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We first introduce and analyze one multistep iterative algorithm by hybrid shrinking projection method for finding a solution of
the system of generalized equilibria with constraints of several problems: the generalizedmixed equilibrium problem, finitely many
variational inclusions, the minimization problem for a convex and continuously Fréchet differentiable functional, and the fixed-
point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove
strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another
multistep iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻 and 𝑃

𝐶
the metric projection of 𝐻 onto 𝐶. Let 𝑆 :

𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We denote by Fix (𝑆)
the set of fixed points of 𝑆 and byR the set of all real numbers.
A mapping 𝑉 is called strongly positive on𝐻 if there exists a
constant 𝛾 > 0 such that

⟨𝑉𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (1)

A mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if
there exists a constant 𝐿 ≥ 0 such that

𝑆𝑥 − 𝑆𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

In particular, if 𝐿 = 1, then 𝐴 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1), then 𝑆 is called a contraction.

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We
consider the following variational inequality problem (VIP):
find a point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP (3) is denoted by𝑉𝐼(𝐶, 𝐴).We remark
that VIP (3) was first discussed by Lions [1].

Let 𝜑 : 𝐶 → R be a real-valued function, 𝐴 : 𝐻 → 𝐻

a nonlinear mapping, and Θ : 𝐶 × 𝐶 → R a bifunction. In
2008, Peng and Yao [2] introduced the following generalized
mixed equilibrium problem (GMEP) of finding 𝑥 ∈ 𝐶 such
that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (4)

We denote the set of solutions of GMEP (4) by GMEP
(Θ, 𝜑, 𝐴). The GMEP (4) is very general which includes, as
special cases, the generalized equilibrium problem [3], the
mixed equilibriumproblem [4], and the equilibriumproblem
[5, 6].

In [2], it is assumed that Θ : 𝐶 × 𝐶 → R is a bifunction
satisfying conditions (H1)–(H4) and 𝜑 : 𝐶 → R is a lower
semicontinuous and convex function with restriction (H5),
where

(H1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 637324, 27 pages
http://dx.doi.org/10.1155/2014/637324



2 Abstract and Applied Analysis

(H2)Θ is monotone; that is,Θ(𝑥, 𝑦) +Θ(𝑦, 𝑥) ≤ 0 for
any 𝑥, 𝑦 ∈ 𝐶;

(H3) Θ is upper hemicontinuous; that is, for each
𝑥, 𝑦, 𝑧 ∈ 𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (5)

(H4) Θ(𝑥, ⋅) is convex and lower semicontinuous for
each 𝑥 ∈ 𝐶;

(H5) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded
subset𝐷𝑥 ⊂ 𝐶 and𝑦𝑥 ∈ 𝐶 such that for any 𝑧 ∈ 𝐶\𝐷𝑥,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0. (6)

Given a positive number 𝑟 > 0. Let 𝑆(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 be
the solution set of the auxiliary mixed equilibrium problem;
that is, for each 𝑥 ∈ 𝐻,

𝑆
(Θ,𝜑)

𝑟
(𝑥)

:= {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(7)

In particular, whenever 𝐾(𝑥) = (1/2)‖𝑥‖2, ∀𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)
𝑟

(𝑥)

is rewritten as 𝑇(Θ,𝜑)
𝑟

(𝑥). Further, if 𝜑 = 0 additionally, then
𝑇
(Θ,𝜑)

𝑟
(𝑥) is rewritten as 𝑇Θ

𝑟
(𝑥).

Let Θ
1
, Θ
2
: 𝐶 × 𝐶 → R be two bifunctions satisfying

conditions (H1)–(H4), and let 𝐴
1
, 𝐴
2
: 𝐶 → 𝐻 be

two nonlinear mappings. Consider the following system of
generalized equilibrium problems (SGEP): find (𝑥∗, 𝑦∗) ∈
𝐶 × 𝐶 such that

Θ
1 (𝑥
∗
, 𝑥) + ⟨𝐴1𝑦

∗
, 𝑥 − 𝑥

∗
⟩ +

1

]
1

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0,

∀𝑥 ∈ 𝐶,

Θ
2
(𝑦
∗
, 𝑦) + ⟨𝐴

2
𝑥
∗
, 𝑦 − 𝑦

∗
⟩ +

1

]
2

⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

(8)

where ]
1
> 0 and ]

2
> 0 are two constants. It is introduced

and studied in [7].WheneverΘ
1
≡ Θ
2
≡ 0, the SGEP reduces

to a system of variational inequalities, which is considered
and studied in [8]. It is worth to mention that the system of
variational inequalities is a tool to solve the Nash equilibrium
problem for noncooperative games. In 2010, Ceng and Yao
[7] transformed the SGEP into a fixed-point problem of the
mapping 𝐺 = 𝑇Θ1]

1

(𝐼 − ]1𝐴1)𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2). Here, we denote
the fixed point set of 𝐺 by SGEP(𝐺).

