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This paper is devoted to investigating the eigenvalue problems of a class of nonlinear impulsive singular boundary value problem
in Banach spaces: 𝜇𝑥 + 𝑓(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 1), 𝑡 ̸= 𝑡

𝑖
; Δ𝑥|
𝑡=𝑡𝑖

= 𝛼
𝑖
𝑥(𝑡
𝑖
− 0), 𝑖 = 1, 2, . . . , 𝑘; 𝑎𝑥(0) − 𝑏𝑥


(0) = 𝜃; 𝑐𝑥(1) + 𝑑𝑥


(1) = 𝜃,

where 𝜃 denotes the zero element of Banach space, Δ𝑥|
𝑡=𝑡𝑖

= 𝑥(𝑡
𝑖
+ 0) − 𝑥(𝑡

𝑖
− 0), 𝛼

𝑖
> −1, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅+, 𝛾 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 > 0, 𝜇 is a

parameter, and 𝑓(𝑡, 𝑥)may be singular at 𝑡 = 0, 1 and 𝑥 = 𝜃. The arguments are mainly based upon the theory of fixed point index,
measure of noncompactness, and the special cone, which is constructed to overcome the singularity.

1. Introduction

Consider the following eigenvalue problems of singular
boundary value problem (SBVP) with impulse in Banach
space 𝐸:

𝜇𝑥

+ 𝑓 (𝑡, 𝑥) = 0, 𝑡 ∈ (0, 1) , 𝑡 ̸= 𝑡

𝑖
;

Δ𝑥|
𝑡=𝑡𝑖

= 𝛼
𝑖
𝑥 (𝑡
𝑖
− 0) , 𝑖 = 1, 2, . . . , 𝑘;

𝑎𝑥 (0) − 𝑏𝑥


(0) = 𝜃;

𝑐𝑥 (1) + 𝑑𝑥

(1) = 𝜃,

(1)

where 𝜃 denotes the zero element of Banach space𝐸,Δ𝑥|
𝑡=𝑡𝑖

=

𝑥(𝑡
𝑖
+ 0) − 𝑥(𝑡

𝑖
− 0), 0 = 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

= 1,
𝛼
𝑖
> −1, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅+, 𝛾 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 > 0, 𝜇 is a parameter,

𝑓(𝑡, 𝑥)may be singular at 𝑡 = 0, 1 and 𝑥 = 𝜃.
During the last few decades, the existence of positive

solution of nonlinear singular boundary value problems has
gained considerable popularity (see [1–12] and references
therein). In recent years, there were also a lot of papers which
dealt with eigenvalue problems (see [13–27]). Some of them
considered singular case (see, for instance, [13–16, 18, 19],
etc.).

On the other hand, as we know, the theory of impulsive
differential equations has found its extensive applications in
realistic mathematical modeling of a wide variety of practical
situations such as physics, chemical technology, population
dynamics, biotechnology, and economics. It has emerged as
an important area of investigation in recent years (see [28–
36] and references therein).

To the best of our knowledge, there is no paper studying
the eigenvalue problems of the impulsive singular boundary
value problem in Banach spaces. The main purpose of
this paper is to fill this gap. By using the theory of fixed
point index, measure of noncompactness, and the special
cone which is constructed to overcome the singularity, we
investigate the existence of eigenvalues of (1).

The main features of the present paper are as follows. By
virtue of a special transformation, we first convert (1) into
another solvable form such that the associated operator can
be used to overcome the influence of impulse and parameter
𝜇. Then a special cone is constructed to deal with the
singularity of (1).

This paper is organized as follows. In Section 2, we pro-
vide some basic definitions, preliminaries facts, and lemmas.
Meanwhile, some transformations are introduced to convert
(1) into another solvable form. In Section 3, the main results
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are presented and proved. Finally, an example is worked out
to demonstrate the application of the main result.

2. Preliminaries and Conversion of (1)
Let 𝑃 be a normal solid cone of real Banach space 𝐸. Without
loss of generality, suppose the normal constant is 1. Let 𝑃∗
denote the dual cone of 𝑃, 𝐽 = [0, 1], and 𝑃

𝑟
= {𝑥 ∈ 𝑃 : ‖𝑥‖ <

𝑟}, 𝑃
𝑟
= {𝑥 ∈ 𝑃 : ‖𝑥‖ ≤ 𝑟} (𝑟 > 0). Denoted by 𝐶[𝐽, 𝐸] the

Banach space of all continuous functions 𝑥 : 𝐽 → 𝐸 with
norm ‖𝑥‖

𝑐
= max

𝑡∈𝐽
‖𝑥(𝑡)‖.

We define 𝑃𝐶[𝐽, 𝐸] = {𝑥 : 𝑥 is a map from 𝐽 into 𝐸

such that 𝑥(𝑡) is continuous at 𝑡 ̸= 𝑡
𝑖
and left continuous at

𝑡 = 𝑡
𝑖
and its right limit at 𝑡 = 𝑡

𝑖
(denoted by 𝑥(𝑡+

𝑖
)) exists

for 𝑖 = 1, 2, . . . , 𝑚}, and 𝑃𝐶1[𝐽, 𝐸] = {𝑥 ∈ 𝑃𝐶[𝐽, 𝐸] : 𝑥

(𝑡) is

continuous at 𝑡 ̸= 𝑡
𝑖
and left continuous at 𝑡 = 𝑡

𝑖
and the right

limit at 𝑡 = 𝑡
𝑖
(denoted by 𝑥(𝑡+

𝑖
)) exists for 𝑖 = 1, 2, . . . , 𝑚}.

Let 𝑌 = {𝑦 ∈ 𝐶
1
[𝐽, 𝐸] : 𝑎𝑦(0) − 𝑏𝑦


(0) = 𝜃, 𝑐𝑦(1) +

𝑑𝑦

(1) = 𝜃}, and 𝑋 = {𝑥 ∈ 𝑃𝐶

1
[𝐽, 𝐸] : Δ𝑥|

𝑡=𝑡𝑖
= 𝛼
𝑖
𝑥(𝑡
𝑖
−

0), Δ𝑥

|
𝑡=𝑡𝑖

= 𝛼
𝑖
𝑥

(𝑡
𝑖
−0), 𝑎𝑥(0)−𝑏𝑥


(0) = 𝜃, 𝑐𝑥(1)+𝑑𝑥


(1) =

𝜃}. It is well known that 𝑌 is a Banach space with the norm
‖𝑦‖
1
=max{max

𝑡∈𝐽
‖𝑦(𝑡)‖, max

𝑡∈𝐽
‖𝑦

(𝑡)‖}.

