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The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time
hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors
in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters
is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In
addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its
equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific
conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with
random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.

1. Introduction

The dynamics and their bifurcation control in chaos systems
have been given much attention and widely used in chemical
and biological population and power systems [1, 2]. Studies
about bifurcation mainly include the validated existence
of bifurcation and its control. Hopf bifurcation has been
researched comprehensively and systematically in theory [3–
6]. The aim of bifurcation control is to design a controller to
modify the bifurcation properties of a given nonlinear system
and then achieve the other desirable dynamical behaviors.
There are some summaries about bifurcation control, such
as delayed-feedback control [7], state-feedback control [8],
and Washout-filter control [9]. The condition of existing
bifurcation and Hopf bifurcation for discrete-time systems is
studied byWen et al. [10, 11].The study of chaos has become a
hot research topic recently. Compared to the chaotic system,
hyperchaotic system has two positive Lyapunov exponents.
Therefore, hyperchaotic system would have more complex
dynamical behaviors than a normal chaotic system. In 1979,

hyperchaotic system was firstly reported by Rössler system
[12]. From then on, hyperchaotic system has received great
attention in the past several decades [13–15]. The study of
hyperchaotic system proposed for secure communication is
much more significance than the chaos system. It is well
known that there are many methods to control the chaotic
and hyperchaotic systems, such as nonlinear feedback, state-
feedback control [16], linear feedback and adaptive control
[17], and time-delay feedback control [18]. There are advan-
tages and disadvantages in each control method. The chaos
and hyperchaos control based on the first control is studied
by Ma and Yang in [19]. In practice, most researchers focus
mainly on how to construct a hyperchaotic system and how to
design hyperchaotic circuit [20]. As far as we know, there are
few studies on hyperchaotic systems about their dynamical
behaviors, such as bifurcation and chaos.

However, owing to the uncertain factors from external
environment, uncertainties of system parameters, pertur-
bations of external noise, and so on, the stochastic sys-
tem can accurately represent the original systems better;
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therefore the study of stochastic system is more meaningful
than deterministic systems. Nowadays, a growing number
of researchers have shown great interests in the research
of stochastic dynamics for nonlinear systems with random
parameters. Orthogonal polynomial approximation based on
the expansion theory of orthogonal polynomials has been
widely used. The dynamical behaviors via the improved
method in stochastic systems with random parameters are
studied by Leng et al. [21]. Ma et al. have investigated the
stochastic Hopf bifurcation [22–24]. Hopf bifurcation control
for stochastic dynamical systemwith nonlinear random feed-
back method has been investigated [25]. From the previous
research about stochastic model, those stochastic systems are
always inevitably disturbed by the system parameters. Hence,
the dynamics analysis of stochastic discrete-time hyper-
chaotic system with random parameter, which is scarcely
investigated, attracts our interest.

The remainder of this paper is arranged as follows.
In Section 2, the dynamics of a discrete-time hyperchaotic
system are investigated, and a stochastic discrete-time hyper-
chaotic system transforms into its equivalent deterministic
system by means of orthogonal polynomial approximation.
Then, existence of Hopf bifurcation and bifurcation ampli-
tude control with random intensity method are studied. And
the numerical simulations are shown in Section 3 and in
Section 4. Finally, conclusions are drawn in Section 5.

2. Orthogonal Polynomial Approximation of
a Discrete-Time Hyperchaotic System with
Random Parameter

Consider a two-dimensional deterministic discrete-time
hyperchaotic system that has been researched by Chen:

𝑥 (𝑛 + 1) = 𝑎𝑦 (𝑛) + 𝑏𝑥 (𝑛)
2
+ 𝑐𝑦 (𝑛)

2
,

𝑦 (𝑛 + 1) = 𝑑𝑥 (𝑛) ,

(1)

where 𝑥(𝑛) and 𝑦(𝑛) are state variables and system param-
eters 𝑎, 𝑏, 𝑐, and 𝑑 are real parameters. Let (𝑏, 𝑐, 𝑑) =

(−0.1, −0.9, −0.48), varying 𝑎 in range 2 < 𝑎 < 3.5, system
(1) has the corresponding bifurcation diagram, and Lyapunov
exponents are depicted in Figure 1.