Let {𝑇
𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive map-

pings on 𝐻 and {𝜆
𝑛
}
∞

𝑛=1
a sequence of nonnegative numbers

in [0, 1]. For any 𝑛 ≥ 1, define a mapping𝑊
𝑛
on𝐻 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛
= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1
𝑇
𝑛−1
𝑈
𝑛,𝑛
+ (1 − 𝜆

𝑛−1
) 𝐼,

...

𝑈𝑛,𝑘 = 𝜆𝑘𝑇𝑘𝑈𝑛,𝑘+1 + (1 − 𝜆𝑘) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1
𝑇
𝑘−1
𝑈
𝑛,𝑘
+ (1 − 𝜆

𝑘−1
) 𝐼,

...

𝑈𝑛,2 = 𝜆2𝑇2𝑈𝑛,3 + (1 − 𝜆2) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,1
= 𝜆
1
𝑇
1
𝑈
𝑛,2
+ (1 − 𝜆

1
) 𝐼.

(9)

Such a mapping 𝑊𝑛 is called the 𝑊-mapping generated by
𝑇𝑛, 𝑇𝑛−1, . . . , 𝑇1 and 𝜆𝑛, 𝜆𝑛−1, . . . , 𝜆1.

Let 𝑄 : 𝐻 → 𝐻 be a contraction and 𝑉 a strongly
positive bounded linear operator on𝐻. Assume that𝜑 : 𝐻 →

R is a lower semicontinuous and convex functional, such that
Θ,Θ1, Θ2 : 𝐻 × 𝐻 → R satisfy conditions (H1)–(H4) and
that 𝐴,𝐴

1
, 𝐴
2
: 𝐻 → 𝐻 are inverse-strongly monotone.

Very recently, Ceng et al. [9] introduced the following hybrid
extragradient-like iterative algorithm:

𝑧
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥
𝑛
− 𝑟
𝑛
𝐴𝑥
𝑛
) ,

𝑥
𝑛+1
= 𝛼
𝑛
(𝑢 + 𝛾𝑄𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉))𝑊𝑛𝐺𝑧𝑛, ∀𝑛 ≥ 0,

(10)

for finding a common solution of GMEP (4), SGEP (8), and
the fixed point problem of an infinite family of nonexpansive
mappings {𝑇

𝑛
}
∞

𝑛=1
on 𝐻, where {𝑟

𝑛
} ⊂ (0,∞), {𝛼

𝑛
}, {𝛽
𝑛
} ⊂

(0, 1), ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2, and 𝑥

0
, 𝑢 ∈ 𝐻 are given. The

authors proved the strong convergence of the sequence {𝑥
𝑛
} to

a point 𝑥∗ ∈ Ω := ∩∞
𝑛=1

Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺)

under some suitable conditions. This point 𝑥∗ also solves the
following optimization problem:

min
𝑥∈Ω

𝜇

2
⟨𝑉𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (OP1)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑄.
Let 𝐵 be a single-valued mapping of 𝐶 into 𝐻 and 𝑅 a

multivaluedmapping with𝐷(𝑅) = 𝐶. Consider the following
variational inclusion: find a point 𝑥 ∈ 𝐶 such that

0 ∈ 𝐵𝑥 + 𝑅𝑥. (11)

We denote by 𝐼(𝐵, 𝑅) the solution set of the variational
inclusion (11).

Let 𝑓 : 𝐶 → R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing 𝑓 over the constraint set 𝐶

minimize {𝑓 (𝑥) : 𝑥 ∈ 𝐶} , (12)
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which was studied in [10–13]. We denote by Γ the set of
minimizers of CMP (12).

Let 𝐶 be a nonempty subset of a normed space 𝑋. A
mapping 𝑆 : 𝐶 → 𝐶 is called uniformly Lipschitzian if there
exists a constantL > 0 such that

𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
 ≤L

𝑥 − 𝑦
 , ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (13)

Recently, Kim and Xu [14] introduced the concept of asymp-
totically 𝑘-strict pseudocontractive mappings in a Hilbert
space as below.