Evidently, 𝑃𝐶[𝐽, 𝐸] and 𝑃𝐶1[𝐽, 𝐸] are Banach spaces with
norm ‖𝑥‖

𝑃𝐶
= sup

𝑡∈𝐽
‖𝑥(𝑡)‖ and ‖𝑥‖

𝑃𝐶
1 = max{sup

𝑡∈𝐽
‖𝑥(𝑡)‖,

sup
𝑡∈𝐽
‖𝑥

(𝑡)‖}, respectively. Furthermore, 𝑋 is a closed sub-

space of 𝑃𝐶1[𝐽, 𝐸].
For each 𝑦 ∈ 𝑌, let 𝑥(𝑡) = ∏

0<𝑡𝑖<𝑡
(1 + 𝛼

𝑖
)𝑦(𝑡); it is

easy to see 𝑥 ∈ 𝑋. Conversely, for each 𝑥 ∈ 𝑋, let 𝑦(𝑡) =
𝑥(𝑡)/∏

0<𝑡𝑖<𝑡
(1 + 𝛼

𝑖
); then 𝑦 ∈ 𝑌.

We convert (1) into another solvable form first.

Lemma 1. If 𝑥 ∈ 𝑋 is a solution of impulsive SBVP (1), then
𝑦(𝑡) = 𝑥(𝑡)/∏

0<𝑡𝑖<𝑡
(1 + 𝛼

𝑖
) satisfies SBVP:

𝜇𝑦

+

1

∏
0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)
𝑓(𝑡, ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) 𝑦 (𝑡)) = 0,

𝑡 ∈ (0, 1) ;

𝑎𝑦 (0) − 𝑏𝑦


(0) = 𝜃;

𝑐𝑦 (1) + 𝑑𝑦

(1) = 𝜃.

(2)

Conversely, if 𝑦 ∈ 𝑌 is a solution of SBVP (2), then 𝑥(𝑡) =

∏
0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)𝑦(𝑡) is a solution of impulsive SBVP (1).

Lemma 2. 𝑦 ∈ 𝑌 is a solution of SBVP (2) if and only if 𝑦 is a
solution of the integral equation:

𝜇𝑦 (𝑡) = ∫
𝐽

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× 𝑓(𝑡, ∏

0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
) 𝑦 (𝑠)) 𝑑𝑠,

(3)

where

𝐺 (𝑡, 𝑠) = {
𝛾
−1
(𝑎𝑡 + 𝑏) (𝑐 (1 − 𝑠) + 𝑑) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝛾
−1
(𝑎𝑠 + 𝑏) (𝑐 (1 − 𝑡) + 𝑑) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(4)

By Lemmas 1 and 2, we can obtain the following.

Lemma 3. 𝑥(𝑡) ∈ 𝑃𝐶[𝐽, 𝐸]⋂𝑋 is a solution of impulsive
SBVP (1) if and only if 𝑥 ∈ 𝑃𝐶[𝐽, 𝐸]⋂𝑋 is a solution of the
integral equation:

𝜇𝑥 (𝑡) = ∫
𝐽

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (5)

where

𝐺
∗

(𝑡, 𝑠) =
∏
0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠) . (6)

Let 𝛼(⋅) and 𝛼
𝑝𝑐
(⋅) donated the Kuratowski noncompact-

ness measure of bounded sets in 𝐸 and 𝑃𝐶[𝐽, 𝐸], respectively.
If nontrivial function 𝑥 ∈ 𝑃𝐶[𝐽, 𝐸] satisfies problem (5) for
some 𝜇 ̸= 0, then 𝜇 is called an eigenvalue and 𝑥 is called an
eigenfunction of problem (1) corresponding to the eigenvalue
𝜇.

It is well known that the following conclusions hold.

Lemma 4 (see [17]). Let 𝑃 be a cone in Banach space 𝐸, 𝑃
𝑟
=

{𝑥 ∈ 𝑃 : ‖𝑥‖ < 𝑟} (𝑟 > 0), and 𝑃
𝑟
= {𝑥 ∈ 𝑃 : ‖𝑥‖ ≤ 𝑟}. Let

operator 𝐴 : 𝑃
𝑟
→ 𝑃 be a strict set contraction. If ‖𝐴𝑥‖ ≥ ‖𝑥‖

and 𝐴𝑥 ̸= 𝑥 for 𝑥 ∈ 𝜕𝑃
𝑟
, then 𝑖(𝐴, 𝑃

𝑟
, 𝑃) = 0.

Lemma 5 (see [17]). 𝐻 ⊂ 𝐶[𝐽, 𝐸] is relatively compact if and
only if𝐻 is equicontinuous and for any 𝑡 ∈ 𝐽,𝐻(𝑡) is a relatively
compact set in 𝐸.

3. Main Results

For convenience, let

𝜎
∗
=: min
1≤𝑗≤𝑘

∏

1≤𝑖≤𝑗

(1 + 𝛼
𝑖
) , 𝜎

∗
=: max
1≤𝑗≤𝑘

∏

1≤𝑖≤𝑗

(1 + 𝛼
𝑖
) ,

Ω (𝑡) =
 (𝑡)∏

0<𝑡𝑖<𝑡
(1 + 𝛼

𝑖
)

𝜎∗
,

 (𝑡) = min{𝑏 + 𝑎𝑡
𝑏 + 𝑎

,
𝑑 + 𝑐 (1 − 𝑡)

𝑑 + 𝑐
} , ∀𝑡 ∈ (0, 1) .

(7)

For the forthcoming analysis, we list the following
assumptions:

(𝐻
1
) 𝑓 ∈ 𝐶[(0, 1) × 𝑃 \ {𝜃}, 𝑃],

𝑓 (𝑡, 𝑥)
 ≤ 𝑔 (𝑡) ‖𝑙 (𝑥)‖ , 𝑡 ∈ (0, 1) , 𝑥 ∈ 𝑃 \ {𝜃} , (8)

where 𝑔 : (0, 1) → (0, +∞), 𝑙 ∈ 𝐶[𝑃 \ {𝜃}, 𝑃] satisfy

∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑅] 𝑑𝑠 < +∞, ∀𝑅 > 𝑟 > 0, (9)

where 𝑙[𝑟, 𝑅] = sup
𝑥∈𝑃𝑅\𝑃𝑟

‖𝑙(𝑥)‖ < +∞.
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(𝐻
2
) There exists a constant 𝐿 ≥ 0 such that

𝛼 (𝑓 (𝑡, 𝐷)) ≤ 𝐿𝛼 (𝐷) , ∀𝑡 ∈ (0, 1) ,

𝐷 ⊂ 𝑃
𝑅
\ 𝑃
𝑟
, ∀𝑅 > 𝑟 > 0,

𝐿 <
𝜎
∗

2𝑀
0
𝜎∗

, 𝑀
0
= max
𝑠∈𝐽

𝛾
−1

(𝑎𝑠 + 𝑏) (𝑐 (1 − 𝑠) + 𝑑) > 0.

