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The paper considers the existence of multiple solutions of the singular nonlocal elliptic problem —M(jQ |x|~*|Vul?)

div (|x]™ |Vu|P2Vu) = Mi(x)|u| u, x € Q, M(_[O || 2 |Vul) | x| |VulP 2 (Qu/ov) = g(x)|ul?u, on 0Q, where 1 < (N +1)/2 <
p < N,a < (N - p)/p. By the variational method on the Nehari manifold, we prove that the problem has at least two positive

solutions when some conditions are satisfied.

1. Introduction and Main Result

In this paper, we consider the existence of multiple solutions
for the singular elliptic problem:

M (J |x|*“P|Vu|de) div (1] |Vail? ? V)
Q
=M |uPu, xeQ,
5 1
M ([ o) v S
Q ov

=g (x)|ul"’u, on 0Q,

where 1 < (N+1)/2<p<N,a<(N-p)/p,A>0,Qisan
exterior domain of RY: that is, and Q = RN \ D, where D is
a bounded domain in RY with the smooth boundary 0D( =
0Q), and 0 € Q. g(x) and h(x) are continuous functions,
M(s) = as + 8 with the parameters «, 3 > 0.

Problem like (1) is usually called nonlocal problem
because of the presence of the integral over the entire domain,
and this implies that (1) is no longer a pointwise identity. In
fact, such kind of problem can be traced back to the work of
Kirchhoft. In [1], Kirchhoft investigated the model of the form

o*u Py E (Y|oul o’u
gu (Do, 2 [HEE )T _o
Por (h+2LL x| ¥ ) ax2 @

where p, Py, h, E, and L are all positive constants. This equa-
tion extends the classical dAlembert’s wave equation by con-
sidering the effects of changes in the length of the strings dur-
ing the vibrations. Problem (1) is related to the stationary ana-
logue of problem (2). After Kirchhoft’s work, various models
of Kirchhoff-type have been studied by many authors: we
refer the readers to [2-9]. In [4], by the variational methods,
Bensedik and Bouchekif considered the problem

—M<J- |Vu|2dx> Au= f(xu), xeQ,
o 3)
u=0, on 0Q,

where Q) is a bounded domain in RY. One of the assumptions

made on f(x,t) in (3) is that (f;) f(x,t) is continuous func-

tion on Q x R such that
f(x,t) 20, Vt>0, x €Q,

f(X, t) = 0,

_ (4)
V<0, x € Q.

The authors proved that problem (3) has a positive solution
or has no solution when some other assumptions are fulfilled.
In our paper, however, the weight functions h(x) and g(x) are
permitted to change sign. Thus, the methods in [4] cannot be
directly applied on (1).



In recent years, some other authors considered the Kirch-
hoff-type equations with p-Laplacian [10-13]. In fact, moti-
vated by [4, 5] and our previous work [14], we consider the
existence of multiple solutions for problem (1) on the Nehari
manifold by variational methods. We prove that problem (1)
has at least two positive solutions. Since O ¢ R is an
unbounded domain and the problem is singular, the loss of
compactness of the Sobolev embedding renders variational
technique more delicate.

In order to state our result, we introduce a weighted Sobo-
lev space E = W}?(Q), which is the completion of the space
Cy° () with the norm of

B Up
lullg = (J || “P|Vu|de> ) 5)
Q

Forp > land f = f(x) > 0in Q, we define the space
LP(Q, f) as being the set of Lebesgue measurable functions
u:Q — R', which satisfies

1/p
il o) = (L f ) |u|f’dx) < oo. 6)
The following weighted Sobolev-Hardy inequality is due to

Caffarelli et al. [15], which is called the Caffarelli-Kohn-
Nirenberg inequality. There is a constant S; > 0 such that

N
-b,
(,, 1 v ax)

1/p
< 81<J |x|_“P|Vu|de> , VYueCy (IRN),
RN

7)

where —co <a < (N-p)/pa<b<a+1l,d=a+1-b,
and p* = pN/(N - pd). Throughout this paper, we make the
following assumptions:

(A)) h(x)]x]" € L(Q) n L®(Q) with 5 = p*/(p*—

), h* = max{+h(x),0} # 0,

(A,) g(x) € C(0Q) N L™(0Q)),

(Aj) 1<r<p<2p<q<p,=pN-1)/(N-Dp).
Now, we give the definition of weak solution for problem (1).

