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In this paper, by using the integral bifurcation method, we studied the Kudryashov-Sinelshchikov equation. In the special
parametric conditions, some singular andnonsingular exact travelingwave solutions, such as periodic cusp-wave solutions, periodic
loop-wave solutions, smooth loop-soliton solutions, smooth solitary wave solutions, periodic double wave solutions, periodic
compacton solutions, and nonsmooth peakon solutions are obtained. Further more, the dynamic behaviors of these exact traveling
wave solutions are investigated. It is found that the waveforms of some traveling wave solutions vary with the changes of parameters.

1. Introduction

The investigation of the travelingwave solutions for nonlinear
evolution equations plays an important role in mathemat-
ical physics. For example, the phenomena of wave motion
observed in fluid dynamics, plasma, and elastic media are
usually described by the solitary wave, kink wave, peakon,
compacton, and loop soliton. In fact, lots of physical models
have solitary wave solutions, kink wave solutions, peakon
solutions, compacton solutions, and loop-soliton solutions.
Lots of new traveling wave solutions and phenomena of wave
motion are discovered continually by many researchers on
investigating exact solutions of different kinds of nonlinear
evolution equations. Recently, Kudryashov and Sinelshchikov
[1] introduced the following equation:
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where 𝛼, 𝜖, 𝛽, ], and 𝛿 are real parameters. Equation (1)
describes the pressure waves in the liquid with gas bubbles
taking into account the heat transfer and viscosity [1]. We
call (1) Kudryashov-Sinelshchikov equation. When 𝜖 = 𝛽 =

𝛿 = 0, (1) becomes classical KdV-Burgers (Burgers-KdV)
equation; see [2–7] and the references cited therein. When
𝜖 = 𝛽 = ] = 𝛿 = 0, (1) becomes famous KdV equation. Very

recently, when parameters ] = 𝛿 = 0, in [8–11], the authors
studied the special case of (1) as follows:
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In [8], Ryabov found four families of solitary wave
solutions of (2) when 𝛽 = −3 or 𝛽 = −4. In [9], Li and
Chen discussed the existence of different kinds of traveling
wave solutions by using the approach of dynamical system,
according to different phase orbits of the traveling system
of (2); twenty-six kinds of exact traveling wave solutions are
obtained under the parametric conditions 𝛽 = −3, −4 and
𝛽 = 1, 2. In [10], He et al. discussed the bifurcations of phase
portraits and investigated exact traveling wave solutions of
(2) under 𝛽 = −3, 1, 2. In [11], He et al. investigated periodic
loop solutions of (2) and discussed the limit forms of these
periodic loop solutions focusing on the case 𝛽 = 2. In the
paper [12], Randrüüt studied (2) under the transformation
𝑏 = 2 + 𝛽; in the cases 𝑏 < 0, 𝑏 = 0, and 𝑏 > 0 (i.e.,
𝛽 < −2, 𝛽 = −2, and 𝛽 > −2), Randrüüt obtained some
exact traveling wave solutions and discussed their dynamical
behaviors; some interesting phenomena of traveling waves
are successfully explained. Particularly, when 𝑏 > 2 (i.e.,
𝛽 > 0), a kind of new periodic wave solution which is called
meandering solution was obtained by Randrüüt in this paper.
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However, many singular and nonsingular exact traveling
wave solutions of Kudryashov-Sinelshchikov equation were
not obtained yet in these references [8–12].

In this paper, we will study (2) again by using the
integral bifurcation method [13, 14]; the integral bifurcation
method possessed some advantages of the bifurcation theory
of the planar dynamic system [15–19] and auxiliary equation
method; it is easily combined with some transformations
[20, 21] and useful for many nonlinear partial differential
equations (PDEs) including some higher order equations
of KdV type, such as the higher order KdV equation of
neglecting the highest order infinitesimal term [22]. So, by
using this method, we will obtain some new traveling wave
solutions of (1), which are different from the results in [8–12].
Some interesting phenomena will be presented.

The rest of this paper is organized as follows: in Section 2,
wewill derive two-dimensional planar systemwhich is equiv-
alent to (2) and give its first integral equation. In Section 3, by
using the integral bifurcation method, we will obtain some
new traveling wave solutions of (2) and discuss their dynamic
properties.