(10)

(𝐻
3
) There exist 𝑢

0
∈ 𝑃 \ {𝜃}, [𝑎

0
, 𝑏
0
] ⊂ (0, 1) such that

𝑓 (𝑡, 𝑥) ≥ ℎ (‖𝑥‖) 𝑢
0
, 𝑡 ∈ 𝐽

0
= [𝑎
0
, 𝑏
0
] ,

2𝜎
∗

𝑢0
 𝜎∗max

𝑡∈𝐽
∫
𝑏0

𝑎0

𝐺 (𝑡, 𝑠) Ω (𝑠) 𝑑𝑠

< lim inf
𝑡→0+

ℎ (𝑡)

𝑡
≤ +∞,

(11)

where ℎ ∈ 𝐶[𝑅+, 𝑅+].
(𝐻
4
) There exist 𝜙 ∈ 𝑃

∗ and [𝑎
1
, 𝑏
1
] ⊂ (0, 1) such that

𝜙(𝑥) > 0 for 𝑥 > 𝜃 and

lim inf
‖𝑥‖→∞,𝑥∈𝑃

𝜙 (𝑓 (𝑡, 𝑥))

𝜙 (𝑥)
= 𝜉 (𝑡) (12)

uniformly for 𝑡 ∈ 𝐽
1
= [𝑎
1
, 𝑏
1
], and ∫

𝐽1

𝐺(𝑡, 𝑠)𝜉(𝑠)𝑑𝑠 >

𝜎
∗
/𝜎
∗
.

(𝐻
5
) There exist 𝜙 ∈ 𝑃

∗ and [𝑎
1
, 𝑏
1
] ⊂ (0, 1) such that

𝜙(𝑥) > 0 for 𝑥 > 𝜃 and

lim inf
‖𝑥‖→0,𝑥∈𝑃

𝜙 (𝑓 (𝑡, 𝑥))

𝜙 (𝑥)
= 𝜉 (𝑡) (13)

uniformly for 𝑡 ∈ 𝐽
1
= [𝑎
1
, 𝑏
1
], and ∫

𝐽1

𝐺(𝑡, 𝑠)𝜉(𝑠)𝑑𝑠 >

𝜎
∗
/𝜎
∗
.

Define

𝑄 = {𝑥 ∈ 𝑃𝐶 [𝐽, 𝑃] : 𝑥 (𝑡) ≥ Ω (𝑡) 𝑥 (𝑠) , ∀𝑡, 𝑠 ∈ 𝐽} . (14)

It is easy to check that 𝑄 is a cone in space 𝑃𝐶[𝐽, 𝐸] and 𝑄 ⊂

𝑃𝐶[𝐽, 𝑃]. Let 𝑄
𝑟
= {𝑥 ∈ 𝑄 : ‖𝑥‖ < 𝑟}. As in [2], we can prove

that

𝐺 (𝑡, 𝜏) ≥  (𝑡) 𝐺 (𝑠, 𝜏) , ∀𝑡, 𝑠, 𝜏 ∈ [0, 1] , (15)

where 𝐺(𝑡, 𝑠) is defined in Lemma 2. So for all 𝑡, 𝑠, 𝜏 ∈ [0, 1],
we have

𝐺
∗

(𝑡, 𝑠)

≥
 (𝑡)∏

0<𝑡𝑖<𝑡
(1 + 𝛼

𝑖
)

∏
0<𝑡𝑖<𝜏

(1 + 𝛼
𝑖
)

⋅
∏
0<𝑡𝑖<𝜏

(1 + 𝛼
𝑖
)

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝜏, 𝑠)

≥ Ω (𝑡) 𝐺
∗

(𝜏, 𝑠) .

(16)

To solve eigenvalues of impulsive SBVP (1), we first
consider operator 𝐴 associated with (5) and defined by

(𝐴𝑥) (𝑡) = ∫
𝐽

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, ∀𝑥 ∈ 𝑄 \ {𝜃} . (17)

For ∀𝑥 ∈ 𝑄 \ {𝜃}, from the definition of 𝑄, we have

Ω (𝑡) ‖𝑥‖
𝑝𝑐
≤ ‖𝑥 (𝑡)‖ ≤ ‖𝑥‖

𝑝𝑐
, 𝑡 ∈ 𝐽. (18)

By (𝐻
1
), we know

‖(𝐴𝑥) (𝑡)‖

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑠, 𝑠)

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑠, 𝑠) 𝑔 (𝑠) ‖𝑙 (𝑥 (𝑠))‖ 𝑑𝑠

≤
𝜎
∗

𝜎
∗

∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) ‖𝑥‖
𝑝𝑐
, ‖𝑥‖
𝑝𝑐
] 𝑑𝑠 < +∞.

(19)

So the operator 𝐴 is well defined in 𝑄 \ {𝜃}.
For the sake of overcoming the singularity, choose 𝑒 ∈

int𝑃 with ‖𝑒‖ = 1 and consider the approximate problem of
(17):

(𝐴
𝑚
𝑥) (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠. (20)

For any 𝑥 ∈ 𝑄, 𝑡, 𝜏 ∈ 𝐽,

(𝐴
𝑚
𝑥) (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠

≥ Ω (𝑡) ∫

1

0

𝐺
∗

(𝜏, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠

= Ω (𝑡) (𝐴
𝑚
𝑥) (𝜏) .

(21)

Hence 𝐴
𝑚
𝑄 ⊂ 𝑄.

Lemma 6. Let conditions (𝐻
1
) and (𝐻

2
) be satisfied; then for

any 𝑟 > 0, the operator 𝐴
𝑚
is a strict set contraction from 𝑄

into 𝑄.
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Proof. Obviously 𝐴
𝑚
𝑄 ⊂ 𝑄. Now we prove that 𝐴

𝑚
is

continuous. Let ‖𝑥
𝑛
− 𝑥‖
𝑝𝑐

→ 0 as 𝑛 → ∞ (𝑥
𝑛
, 𝑥 ∈ 𝑄

𝑟
);

we have
(𝐴𝑚𝑥𝑛) (𝑡) − (𝐴𝑚𝑥) (𝑡)



≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

×


𝑓 (𝑠, 𝑥

𝑛
(𝑠) +

𝑒

𝑚
)

−𝑓(𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)


𝑑𝑠

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑠, 𝑠) 𝑔 (𝑠)

× (


𝑙 (𝑥
𝑛
(𝑠) +

𝑒

𝑚
)



+


𝑙 (𝑥 (𝑠) +

𝑒

𝑚
)


)

≤ 2 ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑠, 𝑠) 𝑔 (𝑠)

× 𝑙 [Ω (𝑠) 𝑟, 𝑟 + 1] 𝑑𝑠

≤ 2
𝜎
∗

𝜎
∗

∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 + 1] 𝑑𝑠.