Definition 1. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping with sequence {𝛾

𝑛} if there
exists a constant 𝑘 ∈ [0, 1) and a sequence {𝛾𝑛} in [0,∞) with
lim𝑛→∞𝛾𝑛 = 0 such that

𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦


2
≤ (1 + 𝛾𝑛)

𝑥 − 𝑦


2

+ 𝑘
𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)


2
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(14)

It is important to note that every asymptotically 𝑘-
strict pseudocontractive mapping with sequence {𝛾

𝑛
} is a

uniformly L-Lipschitzian mapping with L = sup{(𝑘 +
√1 + (1 − 𝑘) 𝛾

𝑛
)/(1 + 𝑘) : 𝑛 ≥ 1}. Subsequently, Sahu et al.

[15] considered the concept of asymptotically 𝑘-strict pseu-
docontractive mappings in the intermediate sense, which are
not necessarily Lipschitzian.

Definition 2. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾𝑛} if there exist a constant 𝑘 ∈ [0, 1) and a
sequence {𝛾𝑛} in [0,∞) with lim

𝑛→∞
𝛾
𝑛
= 0 such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦


2
− (1 + 𝛾

𝑛
)
𝑥 − 𝑦



2

− 𝑘
𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)


2
) ≤ 0.

(15)

Put 𝑐
𝑛

:= max{0, sup
𝑥,𝑦∈𝐶

(‖𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦‖
2
− (1 +

𝛾
𝑛)‖𝑥 − 𝑦‖

2
− 𝑘‖𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)‖
2
)}. Then 𝑐𝑛 ≥ 0 (∀𝑛 ≥

1), 𝑐𝑛 → 0 (𝑛 → ∞), and there holds the relation

𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦


2
≤ (1 + 𝛾

𝑛
)
𝑥 − 𝑦



2

+ 𝑘
𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)


2
+ 𝑐𝑛,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(16)

In this paper, we first introduce and analyze onemultistep
iterative algorithm by hybrid shrinking projection method
for finding a solution of the SGEP (8) with constraints of
several problems: the GMEP (4), the CMP (12), finitely
many variational inclusions, and the fixed point problem
of an asymptotically strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove

strong convergence theorem for the iterative algorithm under
suitable conditions. On the other hand, we also propose
another multistep iterative algorithm involving no shrinking
projection method and derive its weak convergence under
mild assumptions. Our results improve and extend the
corresponding results in the earlier and recent literatures.

2. Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space whose inner product and norm are denoted by ⟨⋅, ⋅⟩
and ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed convex
subset of 𝐻. We write 𝑥𝑛 ⇀ 𝑥 to indicate that the sequence
{𝑥
𝑛
} converges weakly to 𝑥 and 𝑥

𝑛
→ 𝑥 to indicate that

the sequence {𝑥
𝑛
} converges strongly to 𝑥. Moreover, we use

𝜔
𝑤
(𝑥
𝑛
) to denote the weak 𝜔-limit set of the sequence {𝑥

𝑛
};

that is,

𝜔𝑤 (𝑥𝑛)

:= {𝑥 ∈ 𝐻 : 𝑥𝑛
𝑖

⇀ 𝑥 for some subsequence {𝑥𝑛
𝑖

} of {𝑥𝑛}} .
(17)

Recall that a mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (18)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0
such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶; (19)

(iii) 𝛼-inverse-stronglymonotone if there exists a constant
𝛼 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
𝐴𝑥 − 𝐴𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐶. (20)

It is obvious that if 𝐴 is 𝛼-inverse-strongly monotone,
then 𝐴 is monotone and (1/𝛼)-Lipschitz continuous.

Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃

𝐶
: 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃
𝐶
𝑥 ∈ 𝐶 satisfying the property

𝑥 − 𝑃𝐶𝑥
 = inf
𝑦∈𝐶

𝑥 − 𝑦
 =: 𝑑 (𝑥, 𝐶) . (21)

Some important properties of projections are gathered in
the following proposition.

Proposition 3. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶:

(i) 𝑧 = 𝑃
𝐶𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2
, ∀𝑦 ∈ 𝐶;

(iii) ⟨𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2
, ∀𝑦 ∈ 𝐻.