2. The 2-Dimensional Planar Dynamical
System of (2)

Making a transformation 𝑢(𝑡, 𝑥) = 𝜙(𝜉) + 𝜆 with 𝜉 = 𝑘𝑥 −

𝑐𝑡, (2) can be reduced to the following ordinary differential
equation:
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Integrating (3) with respect to 𝜉, we have

(1 − 𝜆 − 𝜙) 𝜙


= 𝑔 + (𝑐 − 𝛼𝜆) 𝜙 −

1

2

𝛼𝜙
2
+

1

2

𝛽(𝜙

)

2

, (4)

where 𝑔 is an integral constant. Let 𝑑𝜙/𝑑𝜉 = 𝑦. Thus, (4) can
be rewritten as the following 2-dimensional planar system:

𝑑𝜙

𝑑𝜉

= 𝑦,

𝑑𝑦

𝑑𝜉

=

𝑔 + (𝑐 − 𝛼𝜆) 𝜙 − (1/2) 𝛼𝜙
2
+ (1/2) 𝛽𝑦

2

(1 − 𝜆 − 𝜙)

,

(5)

which is a singular system. The system (5) has the following
first integral:
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where ℎ is integral constant and 𝑎
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And when 𝛽 = 2, (6) becomes

𝐻(𝜙, 𝑦) ≡ (−1 + 𝜆 + 𝜙)
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Obviously, (7) is very simpler than (8), that is, the case of 𝛽 =

1 is very simpler than the case of 𝛽 = 2. Thus we will only
discuss the case of 𝛽 = 2; the case of 𝛽 = 1 can be similarly
discussed, we omit the discussions of case 𝛽 = 1 in this paper.
It is easy to find that the derivative 𝑑𝑦/𝑑𝜉 in the right side of
(5) is not defined when 1 − 𝜆 − 𝜙 = 0. Therefore, we make a
transformation as follows:

𝑑𝜉 = (1 − 𝜆 − 𝜙) 𝑑𝜏, (9)

where 𝜏 is a parameter. Under the transformation (9) and 𝛽 =

2, (5) becomes the following regular system:
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Obviously, (8) can be rewritten as follows:
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(11)

3. Exact Traveling Wave Solutions of (2)
In this section, we will investigate exact traveling wave
solutions of (2) by using its first integral equation (11).

Case 1.When 𝜆 = (2𝑐 + 𝛼)/3𝛼, 𝑔 = 0, (11) can be reduced to

𝑦 = ±

√𝑃𝜙
4
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+ 𝑅

𝜙 + 𝜆 − 1

,
(12)

where𝑃 = (1/4)𝛼, 𝑄 = −8(𝑐−𝛼)
2
/9𝛼, and𝑅 = ℎ. Substituting

(12) into the first equation of (10) yields
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𝑑𝜏

= ±√𝑃𝜙
4
+ 𝑄𝜙
2
+ 𝑅. (13)

By using (13) and (9), we will obtain different kinds of exact
traveling wave solutions of (2); see the following discussion.

(i) If −10 < 𝑐 < −4 − 2√2 or −4 + 3√2 < 𝑐 < 2 and 𝛼 =

−4, 𝑚 = (1/3)√−(1/2)𝑐
2
− 4𝑐 + 10, ℎ = (−1/18)(𝑐

2
+

8𝑐 − 2), then 𝑃 = −1, 𝑄 = 2 − 𝑚
2, and 𝑅 = 𝑚

2
− 1.
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Figure 1: The profile of periodic loop-wave solution (14) for 𝛼 = −4, 𝑐 = 0.5.

Under these conditions, by using (13) and (9), we
obtain a periodic wave solution of (2) as follows:

𝑢 = 𝜆 + dn (𝜏, 𝑚) , 𝜉 = (1 − 𝜆) 𝜏 − arcsin (sn (𝜏, 𝑚)) .

(14)

The profile of solution (14) is a periodic loop wave,
which is shown in Figure 1.

(ii) If −2 − √34/2 < 𝑐 < −2 + √34/2 and 𝑚 = (1/34)

√
1462 − 136𝑐 ± 102√−2𝑐

2
− 8𝑐 + 9, 𝛼 = (2/17)(4𝑐 −

9) ± (6/17)√−2𝑐
2
− 8𝑐 + 9, then 𝑃 = 1 − 𝑚

2
, 𝑄 =

2 − 𝑚
2 and 𝑅 = 1. Under these conditions, by using

(13) and (9), we obtain a periodic wave solution of (2)
as follows:

𝑢 = 𝜆 + sc (𝜏, 𝑚) ,

𝜉 = (1 − 𝜆) 𝜏 −

1

2√1 − 𝑚
2

ln[

dn (𝜏,𝑚) + √1 − 𝑚
2
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] .