(22)

So (𝐻
1
) and the dominated convergence theorem imply that

lim
𝑛→∞

(𝐴
𝑚
𝑥
𝑛
) (𝑡) = (𝐴

𝑚
𝑥) (𝑡) . (23)

We now show that

lim
𝑛→∞

𝐴𝑚𝑥𝑛 − 𝐴𝑚𝑥
𝑝𝑐 = 0. (24)

In fact, if (24) is not true, then there exist a positive number
𝜀
0
and a sequence {𝑥

𝑛𝑖
} ⊂ {𝑥

𝑛
} such that


𝐴
𝑚
𝑥
𝑛𝑖
− 𝐴
𝑚
𝑥
𝑝𝑐

≥ 𝜀
0

(𝑖 = 1, 2, . . .) . (25)

Since {𝐴
𝑚
𝑥
𝑛
} is relatively compact, there is a subsequence of

{𝐴
𝑚
𝑥
𝑛𝑖
} which converges to some 𝑥

0
∈ 𝑄. Without loss of

generality, wemay assume that {𝐴
𝑚
𝑥
𝑛𝑖
} itself converges to 𝑥

0
;

that is,

lim
𝑖→∞


𝐴
𝑚
𝑥
𝑛𝑖
− 𝑥
0

𝑝𝑐
= 0. (26)

By virtue of (23) and (26), we have 𝑥
0
= 𝐴
𝑚
𝑥, and so (26)

contradicts with (25). Hence (24) holds, and the continuity of
𝐴
𝑚
is proved.
By (𝐻

1
), it is easy to see that 𝐴

𝑚
is bounded from 𝑄 into

𝑄.
Now we will prove that the operator 𝐴

𝑚
is a strict set

contraction from 𝑄 into 𝑄. Let

(𝐴
(𝑛)

𝑚
𝑥) (𝑡) = ∫

1−(1/𝑛)

1/𝑛

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠. (27)

By (𝐻
1
), as 𝑛 → ∞, we have


(𝐴
𝑚
𝑥) (𝑡) − (𝐴

(𝑛)

𝑚
𝑥) (𝑡)



≤ ∫

1/𝑛

0

𝐺
∗

(𝑡, 𝑠)


𝑓 (𝑠, 𝑥 (𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

1

1−(1/𝑛)

𝐺
∗

(𝑡, 𝑠)


𝑓 (𝑠, 𝑥 (𝑠) +

𝑒

𝑚
)


𝑑𝑠 → 0.

(28)

So for any bounded set 𝑈 ⊂ 𝑄, we have

lim
𝑛→∞

(𝐴
(𝑛)

𝑚
𝑥) (𝑡) = (𝐴

𝑚
𝑥) (𝑡) , ∀𝑥 ∈ 𝑈, 𝑡 ∈ 𝐽. (29)

Hence

𝑑
ℎ
((𝐴
(𝑛)

𝑚
𝑈) (𝑡) , (𝐴

𝑚
𝑈) (𝑡)) → 0, 𝑛 → ∞, (30)

where 𝑑
ℎ
(⋅, ⋅) denotes the Hausdorff metric, which implies

𝛼 ((𝐴
(𝑛)

𝑚
𝑈) (𝑡)) → 𝛼 ((𝐴

𝑚
𝑈) (𝑡)) , 𝑛 → ∞, 𝑡 ∈ 𝐽.

(31)

For any 𝑡 ∈ 𝐽, by (𝐻
2
), we have

𝛼 ((𝐴
(𝑛)

𝑚
𝑈) (𝑡))

= 𝛼({ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× ∫

1−(1/𝑛)

1/𝑛

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× 𝑓(𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠, 𝑥 ∈ 𝑈})

≤ (1 −
1

2𝑛
) ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× 𝛼(𝑐𝑜{
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠)+
𝑒

𝑚
) : 𝑠 ∈ [

1

𝑛
, 1 −

1

𝑛
] , 𝑥 ∈ 𝑈})
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≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× 𝛼({
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑠, 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
) : 𝑠 ∈ [

1

𝑛
, 1 −

1

𝑛
] , 𝑥 ∈ 𝑈})

≤
𝜎
∗

𝜎
∗

𝑀
0
𝛼 (𝑓 (𝑠, 𝑈 (𝐼

𝑛
))) , 𝐼

𝑛
= [

1

𝑛
, 1 −

1

𝑛
] , 𝑠 ∈ 𝐼

𝑛
,

≤ 𝐿𝑀
0

𝜎
∗

𝜎
∗

𝛼 (𝑈 (𝐼
𝑛
))

≤ 2𝐿𝑀
0

𝜎
∗

𝜎
∗

𝛼
𝑝𝑐
(𝑈)

< 𝛼
𝑝𝑐
(𝑈) .

(32)

It is easy to show that 𝛼
𝑝𝑐
(𝐴
𝑚
(𝑈)) = sup

𝑡∈𝐽
𝛼((𝐴
𝑚
(𝑈))(𝑡)).

Therefore, we can have 𝛼
𝑝𝑐
(𝐴
𝑚
𝑈) ≤ 2𝐿𝑀

0
(𝜎
∗
/𝜎
∗
)𝛼
𝑝𝑐
(𝑈) <

𝛼
𝑝𝑐
(𝑈). Consequently, the operator𝐴

𝑚
is a strict set contrac-

tion from 𝑄 into 𝑄. The proof is thus completed.

Theorem 7. Let conditions (𝐻
1
), (𝐻
2
), and (𝐻

3
) be satisfied;

then there exists a positive number 𝛿 such that for any given 𝑟 ∈
(0, 𝛿), the impulsive SBVP (1) has a nontrivial eigenfunction
𝑥
𝑟
∈ 𝑃𝐶[𝐽, 𝑃] with ‖𝑥

𝑟
‖
𝑝𝑐

= 𝑟 corresponding to eigenvalue
𝜇
𝑟
≥ 1.

Proof. By Lemma 6, the operator𝐴
𝑚
is a strict set contraction

from𝑄
𝑟
into𝑄. Observing (𝐻

3
), if lim inf

𝑡→0+
(ℎ(𝑡)/𝑡) ̸= +∞,

we can choose a V
0
with

1

2
lim inf
𝑡→0+

ℎ (𝑡)

𝑡
≤ V
0
< lim inf
𝑡→0+

ℎ (𝑡)

𝑡
, (33)

and there is a 𝛿 > 0 such that

ℎ (𝑡) ≥ V
0
𝑡, ∀0 < 𝑡 < 𝛿. (34)

Choose 𝑟 ∈ (0, 𝛿) and 𝑚 sufficiently large such that (1/𝑚) <
𝛿 − 𝑟; we have

(𝐴
𝑚
𝑥) (𝑡)

= ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) +
𝑒

𝑚
)𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

𝑏0

𝑎0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× ℎ (


𝑥 (𝑠) +

𝑒

𝑚


) 𝑢
0
𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

𝑏0

𝑎0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) V
0
‖𝑥 (𝑠)‖ 𝑢

0
𝑑𝑠

≥
𝜎
∗

𝜎∗
∫

𝑏0

𝑎0

𝐺 (𝑡, 𝑠) V
0
Ω (𝑠) ‖𝑥‖

𝑃𝐶
𝑢
0
𝑑𝑠.

(35)

So
𝐴𝑚𝑥

𝑃𝐶

≥
𝜎
∗

𝜎∗
V
0

𝑢0
max
𝑡∈𝐽

∫

𝑏0

𝑎0

𝐺 (𝑡, 𝑠) Ω (𝑠) 𝑑𝑠‖𝑥‖
𝑃𝐶

> ‖𝑥‖
𝑝𝑐
.

