plots of CONNIA
against CONNIA in terms of the coverage of two sets. In
each plot, the left box represents the distribution of
𝐼
𝐶
(CONNIA,CONNIA) and the right box represents the

distribution of 𝐼
𝐶
(CONNIA,CONNIA). The box plots of

𝐼
𝐶
(CONNIA,CONNIA) are higher than the corresponding

box plots of 𝐼
𝐶
(CONNIA,CONNIA). Therefore, we can get

the conclusion that CONNIA performs better than
CONNIA as far as the coverage is concerned.

4.5. Experimental Results on ZDT and DTLZ Problems.
Figure 6 shows the distribution of approximate Pareto-
optimal solutions obtained by four algorithms on ZDT and



The Scientific World Journal 11

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 41 2 3 4

1 2 3 41 2 3 41 2 3 4

1 2 3 4 1 2 3 4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
×10−3 ×10−3

×10−3×10−3

×10−3

G
D

G
D

G
DG

D

G
D

G
DG
D

G
D

G
D G

D G
D

G
D

ZDT1

4

4.2

4.4

4.6

4.8

5

5.2

×10−4 ZDT3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

ZDT6

0.5

1

1.5

2

2.5

3

3.5

4

ZDT4

0

1

2

3

4

5

6

7

8

9

ZDT2

0.015

0.02

0.025

0.03

0.035

DTLZ4

6

7

8

9

10

11

12

13

14

DTLZ2

0

5

10

15

20

25

1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

DTLZ3

0.005

0.01

0.015

0.02

0.025

0.03

0.035
DTLZ6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

0.005

0.01

0.015

0.02

0.025

0.03

DTLZ1

Figure 7: Statistical values of convergence obtained by CONNI, NNIA, NSGA-II, and SPEA2 in solving the 10 test problems.

DTLZproblems.Thedistributions of the approximate Pareto-
optimal solutions obtained by CONNIA and SPEA2 aremore
uniform than those obtained by other two algorithms on five
ZDT problems. The approximate Pareto-optimal solutions
obtained by NNIA can not well cover the extreme solutions

of ZDT2 and ZDT4. For DTLZ problems, the distribution
of the approximate Pareto-optimal solutions obtained by
SPEA2 is the most uniform among the four algorithms;
nevertheless the computational complexity of SPEA2 is the
highest. The distribution of the approximate Pareto-optimal
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Figure 8: Statistical values of spacing obtained by CONNI, NNIA, NSGA-II, and SPEA2 in solving the 10 test problems.

solutions obtained by CONNIA is the most uniform among
the remaining three algorithms. In addition to the qualitative
analysis of the results, we also analyze statistical results
obtained by four algorithms. The statistical results of con-
vergence, spacing, maximum spread, and hypervolume are
shown in Figures 7–10.

Figure 7 shows that the values of convergence can reach
10−3 in almost all the 30 independent runs by four algorithms
on five ZDT problems. The box plots obtained by NNIA on
ZDT2 and ZDT4 are quite broad which indicates that the
stability of NNIA in solving these problems is quite poor.
However, CONNIA is more robust than NNIA on ZDT2 and
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Figure 9: Statistical values of maximum spread obtained by CONNI, NNIA, NSGA-II, and SPEA2 in solving the 10 test problems.
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Figure 10: Statistical values of HV obtained by CONNI, NNIA, NSGA-II, and SPEA2 in solving the 10 test problems.

ZDT4, owing to the multipopulation coevolutionary strategy
which plays an important role in maintaining the population
diversity. In general, except for the appearance of local
optimum when NNIA deals with ZDT2 and ZDT4, the dif-
ferences among four algorithms onfiveZDTproblems are rel-
atively small. Hereinto, CONNIA obtains the smallest values
of convergence on ZDT3, ZDT4, and ZDT6. It has been

pointed out that NSGA-II and SPEA2 could not completely
converge onto the true Pareto-optimal fronts in a limited
number of function evaluations on DTLZ3 which has some
local Pareto-optimal fronts [35, 49]. However, CONNIA
obtains the best results in terms of convergence onDTLZ3. As
far as convergence is concerned, CONNIA performs best on
DTLZ1, DTLZ2, DTLZ3, and DTLZ4.
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Figure 11: The approximate Pareto-optimal fronts obtained by CONNIA and NNIA in solving the extensional problems.