(15)

(iii) If −∞ < 𝑐 < 4 − 3√2 or 4 + 3√2 < 𝑐 < ∞ and 𝑚 =
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then 𝑃 = 1, 𝑄 = −(1 + 𝑚
2
) and 𝑅 = 𝑚

2. Under these
conditions, by using (13) and (9), we obtain a periodic
wave solution of (2) as follows:

𝑢 = 𝜆 + ns (𝜏,𝑚) ,

𝜉 = (1 − 𝜆) 𝜏 − ln [

sn (𝜏, 𝑚)

cn (𝜏, 𝑚) + dn (𝜏, 𝑚)

] .

(16)

(iv) If 4−3√2 < 𝑐 < 4+3√2 and𝑚 = (1/6)√−𝑐
2
+ 8𝑐 − 2,

𝛼 = 4, ℎ = (1/1296)(𝑐
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2
− 1, 𝑅 = −𝑚

2
+ 𝑚
4. Under these

conditions, by using (13) and (9), we obtain a periodic
wave solution of (2) as follows:

𝑢 = 𝜆 + ds (𝜏, 𝑚) ,

𝜉 = (1 − 𝜆) 𝜏 − ln [

sn (𝜏, 𝑚)

1 + cn (𝜏,𝑚)

] .

(17)

(v) If 1 − 3√2/2 < 𝑐 < −1/2 or 5/2 < 𝑐 < 1 + 3√2/2 and
𝑚 = (1/3)√−4𝑐

2
+ 8𝑐 + 14, 𝛼 = 1, ℎ = (1/81)(2𝑐

2
−

4𝑐 − 7)
2, then 𝑃 = 1/4, 𝑄 = (1/2)(𝑚

2
− 2), and

𝑅 = (1/4)𝑚
4. Under these conditions, by using (13)

and (9), we obtain two periodic wave solutions of (2)
as follows:

𝑢 = 𝜆 + ns (𝜏, 𝑚) + ds (𝜏, 𝑚) ,

𝜉 = (1 − 𝜆) 𝜏 − ln [

sn (𝜏, 𝑚)

cn (𝜏, 𝑚) + dn (𝜏, 𝑚)

]

− ln [

sn (𝜏, 𝑚)

1 + cn (𝜏, 𝑚)

] ,

(18)

𝑢 = 𝜆 + ns (𝜏, 𝑚) − ds (𝜏, 𝑚) ,

𝜉 = (1 − 𝜆) 𝜏 − ln [

sn (𝜏, 𝑚)

cn (𝜏, 𝑚) + dn (𝜏, 𝑚)

]

+ ln [

sn (𝜏, 𝑚)

1 + cn (𝜏, 𝑚)

] .

(19)

Thewaveforms of solution (19) are transformable; the smooth
periodic wave becomes the non-smooth periodic cusp wave
as parameter 𝑐 varies; their profiles are shown in Figures 2(a)
and 2(b). In fact, this non-smooth periodic cusp wave is a
limit form of smooth periodic wave.
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Figure 2: The profiles of periodic wave solutions (19) for (a) 𝛼 = 1, 𝑐 = 2.7, (b) 𝛼 = 1, 𝑐 = 2.5001.

Case 2.When 𝑔 = 0, ℎ = 0, (11) can be reduced to

𝑦 =

√𝐴𝜙
2
+ 𝐵𝜙
3
+ 𝐶𝜙
4

𝜙 + 𝜆 − 1

,
(20)

where 𝐴 = (𝑐 − 𝛼𝜆)(𝜆 − 1), 𝐵 = 𝛼𝜆 − (1/3)(2𝑐 + 𝜆), and
𝐶 = (1/4)𝛼. Substituting (20) into the first equation of (10)
yields

𝑑𝜙

𝑑𝜏

= ±√𝐴𝜙
2
+ 𝐵𝜙
3
+ 𝐶𝜙
4
. (21)

By using (21) and (9), we will obtain different kinds of soliton
solutions; see the following discussions.

(i) When 𝐴 > 0, 𝐶 > 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 −

𝐴𝐵 sech2 ((√𝐴/2) 𝜏)

𝐵
2
− 𝐴𝐶[1 + 𝜖 tanh ((√𝐴/2) 𝜏)]

2
,

𝜉 = (1 − 𝜆) 𝜏

+

2

𝜖√𝐶

tanh−1 [
√𝐴𝐶

𝐵

(1 + 𝜖 tanh(

√𝐴

2

𝜏))] ,

(22)

where 𝜏 is a parameter. The solution (22) contains
three transformable wave-forms as the parameter 𝑐

varies; these three wave-forms are dark loop soliton,
dark peakon, and smooth-dark soliton, which are
shown in Figures 3(a), 3(b), and 3(c).