(36)

By virtue of Lemma 4, we have 𝑖(𝐴
𝑚
, 𝑄
𝑟
, 𝑄) = 0. Since

𝑖(𝜃, 𝑄
𝑟
, 𝑄) = 1, it follows from the homotopy invariance of

fixed point index for strict set contraction that there exist
𝑥
𝑚
∈ 𝜕𝑄
𝑟
and 𝜆

𝑚
∈ (0, 1) such that

𝑥
𝑚
= 𝜆
𝑚
𝐴
𝑚
𝑥
𝑚
, i.e. 𝐴

𝑚
𝑥
𝑚
= 𝜆
−1

𝑚
𝑥
𝑚
, (37)

where𝑚 ≥ 𝑚
0
= [1/(𝛿 − 𝑟)] + 1.

Let 𝐵 =: {𝑥
𝑚

: 𝑚 ≥ 𝑚
0
}. Obviously, 𝐵 is uniformly

bounded. We shall show that 𝐵 is equicontinuous. By
virtue of boundary condition, we need to consider only the
following eight cases.

Case 1. 𝑏 = 𝑑 = 0, the boundary value condition is 𝑥(0) =
𝑥(1) = 0. So we need only to show that {𝑥

𝑚
(𝑡)} uniformly

converge to 𝜃 with respect to𝑚 ≥ 𝑚
0
as 𝑡 → 0

+
, 𝑡 → 1 − 0,

and 𝐵 is equicontinuous on any closed subinterval of (0, 1).
By (𝐻

1
), let

𝜂 =: ∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠 < +∞. (38)

Using the absolute continuity of integration, for any 𝜀 > 0,
there exists a 𝛿

1
> 0, such that

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠 < 𝜀 (39)

as |𝑡
1
− 𝑡
2
| < 𝛿
1
, 𝑡
1
, 𝑡
2
∈ 𝐽. Since

𝑥
𝑚
(𝑡) = 𝜆

𝑚
∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

≤ 𝜆
𝑚

𝜎
∗

𝜎
∗

[(1 − 𝑡) ∫

𝑡

0

𝑠𝑓 (𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

+𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑓 (𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠] ,

(40)
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we have

𝑥𝑚 (𝑡)


≤
𝜎
∗

𝜎
∗

{(1 − 𝑡) ∫

𝑡

0

𝑠𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠}

≤
𝜎
∗

𝜎
∗

{(1 − 𝑡) ∫

𝑡

0

𝑠𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠} .

(41)

To prove that {𝑥
𝑚
(𝑡)} uniformly converge to 𝜃with respect to

𝑚 ≥ 𝑚
0
as 𝑡 → 0

+, we need only to show

lim
𝑡→0
+

(1 − 𝑡) ∫

𝑡

0

𝑠𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠 = 0, (42)

lim
𝑡→0
+

𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠 = 0. (43)

Notice that

(1 − 𝑡) ∫

𝑡

0

𝑠𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ ∫

𝑡

0

(1 − 𝑠) 𝑠𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

= ∫

𝑡

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠.

(44)

This together with (39) implies that (42) holds. For 𝜀, 𝛿
1
in

(39), choose

𝛿
2
= min{𝛿

1
,
𝜀𝛿
1

𝜂
} . (45)

Then for 𝑡 ∈ (0, 𝛿
2
), (39) implies that

𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ 𝑡 ∫

𝛿1

𝑡

(1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ ∫

1

𝛿1

𝑡

𝑠
𝑠 (1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +

1

𝑚
0

] 𝑑𝑠

≤ ∫

𝛿1

𝑡

𝑠 (1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+
𝑡

𝛿
1

∫

1

𝛿1

𝑠 (1 − 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

= ∫

𝛿1

𝑡

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+
𝑡

𝛿
1

∫

1

𝛿1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ 𝜀 +
𝑡

𝛿
1

∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ 2𝜀.

(46)

Hence (43) holds. Very similarly, we can obtain that {𝑥
𝑚
(𝑡)}

uniformly converge to 𝜃with respect to𝑚 ≥ 𝑚
0
as 𝑡 → 1−0.

Now, we show that 𝐵 is equicontinuous on [𝜁, 1 − 𝜁] for any
[𝜁, 1 − 𝜁] ⊂ (0, 1), 𝜁 ∈ (0, 1/2). Notice that

𝑥
𝑚
(𝑡
2
) − 𝑥
𝑚
(𝑡
1
)

= 𝜆
𝑚
∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× [(1 − 𝑡
2
) ∫

𝑡2

0

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

+ 𝑡
2
∫

1

𝑡2

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

− (1 − 𝑡
1
) ∫

𝑡1

0

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

−𝑡
1
∫

1

𝑡1

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠]

= 𝜆
𝑚
∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× [ (𝑡
2
− 𝑡
1
)

× (−∫

𝑡2

0

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

+ ∫

1

𝑡2

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑓(𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠)
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+ (1 − 𝑡
1
) ∫

𝑡2

𝑡1

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑓(𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠

− 𝑡
1
∫

𝑡2

𝑡1

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑓(𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠] .

(47)

So for any 𝑡
1
, 𝑡
2
∈ [𝜁, 1 − 𝜁], 𝑡

2
> 𝑡
1
, 𝑚 ≥ 𝑚

0
, we have

𝑥𝑚 (𝑡2) − 𝑥𝑚 (𝑡1)


≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× {(𝑡
2
− 𝑡
1
) [∫

𝑡2

0

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

1

𝑡2

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠]

+ (1 − 𝑡
1
) ∫

𝑡2

𝑡1

𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ 𝑡
1
∫

𝑡2

𝑡1

(1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

×𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠}

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× {(𝑡
2
− 𝑡
1
) (

1

1 − 𝑡
2

∫

𝑡2

0

(1 − 𝑠) 𝑠
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+
1

𝑡
2

∫

1

𝑡2

𝑠 (1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠)

+
1 − 𝑡
1

1 − 𝑡
2

∫

𝑡2

𝑡1

𝑠 (1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ ∫

𝑡2

𝑡1

𝑠 (1 − 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠}

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× {(𝑡
2
− 𝑡
1
) (

1

1 − 𝑡
2

∫

𝑡2

0

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+
1

𝑡
2

∫

1

𝑡2

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠)

+
1 − 𝑡
1

1 − 𝑡
2

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ ∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠}

≤ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
)

× {(𝑡
2
− 𝑡
1
) (

1

𝜁
∫

𝑡2

0

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+
1

𝜁
∫

1

𝑡2

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

])

+ (
1 − 𝜁

𝜁
+ 1)∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠)
1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠}
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≤
𝜎
∗

𝜎
∗

{(𝑡
2
− 𝑡
1
)
2𝜂

𝜁

+
1

𝜁
∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠} .

(48)

This together with (39) implies that 𝐵 is equicontinuous on 𝐽.