Definition 1. A function u € E is said to be a weak solution of
problem (1) if for any ¢ € C;°(£2)

(allull, + B) [ 1+~ 19ul"2vu- gz
- [ g6l updo ®)
0Q

=2 J h () [ul " ugpdx.
Q

The assumptions (A,)-(A;) mean that all the integrals in (8)
are well defined and convergent.

In view of (A ), it follows from the compact trace embed-
ding WP (Q) — L1(0Q) [16] that

LQ () lul’do < S, g, Il 9)

for some constant S, > 0, and ||gll, = gll;e -
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Our main result is in the following.

Theorem 2. Assume (A,)-(A,); there exists A* > 0 such that
problem (1) has at least two positive solutions for all A > 0 satis-
fying0 <A <A*.

This paper is organized as follows. In Section 2, we give
some properties of the Nehari manifold and set up the varia-
tional framework for problem (1). In Section 3, we consider
the multiplicity results and prove Theorem 2.

2. Preliminary Results

It is clear that problem (1) has a variational structure. Let
Jy(w) : E — R' be the corresponding Euler functional of
problem (1), which is defined by

INOE %M (Jull) - é [ g tas
(10)
1 J h(x) |u|"dx,
rJo

where M(t) = Jg M(s)ds. Then, we see that the functional
Jh(u) € CYE,RY), and for V¢ € E, there holds

(7 ), @) = M (ulf) L x| |VulP*Vu - Vodax

- J glul"*updo — A J hlul *ugdx.
20 Q
(11)

Particularly, we have

<]£ (u)au> = M(||u||§)J |x|_ﬂP|Vu|de
! (12)
- I g (x) [u|ldo - A I b (x) |u| dx.
0Q Q

It is well known that the weak solution of problem (1) is the
critical point of J,(u). Thus, to prove the existence of weak
solutions for problem (1), it is sufficient to show that J, (u)
admits a sequence of critical points. Since J,(u) is not
bounded below on E, it is useful to consider the functional
J5(u) on the Nehari manifold [17, 18]:

Ny = {u e EN{O} | (J, w),u) = 0}, (13)

where (, ) denotes the usual duality. Then, it follows from (12)
that u € N, if and only if

M (1) bt~ [ g Gl = | n)purdx = o.
(14)
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Then, we get from (10)-(14) that

Iy ) = (% - ;) ol - (% - %) Blul

(15)
11 q
+(T’ q>J-60g(X)|u| do
1 1 1 1
- (5 - a)auunif’ + (; - 5) Blul?
(16)

- (% - é)/\ Lzh(x) jul’dx.
We define
D) () = (Jy (),u). (17)
Then, (14) implies that

(0 (w),u) = pM" (l1ly) lulyf + pM (Il el

-q J g (x) lu|'do —rA J h(x)|ul dx
20 Q

(18)
= (2p-q)alul! + (p - q) Blul;
19)
+(g-r)A J h(x) |u|"dx
Q
= (2p-r)alulyy + (p—r) Blul;
(20)
-(q-71) J g (x) |ul’do.
20
It is natural to split N, into three parts:
N;[ = {u €N, | <CD:\(u),u> > 0},
N; = {ue Ny | (@} (u),u) <0}, (21)

Ng = {u €N, | <(D;L(u),u> :0}.
Now, we give some important properties of N}, Ny, and Nj.

Lemma3. Let1 <r < p < qandq > 2p. Then, J,(u) is coer-
cive and bounded below on N,.

Proof. For 1 < r < p < g, we obtain from (A,), the Holder
and Caffarelli-Kohn-Nirenberg inequalities that

J o < ([ (o |x|”)”dx)” !

NG
X(J 1|8 Jul? dx)
Q (22)

r/p
< Sih ||~ *P|VulPdx
N Ja

< Sih, lully,

where h, = ([ (1g()l1x")"dx)""",n = p*/(p" ~7). Thus, we
get from (16) that

P e T
B = (32 et} + (5 - =) pi?

- <l - l) J. h(x) |u|"dx
r q/la
1 1 1 1
>t} (5 - 2 )t + (3 - 2) ]
e[\p ~q )Mt (575 )F
11 r r
_ <; - 5> AS; -
Then, one can obtain by the Young inequality and g > 2p that

J5(u) is coercive and bounded below on Nj.
Let

2+/(q-2p) (q-p)
(q_r) S;hn

(3p-2r)/(2q-3p)
. 24JaB (2p-7) (p-7)

(@-7) |9l

> 4>2p,

Ap= 1
PP

(2p—r) Sghn

2(p-n)/
[ 2B (o) o

2p-7) |9l

, q=2p.