Numerical simulations are presented to exhibit the com-
plex dynamical behaviors, such as period orbits, Hopf bifur-
cation, chaos, and hyperchaos. The phase portraits of system
(1) are shown in Figure 2. These results reveal far richer
dynamics of the discrete model compared with the chaos sys-
tem. The numerically computed Lyapunov exponents and
bifurcation diagram of system (1) can further confirm the
complex dynamical behaviors.

It is well known that there exist many uncertain fac-
tors from external environment, manufacture, material, and
installation; many dynamic systems are always inevitably
affected by some random disturbances, such as uncertainties
of system parameters, perturbations of external noise, and
stochastic input. Hence, the stochastic system accurately
represents the original system, and the dynamic behaviors
analysis of stochastic system will possess more practical sig-
nificance.The study of this kind ofmodel ismore significance

than the deterministic system. In the following, we consider
a stochastic discrete-time hyperchaotic system. Let 𝑎, 𝑏, and
𝑐 be deterministic parameters, and 𝑑 is a random parameter.
Then the stochastic discrete-time hyperchaotic system can be
written as the following system:

𝑥 (𝑛 + 1) = 𝑎𝑦 (𝑛) + 𝑏𝑥 (𝑛)
2
+ 𝑐𝑦 (𝑛)

2
,

𝑦 (𝑛 + 1) = (𝑑 + 𝛿𝑘) 𝑥 (𝑛) ,

(2)

where 𝑑 is the statistic parameter of 𝑑 in system (2), 𝛿 is
regarded as strength of random disturbance, and 𝑘 is a ran-
dom variable defined on nonnegative set integer which obeys
density function 𝑝

𝑘
.

According to orthogonal polynomial approximation of
discrete random function in theHilbert spaces and the ortho-
gonality of orthogonal polynomials [21–25], the response of
discrete-time hyperchaotic system with random parameter
can be expressed by the following Fourier series:

𝑥 (𝑛, 𝑘) =

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘) ,

𝑦 (𝑛, 𝑘) =

𝑀

∑

𝑖=0

𝑦
𝑖
(𝑛) 𝑃
𝑖
(𝑘) ,

(3)

where 𝑥
𝑖
(𝑛) = ∑

𝑁

𝑖=0
𝑝
𝑘
𝑥(𝑛, 𝑘)𝑃

𝑖
(𝑘), 𝑦

𝑖
(𝑛) = ∑

𝑁

𝑖=0
𝑝
𝑘
𝑦(𝑛,

𝑘)𝑃
𝑖
(𝑘),𝑃
𝑖
(𝑘) is the orthogonal polynomial, and𝑀 represents

the largest order of the polynomial we have taken. Substitut-
ing (3) into (2), we have

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛 + 1) 𝑃

𝑖
(𝑘) = 𝑎(

𝑀

∑

𝑖=0

𝑦
𝑖
(𝑛) 𝑃
𝑖
(𝑘))

+ 𝑏(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘))

2

+ 𝑐(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘))

2

,

𝑀

∑

𝑖=0

𝑦
𝑖
(𝑛 + 1) 𝑃

𝑖
(𝑘) = (𝑑 + 𝛿𝑘)(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘)) .

(4)

The cycle recurrence formula of polynomials is as follows:

𝑘𝑃
𝑖
(𝑘) = 𝛼

𝑖
𝑃
𝑖+1
(𝑘) + 𝛽

𝑖
𝑃
𝑖
(𝑘) + 𝛾

𝑖
𝑃
𝑖−1
(𝑘) ,

𝛾
𝑖
̸= 0, 𝑃
−1
(𝑘) = 0, 𝑃

0
(𝑘) = 1,

(5)

where 𝛼
𝑖
, 𝛽
𝑖
, and 𝛾

𝑖
are decided by different kinds of poly-

nomials.
In this paper, we assume that the random variable 𝑘 obeys

the Poisson distribution with a parameter of 𝜆. Correspond-
ing to this random variable, the orthogonal polynomial is
chosen as the Charlier polynomial.Therefore, the coefficients
of (5) are 𝛼