Consequently, 𝑃
𝐶
is nonexpansive and monotone.

If𝐴 is an 𝛼-inverse-stronglymonotonemapping of𝐶 into
𝐻, then it is obvious that 𝐴 is (1/𝛼)-Lipschitz continuous.
We also have that if 𝜆 ≤ 2𝛼, then 𝐼 − 𝜆𝐴 is a nonexpansive
mapping from 𝐶 to𝐻.
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Definition 4. A mapping 𝑇 : 𝐻 → 𝐻 is said to be

(a) nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐻; (22)

(b) firmly nonexpansive if 2𝑇 − 𝐼 is nonexpansive, or
equivalently, if 𝑇 is 1-inverse strongly monotone (1-
ism),

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥
𝑇𝑥 − 𝑇𝑦



2
, ∀𝑥, 𝑦 ∈ 𝐻; (23)

alternatively, 𝑇 is firmly nonexpansive if and only if 𝑇 can be
expressed as

𝑇 =
1

2
(𝐼 + 𝑆) , (24)

where 𝑆 : 𝐻 → 𝐻 is nonexpansive; projections are firmly
nonexpansive.

It can be easily seen that if 𝑇 is nonexpansive, then 𝐼 − 𝑇
is monotone.

Definition 5. A mapping 𝑇 : 𝐻 → 𝐻 is said to be an
averaged mapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping; that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (25)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when the last equality holds, we say that 𝑇 is 𝛼-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged mappings.

Proposition6 (see [16]). Let𝑇 : 𝐻 → 𝐻 be a givenmapping.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇
is (1/2)-ism.

(ii) If 𝑇 is ]-ism, then for 𝛾 > 0, 𝛾𝑇 is (]/𝛾)-ism.
(iii) 𝑇 is averaged if and only if the complement 𝐼 −𝑇 is ]-

ism for some ] > 1/2. Indeed, for 𝛼 ∈ (0, 1), 𝑇 is 𝛼-
averaged if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

Proposition 7 (see [16]). Let 𝑆, 𝑇, 𝑉 : 𝐻 → 𝐻 be given
operators.

(i) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
averaged and 𝑉 is nonexpansive, then 𝑇 is averaged.

(ii) 𝑇 is firmly nonexpansive if and only if the complement
𝐼 − 𝑇 is firmly nonexpansive.

(iii) If 𝑇 = (1 − 𝛼)𝑆 + 𝛼𝑉 for some 𝛼 ∈ (0, 1) and if 𝑆 is
firmly nonexpansive and 𝑉 is nonexpansive, then 𝑇 is
averaged.

(iv) The composite of finitely many averaged mappings
is averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑁

𝑖=1

is averaged, then so is the composite 𝑇
1
, . . . , 𝑇

𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
is 𝛼
2
-averaged,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

(v) If the mappings {𝑇
𝑖
}
𝑁

𝑖=1
are averaged and have a

common fixed point, then

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) = Fix (𝑇

1
, . . . , 𝑇

𝑁
) . (26)

The notation Fix(𝑇) denotes the set of all fixed points of the
mapping 𝑇; that is, Fix(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}.

By using the technique in [4], we can readily obtain the
following elementary result.

Proposition 8 (see [9, Lemma 1 and Proposition 1]). Let𝐶 be
a nonempty closed convex subset of a real Hilbert space𝐻 and
let𝜑 : 𝐶 → R be a lower semicontinuous and convex function.
Let Θ : 𝐶 × 𝐶 → R be a bifunction satisfying the conditions
(H1)–(H4). Assume that

(i) 𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0
and the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻 and 𝑟 > 0, there exists a bounded subset
𝐷
𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that for any 𝑧 ∈ 𝐶 \ 𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝐾

(𝑧) − 𝐾


(𝑥) , 𝑦𝑥 − 𝑧⟩ < 0.