Then, we have the following result. O

Lemmad4. Letr < p<gq, q=2p. Then, Ny =@ for0 < A <
Ao-

Proof. Suppose that there exists u € Nj.If g > 2p, then it
follows from (19) and (21) that

2B (q-2p) (q - p)lull "

<(q-2p)alul? + B(q - p) lul?

(25)
—(q-r)A L h () ul dx
<(g-r) )LS;h,,Hullg,
which implies that
2/(3p-2r)
i < | — D25 (26)

2/(qa-2p)(q-p)



On the other hand, we can similarly get from (20) and (21)
that

2aB (2p — 1) (p - )l "

< @2p-r)alul +(p—r) lul?
(27)
- (q—r)j (%) lufldo
0Q
<(q-7) gl lulE
which yields that
\/ 3 X ) 2/(24-3p)
27\af(2p-r)(p—-T1
lullp > (28)

@@= 9le

Thus, inequalities (26) and (28) show that A > A, which con-
tradicts the hypothesis of A.
For g = 2p, we can similarly obtain from (19) and (21)

that
~ 1) A, 10"
el < [—(q ) ] . 29)
PP
Thus, (28) and (29) imply that A > A, which is also a contra-
diction. Therefore, we complete the proof. O

Lemma 5. If u, is a local minimizer of J,(u) on N, and u, ¢
NY, then uy is a critical point of J, (u).

Proof. Let

F ) = M (1) 1t} | g0 lul’do

(30)
- )LJ h(x)|ul"dx, Yuc€E.
Q
Consider the following minimizing problem:
1141211\2 J, (u), subject to F(u) = 0. (31)

By the Lagrange multiplier principle, there exists y € R' such
that

]/’\ (up) = YF’ (o) (32)

<])’t (”o)>“o> =Y <F, (“0) ’”0> =Y <®; (“0) ’”0> . (33)

Since u, € N, and u, ¢ Ny, it follows from (33) that y = 0;
furthermore, ]/'\(uo) =0. L]
Now, we write N, = Ny UN, for 0 < A < A, and define

8} = inf , 8, = inf .
A ulenN:{ J @) A ulenN; Sy @) (34)

Denote

L= (35)

r(q—p)ﬁ[ B(p—r)
p(g-r)Sth, S (g-7) |9l

Then, the following results on 8} and 8, are established.

] (p-r)/(g-p)
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Lemma6. Letr < p<gq, q>2p,and0 < A < A,; then
(i) &3 <0,

(ii) there exists constant ky > 0 such that &) > k.

Proof. (i) For Vu € Ny, we have from (19) and (21) that

2 P
(q -r)A
< 7 Jan g (x) lu|do, (36)
(q p) B

Aj 9 () luldo = L—PLE e
0Q

Thus, (36) and (16) give that

h(u)<(—q —q‘r>Ajh(x>|u|’dx
2| qr Q
(p-)(a-p) 7
Pz,
qpr
which implies that
6/{ = ulglj\% ]/\ (u) < 0. (38)

(ii) Let u € Ny; one can deduce from (20) and (21) that

(p-1pB
> — -
Il [sm—nugnm

On the other hand, we obtain from (16), (26), and (39) that

Ja(w) 2 (ﬁ——) alullf (E—->ﬁll ully

—r)A
L
T

1/(g-p)
] (39)

r
 lull

[M”uupr - (q—r)—/\S;h,]]
pg " ar

> |lully

2"u”%[(q—p)/3<s (p-r)B

(p-r)/(q—p)
pa (@-7)]9le )

B (g-71) /\S{h,7
rq
(40)

Therefore, if 0 < A < A, there exists k, > 0 such that §; >
k. O

For each u € E with Jag g(x)|u|ldo > 0, we define

2p— 2 — _
my () = at? " ullF + pP T ullf - 1" LQ glul'do. (41)
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Then, m,(0) = 0, m,(t) — —ocoast — +00, and m,(t) gets

its unique maximum at the critical point ¢, ... Particularly,
my(t) gets its unique maximum at
1/(q-p)
B(p—1)luly
tO,max = q > (42)
(@-7) [y glul®do

and we have the following results.