𝑖
= 1, 𝛽

𝑖
= 𝑖 + 𝜆, and 𝛾

𝑖
= 𝜆𝑖. When𝑀 → ∞, the

discrete-time hyperchaotic system with random parameter



Discrete Dynamics in Nature and Society 3

a

Bifurcation diagram
5

4

3

2

1

0

−1

−2

2 2.5 3 3.5

y
(n
)

(a)
a

5

4

3

2

1

0

−1

−2

3.2 3.3 3.4 3.5

y
(n
)

(b)

2 2.5 3 3.5
−1

−0.5

0

0.5

1

LE
1/

LE
2

Lyapunov exponents

a

(c)

Figure 1: (a) Bifurcation diagram of system (1) when initial values are 𝑥(1) = 0.01 and 𝑦(1) = 0.01. (b) Local amplification corresponding to
(a). (c) Lyapunov exponents corresponding to (a).

is strictly equivalent to system (4). In order to facilitate the
numerical analysis of this paper, we select 𝑀 = 1 and
𝛾 = 1 and approximately obtain the equivalent deterministic
system of discrete-time hyperchaotic system with random
parameter:

𝑥
0
(𝑛 + 1) = 𝑎𝑦

0
(𝑛) + 𝑆

0
(𝑛) + 𝑈

0
(𝑛) ,

𝑦
0
(𝑛 + 1) = 𝑑𝑥

0
(𝑛) + 𝛿𝑥

0
(𝑛) ,

𝑥
1
(𝑛 + 1) = 𝑎𝑦

1
(𝑛) + 𝑆

1
(𝑛) + 𝑈

1
(𝑛) ,

𝑦
1
(𝑛 + 1) = 𝑑𝑥

1
(𝑛) + 𝛿 (2𝑥

1
(𝑛) + 𝑥

0
(𝑛)) ,

(6)

where 𝑆
𝑖
(𝑛) (𝑖 = 0, 1) and 𝑈

𝑖
(𝑛) (𝑖 = 0, 1) can be derived

through the MAPLE (see Appendix). We can obtain

the numerical solutions 𝑥
𝑖
(𝑛) and 𝑦

𝑖
(𝑛) of equivalent deter-

ministic system (6) by effective numerical methods. Fur-
thermore, the approximate random response of the orig-
inal stochastic discrete-time hyperchaotic system can be
expressed as

𝑥 (𝑛, 𝑘) = 𝑥
0
(𝑛) 𝑃
0
(𝑘) + 𝑥

1
(𝑛) 𝑃
1
(𝑘) ,

𝑦 (𝑛, 𝑘) = 𝑦
0
(𝑛) 𝑃
0
(𝑘) + 𝑦

1
(𝑛) 𝑃
1
(𝑘) ,

(7)

and the ensemble mean response of system (2) is calculated
as

𝐸 [𝑥 (𝑛, 𝑘)] = 𝑥
0
(𝑛) 𝐸 [𝑃

0
(𝑘)] + 𝑥

1
(𝑛) 𝐸 [𝑃

1
(𝑘)]

= 𝑥
0
(𝑛) ,
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Figure 2: Continued.
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Figure 2: Phase portraits of system (1) when parameter 𝑎 changes in the range as shown in Figure 1(a). The initial values of system (1) are
𝑥(1) = 0.01 and 𝑦(1) = 0.01.

𝐸 [𝑦 (𝑛, 𝑘)] = 𝑦
0
(𝑛) 𝐸 [𝑃

0
(𝑘)] + 𝑦

1
(𝑛) 𝐸 [𝑃

1
(𝑘)]

= 𝑦
0
(𝑛) .