Case 2. 𝑏 = 0, 𝑑 ̸= 0, 𝑐 ̸= 0, the boundary value condition is
𝑥(0) = 0, 𝑐𝑥(1) + 𝑑𝑥


(1) = 0. We need to show that {𝑥

𝑚
(𝑡)}

uniformly converge to 𝜃 with respect to 𝑚 ≥ 𝑚
0
as 𝑡 → 0

+.
This can be obtained by the similar way in Case 1, so we
omit it. Next, we show 𝐵 is equicontinuous on [𝜄, 1] for any
𝜄 ∈ (0, 1). In fact, for any 𝑡

1
, 𝑡
2
∈ [𝜄, 1], 𝑡

2
> 𝑡
1
, 𝑚 ≥ 𝑚

0
, we

have

𝑥𝑚 (𝑡2) − 𝑥𝑚 (𝑡1)


≤ ∫

𝑡1

0

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

𝑡2

𝑡1

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

1

𝑡2

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

≤ (𝑡
2
− 𝑡
1
)

𝑐

𝑐 (1 − 𝑠) + 𝑑

𝜎
∗

𝜎
∗

× ∫

𝑡1

0

𝑠 (𝑐 (1 − 𝑠) + 𝑑)

𝑐 + 𝑑
𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ (𝑡
2
− 𝑡
1
)
1

𝑠

𝜎
∗

𝜎
∗

× ∫

1

𝑡2

𝑠 (𝑐 (1 − 𝑠) + 𝑑)

𝑐 + 𝑑
𝑔 (𝑠)


𝑙 (𝑥
𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

≤ (𝑡
2
− 𝑡
1
)
𝑐

𝑑

𝜎
∗

𝜎
∗

∫

𝑡1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ (𝑡
2
− 𝑡
1
)
1

𝜄

𝜎
∗

𝜎
∗

∫

1

𝑡2

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ (𝑡
2
− 𝑡
1
) 𝜂

𝜎
∗

𝜎
∗

(
𝑐

𝑑
+
1

𝜄
)

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠.

(49)

This together with (39) implies that 𝐵 is equicontinuous on 𝐽.

Case 3. 𝑏 = 0, 𝑑 ̸= 0, 𝑐 = 0, the boundary value condition is
𝑥(0) = 0, 𝑥


(1) = 0. The equicontinuity of 𝐵 on 𝐽 of this case

can be obtained by the same way of Case 2, so we omit it.

Case 4. 𝑑 = 0, 𝑏 ̸= 0, 𝑎 ̸= 0, the boundary value condition is
𝑎𝑥(0) − 𝑏𝑥


(0) = 0, 𝑥(1) = 0. Similarly, by Case 1, we can get

that {𝑥
𝑚
(𝑡)} uniformly converge to 𝜃 with respect to 𝑚 ≥ 𝑚

0

as 𝑡 → 1
−. For any 𝜍 ∈ (0, 1), we need to show that 𝐵 is

equicontinuous on [0, 𝜍]. In fact, for any 𝑡
1
, 𝑡
2
∈ [0, 𝜍], 𝑡

2
>

𝑡
1
, 𝑚 ≥ 𝑚

0
, we have

𝑥𝑚 (𝑡2) − 𝑥𝑚 (𝑡1)


≤ ∫

𝑡1

0

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

𝑡2

𝑡1

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

+ ∫

1

𝑡2

𝐺
∗
(𝑡
2
, 𝑠) − 𝐺

∗
(𝑡
1
, 𝑠)



𝑓 (𝑠, 𝑥

𝑚
(𝑠) +

𝑒

𝑚
)


𝑑𝑠

≤ (𝑡
2
− 𝑡
1
)

1

1 − 𝑠

𝜎
∗

𝜎
∗

∫

𝑡1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ (𝑡
2
− 𝑡
1
)

𝑎

𝑎𝑠 + 𝑏

𝜎
∗

𝜎
∗

∫

1

𝑡2

𝐺 (𝑠, 𝑠) 𝑔 (𝑠)

× 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ (𝑡
2
− 𝑡
1
)

1

1 − 𝜍

𝜎
∗

𝜎
∗

∫

𝑡1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

+ (𝑡
2
− 𝑡
1
)
𝑏

𝑎

𝜎
∗

𝜎
∗

∫

1

𝑡2

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠

≤ (𝑡
2
− 𝑡
1
) 𝜂

𝜎
∗

𝜎
∗

(
1

1 − 𝜍
+
𝑏

𝑎
)

+ 2
𝜎
∗

𝜎
∗

∫

𝑡2

𝑡1

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑟 +
1

𝑚
0

] 𝑑𝑠.

(50)

This together with (39) implies that 𝐵 is equicontinuous on 𝐽.

Case 5. 𝑑 = 0, 𝑏 ̸= 0, 𝑎 = 0, the boundary value condition is
𝑥

(0) = 0, 𝑥(1) = 0.

Case 6. 𝑎 = 0, 𝑏𝑑 ̸= 0, 𝑐 ̸= 0, the boundary value condition is
𝑥

(0) = 0, 𝑐𝑥(1) + 𝑑𝑥


(1) = 0.
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Case 7. 𝑎 ̸= 0, 𝑏𝑑 ̸= 0, 𝑐 = 0, the boundary value condition is
𝑎𝑥(0) − 𝑏𝑥


(0) = 0, 𝑥


(1) = 0.

Case 8. 𝑏𝑑 ̸= 0, 𝑎𝑐 ̸= 0, the boundary value condition is𝑎𝑥(0)−
𝑏𝑥

(0) = 0, 𝑐𝑥(1) + 𝑑𝑥


(1) = 0.

By the very similar methods in Cases 2 and 4, we can
prove that 𝐵 is equicontinuous on 𝐽 in Cases 5–8. Hence, the
proofs are omitted. Next we show that𝐵 is relatively compact.
It is easy to see that

𝛼 (𝐵 (𝑡))

≤ 𝛼({ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× 𝑓 (𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
)𝑑𝑠 : 𝑚 ≥ 𝑚

0
})

≤ 2 ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)
𝐺 (𝑡, 𝑠)

× 𝛼 ({𝑓(𝑠, 𝑥
𝑚
(𝑠) +

𝑒

𝑚
) : 𝑚 ≥ 𝑚

0
}) 𝑑𝑠

≤ 2
𝜎
∗

𝜎
∗

𝐿∫

1

0

𝐺 (𝑡, 𝑠) 𝛼 (𝐵 (𝑠)) 𝑑𝑠.

(51)

Hence, we have

𝛼
𝑝𝑐
(𝐵) ≤ 2

𝜎
∗

𝜎
∗

𝐿∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠𝛼
𝑝𝑐
(𝐵)

≤ 2
𝜎
∗

𝜎
∗

𝐿∫

1

0

𝐺 (𝑠, 𝑠) 𝑑𝑠𝛼
𝑝𝑐
(𝐵)

≤ 2𝐿𝑀
0

𝜎
∗

𝜎
∗

𝛼
𝑝𝑐
(𝐵) .

(52)

Observing 𝐿 < 𝜎
∗
/2𝑀
0
𝜎
∗, so 𝛼

𝑝𝑐
(𝐵) = 0, which means 𝐵 is

relatively compact.
It follows from Lemma 5 that there is a convergent

subsequence of {𝑥
𝑚
}, and without loss of generality, we may

assume that {𝑥
𝑚
} itself converges to some 𝑥

𝑟
∈ 𝜕𝑄

𝑟
, and

lim
𝑚→∞

𝜆
𝑚
= 𝜆
𝑟
∈ [0, 1]. Hence (40) and the dominated

convergence theorem imply that

𝑥
𝑟
(𝑡) = 𝜆

𝑟
∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑥
𝑟
(𝑠)) 𝑑𝑠 = 𝜆

𝑟
𝐴𝑥
𝑟
(𝑡) , 𝑡 ∈ 𝐽.