(ii) When 𝐴 > 0, 𝐶 < 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 −

𝐴𝐵 sech2 ((√𝐴/2) 𝜏)

𝐵
2
− 𝐴𝐶[1 + 𝜖 tanh ((√𝐴/2) 𝜏)]

2
,

𝜉 = (1 − 𝜆) 𝜏 +

2

𝜖√−𝐶

× arctan[

√−𝐴𝐶

𝐵

(1 + 𝜖 tanh(

√𝐴

2

𝜏))] ,

(23)

where 𝜏 is a parameter.The solution (23) contains two
wave-forms, the dark loop soliton, and smooth-bright
soliton which are shown in Figure 4.

(iii) When 𝐴 < 0, 𝐶 > 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 +

𝐴𝐵 csch2 ((√𝐴/2) 𝜏)

𝐵
2
− 𝐴𝐶[1 + 𝜖 coth ((√𝐴/2) 𝜏)]

2
,

𝜉 = (1 − 𝜆) 𝜏 +

2

𝜖√𝐶

× tanh−1 [
√𝐴𝐶

𝐵

(1 + 𝜖 coth(

√𝐴

2

𝜏))] ,

(24)
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Figure 3: The profile of soliton solutions (22) for (a) 𝛼 = 0.5, 𝜆 = 2, and 𝑐 = 0.3, (b) 𝛼 = 0.5, 𝜆 = 2, 𝑐 = 0.875, and (c) 𝛼 = 0.5, 𝜆 = 2, and
𝑐 = 0.9375.
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Figure 4: The profile of soliton solutions (23) for (a) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −5 and (b) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −1.15.

(iv) When 𝐴 < 0, 𝐶 < 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 +

𝐴𝐵 csch2 ((√𝐴/2) 𝜏)

𝐵
2
− 𝐴𝐶[1 + 𝜖 coth ((√𝐴/2) 𝜏)]

2
,

𝜉 = (1 − 𝜆) 𝜏 +

2

𝜖√−𝐶

× arctan[

√−𝐴𝐶

𝐵

(1 + 𝜖 coth(

√𝐴

2

𝜏))] .

(25)

The solution (25) contains four transformable wave-
forms as the parameter 𝑐 varies; these four wave-
forms are broken wave, broken soliton, dark loop

soliton, and smooth-bright soliton, which are shown
in Figures 5(a), 5(b), 5(c), and 5(d).

(v) When𝐴 > 0, Δ > 0, and𝐶 > 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 +

2𝐴sech (√𝐴𝜏)

𝜖√Δ − 𝐵sech (√𝐴𝜏)

,

𝜉 = (1 − 𝜆) 𝜏 +

2

√𝐶

tanh−1 [𝐵 + 𝜖√Δ

2√𝐴𝐶

tanh(

√𝐴

2

𝜏)] .

(26)
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Figure 5: The profile of soliton solutions (25) for (a) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −1.0001, (b) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −1.2, and (c)
𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −1.25, and (d) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −1.25000001.

(vi) When 𝐴 > 0, Δ > 0, and 𝐶 < 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 +

2𝐴sech (√𝐴𝜏)

𝜖√Δ − 𝐵sech (√𝐴𝜏)

,

𝜉 = (1 − 𝜆) 𝜏 −

2

√−𝐶

arctan[

𝐵 + 𝜖√Δ

2√−𝐴𝐶

tanh(

√𝐴

2

𝜏)] .

(27)

(vii) When𝐴 < 0, Δ > 0, and𝐶 < 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 +

2𝐴sec (√−𝐴𝜏)

𝜖√Δ − 𝐵sec (√−𝐴𝜏)

,

𝜉 = (1 − 𝜆) 𝜏 −

2

√−𝐶

arctan[

𝐵 + 𝜖√Δ

2√𝐴𝐶

tan(

√−𝐴

2

𝜏)] .

(28)
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Figure 6: The profile of soliton solutions (28) for (a) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −0.94, (b) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −0.499999, (c)
𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −0.2, and (d) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = 0.875.

The solution (28) contains four transformable wave-
forms as the parameter 𝑐 varies; these four wave-
forms are periodic compacton, smooth periodicwave,
periodic overlap wave, and double periodic overlap
wave, which are shown in Figures 6(a), 6(b), 6(c), and
6(d).

(viii) When𝐴 > 0, Δ < 0, and𝐶 > 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 +

2𝐴csch (√𝐴𝜏)

𝜖√−Δ − 𝐵csch (√𝐴𝜏)

,

𝜉 = (1 − 𝜆) 𝜏 +

2

√𝐶

× tanh−1 [
𝐵 tanh ((√𝐴/2) 𝜏) + 𝜖√−Δ

2√𝐴𝐶

] .