(8)
The initial conditions of system (1) with deterministic param-
eters are defined as 𝑥

0
= 𝑥(0) and 𝑦

0
= 𝑦(0). In this paper we

take the initial conditions of equivalent deterministic system
(6) as follows:

𝑥
0
= 𝑥 (0) = 0.01,

𝑦
0
= 𝑦 (0) = 0.01,

𝑥
1
= 𝑥 (1) = 0,

𝑦
1
= 𝑦 (1) = 0.

(9)

3. Hopf Bifurcation Analysis

In this section, we will investigate the Hopf bifurcation of
discrete-time hyperchaotic system with random parameter.

Theorem 1. Stochastic discrete-time hyperchaotic system (2)
undergoes the Hopf bifurcation in the strong resonance case at
a fixed point, when the parameter 𝑑 passes the critical value
𝑑
𝑐
= −1/𝑎 − 𝛿.
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Proof. The Jacobian matrix of equivalent deterministic sys-
tem (6) at the zero fixed point is

𝐽 =(

0 𝑎 0 0

𝑑 + 𝛿 0 0 0

0 0 0 𝑎

𝛿 0 𝑑 + 2𝛿 0

) (10)

with the character polynomial

𝑓 (𝜆) = 𝑏
0
𝜆
4
+ 𝑏
1
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
3
𝜆 + 𝑏
4
, (11)

where 𝑏
𝑖
(𝑖 = 1, . . . , 4) are coefficients of equivalent determin-

istic system (6), which are shown as follows:

𝑏
0
= 1,

𝑏
1
= 0,

𝑏
2
= −3𝑎𝛿 − 2𝑎𝑑,

𝑏
3
= 0,

𝑏
4
= 3𝑎
2
𝑑𝛿 + 2𝑎

2
𝛿
2
+ 𝑎
2
𝑑

2

.

(12)

By a simple computation, it is straightforward to obtain the
following results:

𝜆
1,2
= ±

√
𝑎𝑑 + 𝑎𝛿,

𝜆
3,4
= ±

√
𝑎𝑑 + 2𝑎𝛿.

(13)

The classical Hopf bifurcation criterion (see [11]) about the
discrete-time system is repeated as follows: (C1) Eigenvalue
assignment: the Jacobian matrix of the discrete-time system
has a pair of complex conjugate eigenvalues, 𝜆

1
(𝜇) and 𝜆

1
(𝜇)

with |𝜆
1
(𝜇)| = 1 at 𝜇 = 𝜇

𝑐
and the other eigenvalues 𝜆

𝑗
(𝜇)

(𝑗 = 3, 4, . . . , 𝑛), with |𝜆
𝑗
(𝜇
𝑐
)| < 1; (C2) transversality condi-

tion: 𝑑|𝜆
𝑖
(𝜇
𝑐
)|/𝑑𝜇 ̸= 0 (𝑖 = 1, 2, . . . , 𝑛); (C3) nonresonance

condition: 𝜆𝑚
1
(𝜇) ̸= 1; resonance condition: 𝜆𝑚

1
(𝜇) = 1

(𝑚 = 3, 4, . . .). The type and stability of bifurcation solutions
depend on condition (C3) and the nonlinear property of
system.

According to the classical Hopf bifurcation criterion
mentioned above, the equivalent deterministic system (6)
occurs as Hopf bifurcation if and only if (C1)–(C3) hold. To
ensure that (C1) hold, the character polynomial (11)must exist
as a pair of conjugate complex roots, and the parametersmust
satisfy one of the below conditions:

𝑎𝑑 + 𝑎𝛿 < 0,

𝑎𝑑 + 2𝑎𝛿 < 0.

(14)

To satisfy the eigenvalue’smodules of (C1) conditions, we take

󵄨
󵄨
󵄨
󵄨
𝜆
1,2

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

±
√
𝑎𝑑 + 𝑎𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 1,

or 󵄨󵄨󵄨
󵄨
𝜆
3,4

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

±
√
𝑎𝑑 + 2𝑎𝛿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 1.

(15)

By means of the MAPLE software, the relationships between
the bifurcation parameter and the random strength are
obtained:

𝑑
1
= −

1

𝑎

− 𝛿,

or 𝑑
2
= −

1

a
− 2𝛿.