Figure 8 shows that, compared with the other three algo-
rithms, SPEA2 performs best in most problems in terms of
spacing. Apart from SPEA2, statistical values obtained by
CONNIA are smaller than those obtained by other two algo-
rithms in 9 out of the 10 problems. The statistical value
obtained by CONNIA is even smaller than that obtained by
SPEA2 on DTLZ3. The reason is that SPEA2 can not quite
converge onto the true Pareto-optimal fronts in a limited
number of function evaluations. In general, SPEA2 exhibits
the best performance in diversitymaintaining among the four
algorithms. However, the complicated calculation of SPEA2
costs a large amount of computing resources. The proposed
algorithm gets the smallest values of spacing among the
remaining three algorithms in solving ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3, and DTLZ4.

Figure 9 demonstrates that NNIA obtains broad box plots
on ZDT2 and ZDT4, thereby suggesting that the stability of
NNIA on ZDT2 and ZDT4 is poor. Compared with the other
three algorithms, CONNIA obtains the largest statistical
values of MS on all the 10 test problems, while NSGA-II and
SPEA2 perform slightly poor on ZDT1, ZDT3, ZDT6,
DTLZ4, and DTLZ6. Figure 10 shows that the stability of
NNIA is quite poor onZDT2 andZDT4 in terms ofHV.How-
ever, in most of the 10 test problems except DTLZ2, the result
obtained by the CONNIA is not inferior to that obtained by
other three algorithms as far as HV is concerned. Apparently,
SPEA2 does well in diversity maintenance in the field of
MOEAs. In solving fiveZDTproblems, SPEA2 gets the results
similar to CONNIA in terms of HV. However, SPEA2 can not
well converge onto the true Pareto-optimal fronts in 50000
function evaluations in solving difficult problems. CONNIA
achieves the results which are not worse than, or even better
than, those of SPEA2withmuch lower complexity on the nine
test problems.

4.6. Comparing the Robustness of NNIA and CONNIA. The
comparison of CONNIA and NNIA on some difficult prob-
lems (DTLZ1 and DTLZ3) and some extreme problems
(ZDT21, ZDT22, ZDT41, ZDT42, and ZDT43) is carried out
in this part. Figure 11 shows the distribution of approximate
Pareto-optimal solutions obtained by CONNIA and NNIA.
The distributions of approximate Pareto-optimal solutions
obtained by CONNIA are relatively more uniform than those
of NNIA.The solutions obtained by NNIA can not well cover
extreme solutions in solving ZDT21, ZDT41, and ZDT42.
Nevertheless, CONNIA canwell cover these solutions in solv-
ing the same problems.

Figure 12 shows the box plots of CONNIA against NNIA
based on the coverage of two sets. NNIA obtains a relatively
wider range of box plot measures on ZDT2, ZDT4, and
ZDT41; that is, the stability of NNIA is relatively weak in
dealing with these problems. However, the performance
obtained by CONNIA is more stable on the same problems.
The box plots of 𝐶(1, 2) are higher than the corresponding
box plots of 𝐶(2, 1) in all the test problems as shown in
Figure 12. Therefore, we can get the conclusion that the solu-
tions obtained by CONNIA almost weakly dominate those
obtained by NNIA.

4.7. Tests on Convergence of the Four Algorithms. In the field
of MOEAs, the number of function evaluations is commonly
used as the stopping criteria. It is difficult to set the accurate
stopping criteria for an MOEA on different problems, while
uniform stopping criteria which are applied to different pro-
blems always provide a plethora of information [49]. After
investigating the running convergence with different func-
tion evaluations, the effective stopping criteria of CONNIA
on different problems can be discovered. To demonstrate the
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Figure 12: Box plots of the coverage of two sets by CONNIA and NNIA in solving 10 test problems.

convergence of four algorithms more explicitly, results are
showed with 𝑌 coordinate in the form of log 10.