(29)

(ix) When𝐴 < 0, Δ > 0, and𝐶 < 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 +

2𝐴csc (√−𝐴𝜏)

𝜖√Δ − 𝐵csc (√−𝐴𝜏)

,
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Figure 7: The profile of soliton solutions (30) for (a) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = −0.96, (b) 𝛼 = −0.5, 𝜆 = 2, and 𝑐 = 0.4999999, and (c)
𝛼 = −0.5, 𝜆 = 2, and 𝑐 = 2.

𝜉 = (1 − 𝜆) 𝜏 +

2

√−𝐶

× arctan[

−𝐵 tan ((√−𝐴/2) 𝜏) + 𝜖√Δ

2√𝐴𝐶

] .

(30)

The solution (30) contains three transformable wave-
forms as the parameter 𝑐 varies; these three wave-
forms are periodic loop wave, smooth periodic wave,

and multiperiodic overlap wave, which are shown in
Figures 7(a), 7(b), and 7(c).

(x) When 𝐴 < 0, 𝐶 > 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 −

𝐴csc2 ((√−𝐴/2) 𝜏)

𝐵 + 2𝜖√−𝐴𝐶cot ((√−𝐴/2) 𝜏)

,

𝜉 = (1 − 𝜆) 𝜏 −

1

𝜖√𝐶

ln










𝐵 + 2𝜖√−𝐴𝐶cot(
√−𝐴

2

𝜏)











.

(31)
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Figure 8: The profiles of soliton solutions (32) for (a) 𝛼 = 0.5, 𝜆 = 2, and 𝑐 = 0.875, and 𝜖 = −1 and (b) 𝛼 = 0.5, 𝜆 = 2, 𝑐 = 0.875, and 𝜖 = 1.

(xi) When 𝐴 > 0, Δ = 0, by using (21) and (9), we obtain
a soliton solution as follows:

𝑢 = 𝜆 −

𝐴

𝐵

[1 + 𝜖 tanh(

√𝐴

2

𝜏)] ,

𝜉 = (1 − 𝜆) 𝜏 +

𝐴

𝐵

𝜏 +

2𝜖√𝐴

𝐵

ln










cosh(

√𝐴

2

𝜏)











.

(32)

The solution (32) contains two generalized kinkwaves
when 𝜖 = ±1, which are shown in Figures 8(a) and
8(b).

(xii) When𝐴 > 0, 𝐵 = 0, and𝐶 < 0, by using (21) and (9),
we obtain a soliton solution as follows:

𝑢 = 𝜆 + √−

𝐴

𝐶

sech (𝜖√𝐴𝜏) ,

𝜉 = (1 − 𝜆) 𝜏 −

1

𝜖√−𝐶

arctan [sinh (𝜖√A𝜏)] .

(33)

If 𝐴 = 0, 𝐶 < 0

𝑢 = 𝜆 +

4𝐵

(𝐵𝜏)
2
− 4𝐶

,

𝜉 = (1 − 𝜆) 𝜏 −

2

√−𝐶

arctan(

𝐵𝜏

2√−𝐶

) .

(34)

4. Conclusion

In this work, by using the integral bifurcation method, we
studied Kudryashov-Sinelshchikov equation in the special
case 𝛽 = 2. Some singular and non-singular traveling
wave solutions, such as periodic compacton solutions, non-
continuous periodic loop-wave solutions, peakon solutions

brokenwave solutions, periodic cusp-wave solutions, smooth
soliton solutions, continuous periodic loop-wave solutions,
and smooth periodic wave solutions are obtained. Some
solutions such as (19), (22), (23), (25), (28), and (30) contain
multiwave forms; their wave-forms vary accordingly as the
parameter 𝑐 varies. For example, the wave-forms of solution
(19) show that the smooth periodic wave becomes the non-
smooth periodic cusp wave as parameter 𝑐 varies. The wave-
forms of solution (22) show that the solitary wave becomes
solitary cusp wave (peakon) when the value of 𝑐 arrives at
certain limit value; then solitary cusp wave becomes the loop
wave when the value of 𝑐 exceeds this limit value. Indeed,
the non-smooth periodic cusp wave can be considered as
a kind of long-wave limit of smooth periodic solutions; the
loop wave also can be considered as limit wave of smooth
solitary wave; these phenomena are very similar to the one in
[23]. In [23], according to Braun andRandrüüt’s explaination,
solitary wave can be considered as the long-wave limit of
periodic solutions in KdV case. By the way, these results
which obtained in this paper are different from those in [8–
12].
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