Lemma7. Letr < p<q<p,,q=2p,and0 <A < (p/r)A,.
For each u € E with IBQ g(x)|uldo > 0, one has the following:

(1) zfjQ h(x)|u|"dx < 0, then there exists t™ > t, ... such
thatt™u € Ny and

Jo (£ u) = sup J, (tu); (43)
£>0
(ii) szQ h(x)|ul"dx > 0, then there exists 0 < t* < t, . <
t~ suchthatt'u € Ny, t u € Ny, and

I(t'w) = inf ]y (tw),

="a,max

- (44)
Jo(tu)= sup J, (tu).
t2t g max
Proof. (i) For Yu € E, we define
¢ (1) = (J} (tu) ,tu)
= PallullF + tF Bllulf - ¢ (45)
X J g (x) lu|ldo — tr/\j h(x) |ul dx,
30 Q
¢ (1) = (@) (tu),tu)
= 2pat®P||ullf + ¢ Bllull? (46)
—tqj g|u|‘1da-mj B () Jul dx,
30 Q
¢, (t) = J (tu)
_ & oppop By ip
= 2pt llullg” + pt llullg (47)
- ltq J glu|ldo - &tr J h(x) |ul dx.
q Jao r Ja
Since IQ h(x)lul"dx < 0, there exists unique ¢~ > f,, ... such

that

m, () <0,  m,(t) =J h(x) [ul"dx. (48)
Q

Thus, ¢ (t7) =t (m, (") - J-Q h(x)|u|"dx) = 0, which implies
that t"u € N,. It follows from (20) that
() = (2p—r)alt)) P luly
+(p=r) B Tl
(-0 ()| guttdo
20

=)' (F) <0

(49)

that is, t "« € N, . By (47), we obtain that
&, () = at™ Mul + B ullh
_ gq-1 q _ r—1 r
o] ghittdo x| hGolrdx s

=m0 -2 JQ B luldx],

which shows that ¢, (t) increases for ¢ € [0,¢”] and decreases
fort € [t7, +00). Therefore,

L(tu)=¢,(t7) = sup J), (tu). (51)

(ii) We firstly want to prove that 0 < jQ h(x)|ul"dx <
m,(t ). In fact,

o, max

(p—1)/(g—p)
Blp=r)lulp 177,
mg, (tO,max) = ﬁ q "u”E
(g-r1) JaQ glulido
(g-7)/(g—p)
_[ B(p—r) lulf ]q’qp
(g-7) jaﬂ glulido
X J glu|ldo
20
(p-1)/(g-p)
_ Ry pa-a-p) (P - r> o
E
q-r
. (q—p) [ 1 ](p—r)/(q—p)
47/ LgleoS:lul:

> ﬁ(‘l*r)/(q’P)”u”TE <qq:]:>

o

(p-1)/(a-p)
@—Ohk]

(52)



Then, if 0 < A < (p/r)A,, we have that

m, (0) =0 < )LJ h(x) |ul dx
Q

(p-r)/(q-p)
< ﬁ(fifr)/(fifl’)”M";Z <q B P) |: p-r ]
a-r/(qg-r)]dl
< my (tO,max) < My (toc,max) .
(53)

Since jQ h(x)|ul"dx > 0, there exists 0 < t* < ¢, ... <t such
that

my(t)y=m,(t7)=2 J;) h(x) |u|"dx, (54)

and m('x(tJ') >0, m:x(t_) < 0. Similar to the proof of (i), we get
thatt"u € Ny, u € N,. We can deduce from (50) that ¢,(t)
decreases for t € [0,t"] and increases for t € [t',¢t
Therefore,

a,max) .

o\ +\ .
L (tu) = ¢, (t7) = OStISI}af,maxL\ (tu). (55)
Similarly,
N(tu)=¢,(t7) = sup J) (tu). (56)
Then, we complete the proof. O

For each u € E with [ h(x)u|"dx > 0, we define

g (t) = at”P Nl P + Btf|ullf - A1 L h (x) |u| dx.
(57)

Then, m,(t) — —coast — 0" andm,(f) — Oast — oo.
Furthermore, 71, (t) gets its unique maximum at some certain
point £, ... Particularly, #i,(t) gets its unique maximum at
the critical point

o A(g-r1) I h(x) |ul"dx Hp=n)
tO = tO,max (u) = ﬂ (q _Qp) "u”§ , (58)

then we have the following results.

Lemma8. Letl <r < p<gq,q=2p,and0 <A < pA,/r. For
each u € E with IQ h(x)|ul"dx > 0 one has the following:

(i) ifjaQ glulldo < 0, then there exists unique 0 < <
t such thatt'u € N, and

a,max

T (£7u) = inf J) (tu) 5 (59)

(ii) zfjaﬂ gluldo > 0, then there exists 0 < t* < to .\ <
t~ suchthatt'u € N, t u € Ny, and

I (tu) = . tigf I, (tu), Jy(tu)= sup J, (tu).