(53)

Obviously, 𝜆
𝑟
> 0. Consequently,𝐴𝑥

𝑟
= 𝜆
−1

𝑟
𝑥
𝑟
= 𝜇
𝑟
𝑥
𝑟
, where

𝜇
𝑟
= 𝜆
−1

𝑟
≥ 1.

The case lim inf
𝑡→0+

(ℎ(𝑡)/𝑡) = +∞ can be proved
similarly, so it is omitted. Then the theorem is proved.

Theorem 8. Let conditions (𝐻
1
), (𝐻
2
), and (𝐻

4
) be satisfied;

then there exists a positive number𝑀 such that for any given
𝑟 > 𝑀/min

𝑡∈𝐽
Ω(𝑡), the impulsive SBVP (1) has a nontrivial

eigenfunction 𝑥
𝑟
∈ 𝑃𝐶[𝐽, 𝑃] with ‖𝑥

𝑟
‖
𝑃𝐶

= 𝑟 corresponding to
eigenvalue 𝜇

𝑟
≥ 1.

Proof. By (𝐻
4
), there exist 𝜀

0
> 0 and𝑀 > 0 such that

∫

𝑏1

𝑎1

𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
0
) 𝑑𝑠 >

𝜎
∗

𝜎
∗

, (54)

and 𝜙(𝑓(𝑡, 𝑥)) ≥ (𝜉(𝑡) − 𝜀
0
)𝜙(𝑥) for 𝑡 ∈ 𝐽

1
=[𝑎
1
, 𝑏
1
], 𝑥 ∈ 𝑃with

‖𝑥‖ > 𝑀.
Choose 𝑟 > 𝑀/min

𝑡∈𝐽
Ω(𝑡). If there exists 𝑥

0
∈ 𝜕𝑄 such

that 𝑥
0
≥ 𝐴
𝑚
𝑥
0
, then

𝑥0 (𝑠)
 ≥ Ω (𝑠)

𝑥0
𝑝𝑐 = Ω (𝑠) 𝑟 > 𝑀, 𝑠 ∈ 𝐽. (55)

Hence, for 𝑡 ∈ 𝐽
1
, we have

𝜙 (𝑥
0
(𝑡))

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) 𝜙 (𝑓(𝑠, 𝑥
0
(𝑠) +

𝑒

𝑚
))𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫
𝐽1

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
0
) 𝜙 (𝑥

0
(𝑠) +

𝑒

𝑚
)𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫
𝐽1

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
0
) 𝜙 (𝑥
0
(𝑠)) 𝑑𝑠

≥
𝜎
∗

𝜎∗
∫
𝐽1

𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
0
) 𝜙 (𝑥
0
(𝑠)) 𝑑𝑠.

(56)

Obviously,

inf
𝑡∈𝐽1

𝑥0 (𝑡)
 ≥ Ω (𝑡)

𝑥0
𝑃𝐶 = Ω (𝑡) 𝑟 > 0. (57)

The continuity of 𝑥
0
(𝑡) implies that 𝜙(𝑥

0
(𝑡)) is continuous

on 𝐽
1
. Hence, this together with (57) and (𝐻

4
) implies that

min
𝑡∈𝐽1

𝜙(𝑥
0
(𝑡)) > 0. Observing (54) and (56), we can obtain

a contradiction. Applying Lemma 4, we know that the fixed
point index 𝑖(𝐴

𝑚
, 𝑄
𝑟
, 𝑄) = 0. Since 𝑖(𝜃, 𝑄

𝑟
, 𝑄) = 1, it follows

from the homotopy invariance of fixed point index for strict
set contraction that there exist 𝑥

𝑚
∈ 𝜕𝑄
𝑟
and 0 < 𝜆

𝑚
< 1

such that

𝑥
𝑚
= 𝜆
𝑚
𝐴
𝑚
𝑥
𝑚
, i.e. 𝐴

𝑚
𝑥
𝑚
= 𝜆
−1

𝑚
𝑥
𝑚
= 𝜇
𝑚
𝑥
𝑚
, (58)
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where 𝜇
𝑚

= 𝜆
−1

𝑚
> 1. The rest of the proof is completely

similar to that of Theorem 7. So it is omitted.

Theorem 9. Let conditions (𝐻
1
), (𝐻
2
), and (𝐻

5
) be satisfied;

then there exists a positive number 𝛿 such that for any given 𝑟 ∈
(0, 𝛿), the impulsive SBVP (1) has a nontrivial eigenfunction
𝑥
𝑟
∈ 𝑃𝐶[𝐽, 𝑃] with ‖𝑥

𝑟
‖
𝑃𝐶

= 𝑟 corresponding to eigenvalue
𝜇
𝑟
≥ 1.

Proof. By (𝐻
5
), there exist 𝜀

1
> 0 and 𝛿 > 0 such that

∫
𝐽1

𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
1
) 𝑑𝑠 > 1, (59)

and 𝜙(𝑓(𝑡, 𝑥)) ≥ (𝜉(𝑡) − 𝜀
1
)𝜙(𝑥) for 𝑡 ∈ 𝐽

1
= [𝑎
1
, 𝑏
1
], 𝑥 ∈ 𝑃

with ‖𝑥‖ < 𝛿. Choose 𝑟 ∈ (0, 𝛿) and𝑚 such that (1/𝑚) < 𝛿−𝑟.
If there exists 𝑥

0
∈ 𝜕𝑄
𝑟
such that 𝑥

0
≥ 𝐴
𝑚
𝑥
0
, then for 𝑡 ∈ 𝐽

1
,

we have

𝜙 (𝑥
0
(𝑡))

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫

1

0

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) 𝜙 (𝑓(𝑠, 𝑥
0
(𝑠) +

𝑒

𝑚
))𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫
𝐽1

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
1
) 𝜙 (𝑥

0
(𝑠) +

𝑒

𝑚
)𝑑𝑠

≥ ∏

0<𝑡𝑖<𝑡

(1 + 𝛼
𝑖
) ∫
𝐽1

1

∏
0<𝑡𝑖<𝑠

(1 + 𝛼
𝑖
)

× 𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
1
) 𝜙 (𝑥
0
(𝑠)) 𝑑𝑠

≥
𝜎
∗

𝜎∗
∫
𝐽1

𝐺 (𝑡, 𝑠) (𝜉 (𝑠) − 𝜀
1
) 𝜙 (𝑥
0
) 𝑑𝑠.