(16)

Substituting all expressions of (16) into character polynomial
(11), respectively, all eigenvalues are as follows:

𝜆
1
= 𝐼,

𝜆
2
= −𝐼,

𝜆
3
= √−1 + 𝑎𝛿,

𝜆
4
= −√−1 + 𝑎𝛿,

or 𝜆
1
= 𝐼,

𝜆
2
= −𝐼,

𝜆
3
= √−1 − 𝑎𝛿,

𝜆
4
= −√−1 − 𝑎𝛿.

(17)

Obviously, because 𝛿 ≥ 0 and 2 < 𝑎 < 3.5, the eigenvalues
that correspond to the parameter 𝑑

2
= −1/𝑎 − 2𝛿 do not

satisfy the Hopf bifurcation condition (C1). However, when
0 < 𝑎𝛿 < 2, the eigenvalues that correspond to the parameters
𝑑
1
= 𝑑
𝑐
= −1/𝑎−𝛿 can satisfy the Hopf bifurcation condition

(C1). Therefore, there is only one expression 𝑑
1
= 𝑑
𝑐
=

−1/𝑎 − 𝛿, which can satisfy the Hopf bifurcation condition
(C1). In the meantime, (C2) and (C3) are written as

𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
1
(𝑑
𝑐
)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑑

=

1

2√𝑎𝑑
𝑐
+ 𝑎𝛿

̸= 0, (18)

𝜆
3

1
(𝑑
𝑐
) = √𝑎𝑑

𝑐
+ 𝑎𝛿 ̸= 1,

𝜆
𝑚

1
(𝑑
𝑐
) = √𝑎𝑑

𝑐
+ 𝑎𝛿 ̸= 1

(𝑚 = 4𝑘 + 1, 4𝑘 + 2, 4𝑘 + 3, 𝑘 ∈ 𝑍
+
) ,

or 𝜆𝑚
1
(𝑑
𝑐
) = √𝑎𝑑

𝑐
+ 𝑎𝛿 = 1 (𝑚 = 4𝑘, 𝑘 ∈ 𝑍

+
) .

(19)
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Figure 3: (a) Phase portrait and (b) time history diagram of equivalent deterministic system (6) with 𝑑 = −0.45.
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Figure 4: (a) Phase portrait and (b) time history diagram of equivalent deterministic system (6) with 𝑑 = −0.5049.

Thus, both (C2) and (C3) hold. According to the above
analysis, when 0 < 𝑎𝛿 < 2 and 𝑑 = −1/𝑎 − 𝛿, all the
conditions for the existence of the Hopf bifurcation hold.
Because there is a pair of pure imaginary roots ±𝐼 in the
eigenvalues, system (6) undergoes the Hopf bifurcations in
the 1 : 4 strong resonance case. Numerical simulations are
used to investigate equivalent deterministic system (6). Let
𝑎 = 2.2, 𝑏 = −0.1, and 𝑐 = −0.9, and random strength is given

by 𝛿 = 0.05, and the parameter 𝑑 is given by −0.45, −0.5049,
and −0.508, respectively. Phase portraits and time history
diagrams are displayed in Figures 3, 4, and 5, respectively.

4. The Amplitude Control for
Hopf Bifurcation

A method is introduced to control the amplitude of Hopf
bifurcation, which does not require any adjustable control
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Figure 5: (a) Phase portrait and (b) time history diagram of equivalent deterministic system (6) with 𝑑 = −0.508. (c) Local amplification
corresponding to (b).

parameters of the system. Our objective here is to research
the influence of random intensity for the Hopf bifurcation
amplitude of equivalent deterministic system (6). When
parameter𝑑 = −0.508 and random intensity 𝛿 = 0.05, respec-
tively, equivalent deterministic system (6) occurs as the Hopf
bifurcation. As the random intensity increases to 𝛿 = 0.051,
the amplitude of limit cycle in equivalent deterministic
system (6) is becoming smaller; the phase trajectories and
timehistory diagrams are shown as in Figure 6. Increasing the
random intensity to 𝛿 = 0.052, the amplitude of limit cycle
in equivalent deterministic system (6) is more smaller than

the amplitude of limit cycle of Figure 6; the phase trajectories
and time history diagrams are shown in Figure 7. As we
continue to increase random intensity to 𝛿 = 0.0528, the
amplitude of limit cycle in equivalent deterministic system
(6) is more smaller than the amplitude of limit cycle of
Figure 7; the phase trajectories and time history diagrams are
shown in Figure 8.