Figure 13 shows the mean value in terms of convergence
with different function evaluations by four algorithms. The
differences among four algorithms are not obvious on five
ZDT problems. However, the disparities among them are

apparent on five DTLZ problems. CONNIA obtains better
performance than the other three algorithms on DTLZ1,
DTLZ2, DTLZ3, and DTLZ4. In particular on some intra-
ctable problems, such as DTLZ1 and DTLZ3, SPEA2 and
NSGA-II can not well converge onto the true Pareto-optimal
front with a limited number of function evaluations, while
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Figure 13: Mean value of convergence with different function evaluations by the four algorithms in solving the 10 test problems.

under the same condition CONNIA shows distinct advan-
tages.

4.8. Experimental Results of the Four Algorithms on Many-
Objective Problems. In this section, the performance of four
algorithms on many-objective problems is investigated. Mul-
tiobjective problems with more than three objectives are
defined as many-objective problems. The test problems are

the extensional problems of DTLZ1 and DTLZ2 with 4 to 7
objectives and are named DTLZ14–DTLZ17 and DTLZ24–
DTLZ27, respectively. Due to the fact that the number of non-
dominated solutions dramatically enlarges with the number
of objectives increasing, many MOEAs have difficulty in
converging onto the true Pareto-optimal front with a limited
number of function evaluations. Therefore, the size of popu-
lation and the number of function evaluations are doubled as
those in Section 4.5 [35].
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Figure 14: Statistical values of convergence obtained by the four algorithms in solving many-objective problems.
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Figure 15: Statistical values of spacing obtained by the four algorithms in solving many-objective problems.

Figure 14 shows that CONNIA obtains the largest statisti-
cal values of convergence among four algorithms on all the
test problems, closely followed by NNIA. While results
obtained by SPEA2 andNSGA-II are relatively worse in terms
of convergence, Figure 15 indicates that the result of CONNIA
is even better than SPEA2 in terms of spacing. SPEA2 cannot
converge onto the true Pareto-optimal fronts with a limited

number of function evaluations on eight many-objective
problems. In this case, the diversity maintaining mechanism
used in SPEA2 is no longer effective. The statistical values of
MS on eightmany-objective problems are shown in Figure 16.
In terms of MS, four algorithms obtain similar results,
except SPEA2 which does slightly worse. Overall, CONNIA
performs much better than the other three algorithms on
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Figure 16: Statistical values of maximum spread obtained by the four algorithms in solving many-objective problems.
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Figure 17: Statistical values of the coverage of two sets obtained by CONNIA and NNIA in solving many-objective problems.

eightmany-objective problems.Theperformance ofNSGA-II
and SPEA2 is seriously degenerated in solving many-
objective problems.

The convergence metric can be only used under the con-
dition of which knowledge of the true Pareto-optimal fronts
is available, which is unsuitable for many-objective problems.
Hence, the metric of the coverage of two sets is employed
to measure the dominant relationship between solutions

obtained by different algorithms. Figures 17, 18, and 19 show
the comparison between CONNIA and the other three algo-
rithms on many-objective problems in terms of the coverage
of two sets. Figures 17–19 indicate that the values of𝐶(∗, 1) are
smaller than the corresponding values of 𝐶(1, ∗). Hereinto, 1
denotes the solution set obtained by CONNIA, and the sym-
bol “∗” stands for the solution set obtained by any one of the
other three algorithms. The gap between 𝐶(∗, 1) and 𝐶(1, ∗)
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Figure 18: Statistical values of the coverage of two sets obtained by CONNIA and NSGA-II in solving many-objective problems.

is enlarged with the number of objectives increasing, which
indicates that the dominant relationship between the solu-
tions obtained by CONNIA and other three algorithms is
more apparent on complex many-objective problems. In the
special case that 𝐶(1, ∗) = 1 and 𝐶(∗, 1) = 0, the solution
set obtained by CONNIA almost dominates that obtained by
any one of the other three algorithms. For example, in solving
DTLZ15,DTLZ16,DTLZ17, andDTLZ27, the values of𝐶(∗, 1)
are almost equal to 0, while the values of 𝐶(1, ∗) are almost
equal to 1. CONNIA outperforms the other three algorithms
in most cases as coverage is concerned.