(60)

Obviously,

inf
𝑡∈𝐽1

𝑥0 (𝑡)
 ≥ Ω (𝑡)

𝑥0
𝑃𝐶 = Ω (𝑡) 𝑟 > 0. (61)

The continuity of 𝑥
0
(𝑡) implies that 𝜙(𝑥

0
(𝑡)) is continuous

on 𝐽
1
. Hence, this together with (61) and (𝐻

5
) implies that

min
𝑡∈𝐽1

𝜙(𝑥
0
(𝑡)) > 0. Observing (59) and (60), then we can

obtain a contradiction. Applying Lemma 4, we know that the
fixed point index 𝑖(𝐴

𝑚
, 𝑄
𝑟
, 𝑄) = 0. Since 𝑖(𝜃, 𝑄

𝑟
, 𝑄) = 1, it

follows from the homotopy invariance of fixed point index
for strict set contraction that there exist 𝑥

𝑚
∈ 𝜕𝑄
𝑟
and 0 <

𝜆
𝑚
< 1 such that

𝑥
𝑚
= 𝜆
𝑚
𝐴
𝑚
𝑥
𝑚
, i.e. 𝐴

𝑚
𝑥
𝑚
= 𝜆
−1

𝑚
𝑥
𝑚
= 𝜇
𝑚
𝑥
𝑚
, (62)

where 𝜇
𝑚

= 𝜆
−1

𝑚
> 1. The rest of the proof is completely

similar to that of Theorem 7. So it is omitted.

Example 10. Consider the following impulsive SBVP:

𝜇𝑥


𝑛
+

𝜋

√𝑡 (1 − 𝑡)
(
1

3𝑛
(√𝑡𝑥
𝑛
+ 𝑒
2+𝑥𝑛+1) +

arctan 𝑡
√𝑛 ‖𝑥‖

) = 0,

𝑡 ∈ (0, 1) , 𝑡 ̸=
1

5
;

Δ𝑥
𝑛
|
𝑡=1/5

=
2

5
𝑥
𝑛
,

2𝑥
𝑛
(0) − 𝑥



𝑛
(0) = 𝜃;

𝑥
𝑛
(1) = 𝜃, (𝑛 = 1, 2, 3, . . .) .

(63)

Conclusion. There exists a positive number 𝛿 such that for
any given 𝑟 ∈ (0, 𝛿), impulsive SBVP (63) has a nontrivial,
nonnegative eigenfunction 𝑥

𝑟𝑛
(𝑛 = 1, 2, 3, . . .) satisfying

sup
𝑛
𝑥
𝑟𝑛
(𝑡) < ∞ for 0 ≤ 𝑡 ≤ 1 and max

𝑡∈[0,1]
sup
𝑛
𝑥
𝑟𝑛
(𝑡) = 𝑟

corresponding to 𝜇
𝑟
≥ 1.

Proof. Let 𝐸 = 𝑙
∞

= {𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
, . . .) : sup

𝑛
|𝑥
𝑛
| < ∞}

with norm ‖𝑥‖ = sup
𝑛
|𝑥
𝑛
| and 𝑃 = {𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
, . . .) ∈

𝑙
∞
: 𝑥
𝑛
≥ 0, 𝑛 = 1, 2, 3, . . .}. Then, 𝑃 is a normal solid cone of

𝐸 with normal constant 1, and system (63) can be regarded as
an impulsive SBVP in 𝐸 = 𝑙

∞ of the form (1), where 𝑥(𝑡) =
(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), . . .), 𝑓(𝑡, 𝑥) = (𝑓

1
, 𝑓
2
, 𝑓
3
, . . .), and

𝑓
𝑛
(𝑡, 𝑥) =

𝜋

√𝑡 (1 − 𝑡)
(
1

3𝑛
(√𝑡𝑥
𝑛
+ 𝑒
2+𝑥𝑛+1) +

arctan 𝑡
√𝑛 ‖𝑥‖

) .

(64)

It is easy to see that 𝑓(𝑡, 𝑥) is singular at 𝑡 = 0, 1 and 𝑥 = 𝜃.
Let 𝑔(𝑡) = 𝜋/√𝑡(1 − 𝑡) and 𝑙(𝑥) = (𝑙

1
(𝑥), 𝑙
2
(𝑥), 𝑙
3
(𝑥), . . .),

where

𝑙
𝑛
(𝑥) =

1

3𝑛
(𝑥
𝑛
+ 𝑒
2+𝑥𝑛+1) +

𝜋

4√𝑛 ‖𝑥‖
. (65)

So we have
𝑓 (𝑡, 𝑥)

 ≤ 𝑔 (𝑡) ‖𝑙 (𝑥)‖ , 𝑡 ∈ (0, 1) , 𝑥 ∈ 𝑃 \ {𝜃} ,

𝑙 [𝑟, 𝑅] = sup
𝑥∈𝑃𝑅\𝑃𝑟

‖𝑙 (𝑥)‖ < 𝑅 + 𝑒
2+𝑅

+
𝜋

4𝑟
< +∞,

∀𝑅 > 𝑟 > 0.

(66)

By virtue of ∫1
0
(𝜋/√𝑡(1 − 𝑡))𝑑𝑡 = 𝜋

2, 𝐺(𝑠, 𝑠) = (1/3)(1 +

2𝑠)(1 − 𝑠), and

𝑀
0
= max
𝑠∈𝐽

𝐺 (𝑠, 𝑠) =
3

8
,

Ω (𝑠) = min {1 + 2𝑠
3

, 1 − 𝑠} ≥
1

3
(1 + 2𝑠) (1 − 𝑠) ,

(67)

we can obtain

∫

1

0

𝐺 (𝑠, 𝑠) 𝑔 (𝑠) 𝑙 [Ω (𝑠) 𝑟, 𝑅] 𝑑𝑠

≤
3𝜋
2

8
(𝑅 + 𝑒

2+𝑅
) +

𝜋
3

4𝑟
< +∞.

(68)



Journal of Function Spaces 11

So condition (𝐻
1
) is satisfied. On the other hand, by the

diagonal method of choosing subsequence, we can see that
𝐿 = 0 in condition (𝐻

2
); that is, condition (𝐻

2
) holds.

We now show that condition (𝐻
3
) is satisfied for

𝐽
0
= [

1

2
,
9

10
] , ℎ (𝑡) =

1

𝑡
,

𝑢
0
= (2𝜋 arctan 1

2
,
2

√2
𝜋 arctan 1

2
,
2

√3
𝜋 arctan 1

2
, . . .) .

(69)

In fact,

𝑓
𝑛
(𝑡, 𝑥) ≥

𝜋

√𝑡 (1 − 𝑡)

arctan 𝑡
√𝑛 ‖𝑥‖

≥
2

√𝑛
𝜋 arctan 1

2
⋅
1

‖𝑥‖
,

∀𝑡 ∈ [
1

2
,
9

10
] ,

(70)

which means that condition (𝐻
3
) is satisfied for

𝑢
0
= (2𝜋 arctan 1

2
,
2

√2
𝜋 arctan 1

2
,
2

√3
𝜋 arctan 1

2
, . . .) ,

𝐽
0
= [

1

2
,
9

10
] , ℎ (𝑡) =

1

𝑡
;

(71)

that is, condition (𝐻
3
) is satisfied.

Hence, our conclusion follows fromTheorem 7.
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