According to the numerical simulations, we can find
that amplitude of the stochastic discrete-time hyperchaotic
system will be controlled by changing the random intensity.
Compared to the deterministic system, the random intensity
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Figure 6: (a) Phase portrait and (b) time history diagram of stochastic discrete-time hyperchaotic system (6) with 𝛿 = 0.05 and 𝛿 = 0.051.
(c) Local amplification corresponding to (b).

obviously affects the bifurcation amplitude of its stochastic
system, and the bifurcation amplitude decreases with the ran-
dom intensity. Numerical simulations are used to investigate
equivalent deterministic system (6). Here, we take 𝑎 = 2.2,
𝑏 = −0.1, and 𝑐 = −0.9, and the equivalent determin-
istic system undergoes strong resonance Hopf bifurcation
at the fixed point, when the bifurcation parameter 𝑑 =

−0.508. The phase trajectories and time history diagrams for

the stochastic discrete-time hyperchaotic system are depicted
in Figures 6, 7, and 8.

5. Conclusions

In this paper, numerical simulations are presented to illustrate
our results with the theoretical analysis and to exhibit the
complex dynamical behaviors. Furthermore, the amplitude



10 Discrete Dynamics in Nature and Society

−0.5 0 0.5
−0.2

−0.1

0

0.1

0.2

0.3

x(n)

y
(n
)

Phase portrait

𝛿 = 0.051

𝛿 = 0.052

(a)

0 2000 4000 6000 8000 10000
−0.5

0

0.5

n

x
(n
)

Time history diagram

𝛿 = 0.051

𝛿 = 0.052

(b)

1100 1120 1140 1160 1180 1200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

n

x
(n
)

𝛿 = 0.051

𝛿 = 0.052

(c)

Figure 7: (a) Phase portrait and (b) time history diagram of stochastic discrete-time hyperchaotic system (6) with 𝛿 = 0.051 and 𝛿 = 0.052.
(c) Local amplification corresponding to (b).

control of Hopf bifurcation of a stochastic discrete-time
hyperchaotic system has been analyzed. Stochastic discrete-
time hyperchaotic system undergoes strong resonance Hopf
bifurcation at a fixed point by means of the Hopf bifurcation
theory. In addition, a random intensity control law has been
introduced for the stochastic discrete-time hyperchaotic sys-
tem.The amplitude of the Hopf bifurcation can be controlled
by changing the random intensity. We can find that the effect
of the random intensity on controlling the Hopf bifurcation
is available. Numerical simulations show the effectiveness of
the analytical results.

Appendix

𝑆
𝑖
(𝑛) (𝑖 = 0, 1) and 𝑈

𝑖
(𝑛) (𝑖 = 0, 1) in system (6) can be

derived through the MAPLE as follows:

𝑆
0
(𝑛) = 𝑏 (𝑥

2

0
(𝑛) + 𝑥

2

1
(𝑛)) ,

𝑆
1
(𝑛) = 𝑏 (2𝑥

0
(𝑛) 𝑥
1
(𝑛) + 𝑥

2

1
(𝑛)) ,

𝑈
0
(𝑛) = 𝑐 (𝑦

2

0
(𝑛) + 𝑦

2

1
(𝑛)) ,
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Figure 8: (a) Phase portrait and (b) time history diagram of stochastic discrete-time hyperchaotic system (6) with 𝛿 = 0.052 and 𝛿 = 0.0528.
(c) Local amplification corresponding to (b).
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