=%a,max tzfmmax

(60)
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Proof. (i) Since .[BQ gluldo < 0, there exists unique 0 < t* <
f4 max Such that
i, () = J glulido.  (61)
20
Note that (45) can be rewritten as
B (t) =1 [ma ) - LQ g|u|qd0] . (62)

Thus, (61) shows that t"u € N,. By virtue of (14) and (46), we
get that

¢ (1)

(@) (), ")

()" | 2p-g)ale) "
+(p-a) )" ulf
A=) () | o ul'ds]

= ()" (1) > 0,

(63)

which implies that '« € N;. We have from (47) that
SO =" [0~ | guldo]. (60
20

Then, ¢,(t) decreases for t € [0,¢%] and increases for t €
[t*, +00); that is,
Ty (t'u) = inf ], (tu). (65)
(ii) We need also to prove that 0 < IBQ glulldo < m(¢).
In fact, we have that
m(x (tzx,max) 2 mO (ZO)
~ |:A (q-71) [, hlul"dx
B(a-p)
B /\[ Ag-r) jQ hlu|"dx
B(a-p)

_ A(P*q)/(P*f)/_)a(q*r)/(P*’) ”ullg(q—f)/(P—r)

_ (g-p)/(p-r)
" (q p>
q —-r

_ (p-a@)/(p-7)
X (p r> (J h|u|rdx>
q-r Q

> AP0 gla=nlp-) ( q-r >
p-r
>(q—P)/(P—r)

p
lluell

(p-a)/(p-")
2
] luall”

a2

:| (r-q)/(p-1)

(66)

9-p q
XN o [lell
( (q - 1’) slhn £
> J glu|’do > 0
20

for 0 < A < (p/r)A,.
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The rest of the proof is similar to that of (ii) in Lemma 7,
and here we omit the proof. O

Lemma 9. Assume (A,)-(A5). If u, — u in E, then there
exists a subsequence of {u,}, still denoted by {u,}, such that

j h(x) |u,| dx — J h(x) |ul dx,
Q Q
(67)
J g (x) lunlqda — J g (x) |u|'do.
20 20

Proof. By the assumption (A,), we have h(x)|x|"" € L"(Q) n
L®(Q), and then for any ¢ > 0, there exists R, > 0 large
enough such that

[, (mel)ax <ot (68)

Re

where B = {x € R" | |x| < R}, B} = {x € RV | |x| > R} for
R>0.

The compact embedding theorem W;’P Q) — L'(Q,
|x|™) (Theorem 2.1in [19]) implies that

u, — u ae. in Q. (69)

Inequality (7) shows that {u,} is bounded in L? ’ (RY, lebr),
which implies that u, — u in L? (RY, |x|""). Thus, we can
obtain that

.[ |x|—bp* |un - u|P* dx < sp*,
R,

3

J x|t lunlp*dx <MP, (70)
Q

J x| 7% [u|? dx < MP
Q

for some M > 0. On the other hand, we get from the Hoder
inequality and (68)-(70) that

J' hlu, — u| dx
By,

< <L§2 (Ihl |x|br)ndx>1/q

e

# * r/P*
X (J |x|_bp |un —u|P dx)
B;s

<2'M'e, (71)

J hlu, —ul dx
By, \D

br\" H
S(L&\DOM I )dx)

s * r/P
X (J |x|_bp lun - u|P dx)
By, \D

for some constant ¢, > 0 and large n.

*

IN

e

Thus, (71) implies that
L h(x) lun - u|rdx — 0 asn-— o0; (72)
that is,
J;) h(x) |u,| dx — L h(x)|u'dx asn— oco. (73)

Since 0Q) is compact and g € C(3Q2) N L*°(0€)), we obtain by
the trace embedding theorem in [20] that

)LJ g (x) |u,|"do — AJ' g (x) lulldo as n — co.
20 20
(74)

This concludes the proof. O

3. Existence of Solutions

In this part, we will give the proof of the existence of nonnega-
tive and nontrivial solutions. Before this, we need to prove the
following two important lemmas.

Lemma 10. Assume (A;) and 0 < A < (p/r)A,. Then, the
functional J,(u) has a minimizer u;, € N, and

(@) Jr(ug) = 8y,

(ii) ug is a positive weak solution of problem (1).