4.9. Running Time Study. Figure 20 shows the average run-
ning time on the extensional problems of DTLZ1 and DTLZ2
with 3 to 7 objectives, respectively. As shown in Figure 20, the
cost of the average running time of four algorithms increases
with the number of objectives increasing. NNIA exhibits the
best performance in terms of computational time, closely fol-
lowed byCONNIA.The running time ofNSGA-II and SPEA2
is relatively longer; particularly for SPEA2, the required
running time is the longest among the four algorithms. This
is because SPEA2 adopts a relatively expensive diversity
maintaining mechanism whose worst run-time complexity is
𝑂(𝑁
3
), where 𝑁 is the number of nondominated solutions.

NNIA is an effective immune inspired MOEA, which is
famous for good performance in convergence [35, 50].
Although its special evolutionary framework results in fast
convergence, solutions obtained by NNIA are occasionally
trapped into local optimum. It is required to focus on the pur-
suit of not only a high convergence rate, but also good evo-
lutionary quality. CONNIA is an enhanced version of NNIA

by introducing the multipopulation coevolutionary strategy
and an adaptive operator. Although the computational cost of
CONNIA is a little larger thanNNIA, the improvement on the
performance is evident.

5. Conclusion

To the best of our knowledge, slow convergence rate is a ubi-
quitous problem in MOEAs. AIS have the learnable, parallel,
and distributed characteristics and possess an efficient infor-
mation processing ability. AIS-based algorithms have already
been widely used for dealing with MOPs, in which NNIA
obtains a fast convergence rate solving such knotty problem in
MOEAs. However, the population diversity can not be well
maintained in NNIA, which leads the solutions obtained by
NNIA to be trapped into local optimumon somedifficult pro-
blems. Co-evolution is a high-level evolutionary method,
which confirms that all the populations are beneficial mutu-
ally, thus providing a theoretical basis for maintaining diver-
sity. In this paper, a multipopulation coevolutionary strategy
is designed. Subpopulations implement evolutionary opera-
tion independently; thus the diversity of the entire population
can be well maintained. The information exchange among
subpopulations is available, thereby expanding the search
range of the entire population and improving the efficiency of
evolutionary search.

In the field of MOEAs, when it comes to adaptive algo-
rithms,most of themadaptively adjust someparameters, such
as population size, crossover probability, and mutation prob-
ability. However, an adaptive algorithm with online-decision
strategy is seldom involved. Based on this idea, an adaptive
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Figure 19: Statistical values of the coverage of two sets obtained by CONNIA and SPEA2 in solving many-objective problems.
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Figure 20: Mean value of running time by four algorithms on the extensional problems of DTLZ1 and DTLZ2 with 3 to 7 objectives,
respectively.

strategy is designed in the proposed algorithm. Subpopula-
tions adopt corresponding operations according to the condi-
tions of themselves which ensures that evolutionary search is
not random or blind.

In dealing with many-objective problems, the rapid
increase of nondominated solutions requires a large size of
population or a large number of function evaluations. How-
ever, in many MOEAs, the size of population is constant. No
matter how difficult the problem is, the size of population is
the same. According to the characteristics of CONNIA, it is

more reasonable to adaptively adjust the number of subpop-
ulations according to the difficulty of the problem. We can
imagine that it is more reasonable to employ more subpop-
ulations together to cooperatively overcome the difficulty in
solving many-objective problems.
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