Proof. Since J; (1) is bounded in N7, there exists a minimiz-
ing sequence of {1} € N such that

li = inf .
Jim T () Jnf 2 () (75)
We can get that {u;} is bounded in E and 1. — 1, weakly in E
since ], (u) is coercive. It follows from Lemma 6 that
J) () — 8 <0 as k — +oo. (76)

Furthermore, equality (16) and Lemma 9 imply that
jQ h(x)lug|"dx > 0.In the following, we prove that u, — u,
in E. Suppose otherwise that

il < tim_inf )
Let
My (€)= ot uig |7+ BEP sy |
A J h(x) [ug| dx,
Q
g0 (1) = ot ug |1 + BPug |
- J h(x) |ug|rdx - J g (x) |u3|qd0.
Q 20
(78)

It is obvious that m, () has the unique critical point
tomax(Ug) and m,, .+ (t) increases for ¢ € [0, 1, a0y (1g)] and



decreases for t € [ta’max(ug ), 00). Particularly, Mot (t)
has the unique critical point at to(u5) = fmax(4y)- Since
_[Q h(x)lug|"dx > 0, it follows from Lemma 8 that there exists
ty < tomax(tg) such that tju; € Ny and

I (toug) = 0<t<tinf (u+)]/\ (tug) - (79)

By virtue of tyu; € N}, we obtain that

0o (t5) = () (I (tyug ) tgug ) = 0. (80)

Similarly, we set
P (0) = at a1+ e o |

- A1 JQ h(x) || dx 1)

[ 9@ wf'do.
0Q

In view of (77), we get that ¢ (t;) > @,(t;) = 0 for large k.
Since ¢ (1) = 0 and (p,'c(t) > m;)ug(t) > 0 fort € (0,

tomax(#g)], we obtain that 1 < t§ < £, . (uf) and @ (t) < 0
for t € [0, 1]. Then, by (77), (79), and Lemma 9, we get that

T (toug) < Ty (ug) < klif{lm]x (u) = 835 (82)
which is a contradiction. Hence, 4. — u strongly in E, and
I () — Th (ug) =8, as k — +oo. (83)

Thus, u, is a minimum of J,(u) on Nj. Since J,(u,) =
Ja(lug ) and |uy | € Ny, we may assume by Lemma 5 that u is
a positive solution of problem (1). O

Lemma 11. Assume (A;) and 0 < A < (p/r)A,. Then, the
Sfunctional ], (u) has a minimizer u, € N, and
(i) Ja(ug) = 5,

(ii) u, is a positive weak solution of problem (1).

Proof. Since J(u) is bounded on N, there exists a minimiz-
ing sequence {1} € N such that

leHéO I (”k) = uienl\g Ty (w). (84)

A

Similar to the proof of Lemma 10, we may assume that u;, —
u, weakly in E. For u; € N, , we deduce by Lemma 6 and (15)

that [, g(x)|u|%do > 0; furthermore, [, g(x)lug|%do > 0.

We also want to prove that 1, — u, strongly in E. In fact, if
not, we have

luglle < tim inf e (85)
By virtue of Lemma 7, there exists ¢, > 0 such that

INGYOE Stlj(l)) I (twy) (86)
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and a simple transformation shows that

I () = T, ()

Therefore, Lemma 9 together with (84)-(87) gives that

Vuk € N): (87)

T (tgug) < Jm J, (tow) < Jm T, () =83 (88)
which is a contradiction, and we complete the proof. O

Proof of Theorem 2. We set A* = min{A;, 1,}. When 0 < A <
A", by Lemmas 10 and 11, we obtain that problem (1) has two
nontrivial nonnegative solutions u; € Ny, u, € Nj,.
Lemma 4 and the assumptions of Theorem 2 imply that N} N

N) = 0; then ug and u, are distinct. Furthermore, since
],\(u:;r) = ],\(Iugl) and Iu;jrl € N)i:,we can assume that the solu-
tions 1, and u, are positive. This completes the proof. [

4. Conclusions

The object of this paper is to prove the existence of multiple
solutions for the nonlinear Kirchhoff-type problem (1). By the
variational methods, we discuss the problem on the Nehari
manifold and give the sufficient conditions for the existence of
solutions. We overcome the difficulty due to the loss of com-
pactness on the unbounded domain. In the future work, we
are interested to consider similar problems, but the term on
the right will be replaced by abstract functions.
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