(27)

Then the following hold:

(a) for each 𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)
𝑟

(𝑥) ̸= 0;

(b) 𝑆(Θ,𝜑)
𝑟

is single-valued;

(c) 𝑆(Θ,𝜑)
𝑟

is nonexpansive if 𝐾 is Lipschitz continuous
with constant ] > 0 and

⟨𝐾

(𝑥
1
) − 𝐾

(𝑥
2
) , 𝑢
1
− 𝑢
2
⟩

≤ ⟨𝐾

(𝑢
1
) − 𝐾

(𝑢
2
) , 𝑢
1
− 𝑢
2
⟩ , ∀ (𝑥

1
, 𝑥
2
) ∈ 𝐻 × 𝐻,

(28)

where 𝑢
𝑖
= 𝑆
(Θ,𝜑)

𝑟
(𝑥
𝑖
) for 𝑖 = 1, 2;

(d) for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻

⟨𝐾

(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾


(𝑆
(Θ,𝜑)

𝑡
𝑥) , 𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩

≤
𝑠 − 𝑡

𝑠
⟨𝐾

(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾


(𝑥) , 𝑆

(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩ ;

(29)

(e) Fix(𝑆(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);
(f) MEP(Θ, 𝜑) is closed and convex.

Remark 9. In Proposition 6, whenever Θ : 𝐶 × 𝐶 → R is a
bifunction satisfying the conditions (H1)–(H4) and 𝐾(𝑥) =
(1/2)‖𝑥‖

2, ∀𝑥 ∈ 𝐻, we have for any 𝑥, 𝑦 ∈ 𝐻,


𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦


2

≤ ⟨𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ , (30)
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(𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive) and


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥

≤
|𝑠 − 𝑡|

𝑠


𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑥


,

∀𝑠, 𝑡 > 0, 𝑥 ∈ 𝐻.

(31)

In this case, 𝑆(Θ,𝜑)
𝑟

is rewritten as 𝑇(Θ,𝜑)
𝑟

. If, in addition, 𝜑 ≡ 0,
then 𝑇(Θ,𝜑)

𝑟
is rewritten as 𝑇Θ

𝑟
.

We need some facts and tools in a real Hilbert space 𝐻
which are listed as lemmas below.

Lemma 10. Let 𝑋 be a real inner product space. Then there
holds the following inequality:

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (32)

Lemma 11. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 3(i)) implies

𝑢 ∈ 𝑉𝐼 (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (33)

Lemma 12 (see [17], demiclosedness principle). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥𝑛} is a sequence in 𝐶 weakly converging to
some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥𝑛} strongly converges
to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Lemma 13 (see [18, p. 80]). Let {𝑎
𝑛
}
∞

𝑛=1
, {𝑏
𝑛
}
∞

𝑛=1
and {𝛿

𝑛
}
∞

𝑛=1
be

sequences of nonnegative real numbers satisfying the inequality

𝑎
𝑛+1
≤ (1 + 𝛿

𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (34)

If ∑∞
𝑛=1
𝛿
𝑛
< ∞ and ∑∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. If,

in addition, {𝑎
𝑛
}
∞

𝑛=1
has a subsequence which converges to zero,

then lim
𝑛→∞

𝑎
𝑛
= 0.

Recall that a Banach space 𝑋 is said to satisfy the Opial
condition [17] if for any given sequence {𝑥

𝑛
} ⊂ 𝑋 which

converges weakly to an element 𝑥 ∈ 𝑋, there holds the
inequality

lim sup
𝑛→∞

𝑥𝑛 − 𝑥
 < lim sup
𝑛→∞

𝑥𝑛 − 𝑦
 , ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(35)

It is well known in [17] that every Hilbert space𝐻 satisfies the
Opial condition.

Lemma 14 (see [19, Proposition 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻 and let {𝑥

𝑛
} be a

sequence in𝐻. Suppose that

𝑥𝑛+1 − 𝑝


2
≤ (1 + 𝜆

𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛿
𝑛
, ∀𝑝 ∈ 𝐶, 𝑛 ≥ 1,

(36)

where {𝜆
𝑛
} and {𝛿

𝑛
} are sequences of nonnegative real numbers

such that ∑∞
𝑛=1
𝜆
𝑛
< ∞ and ∑∞

𝑛=1
𝛿
𝑛
< ∞. Then {𝑃

𝐶
𝑥
𝑛
}

converges strongly in 𝐶.

Lemma 15 (see [20]). Let 𝐶 be a closed convex subset of a real
Hilbert space 𝐻. Let {𝑥

𝑛
} be a sequence in 𝐻 and 𝑢 ∈ 𝐻. Let

𝑞 = 𝑃
𝐶
𝑢. If {𝑥

𝑛
} is such that 𝜔

𝑤
(𝑥
𝑛
) ⊂ 𝐶 and satisfies the

condition
𝑥𝑛 − 𝑢

 ≤
𝑢 − 𝑞

 , ∀ 𝑛, (37)

then 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞.

Lemma 16. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − ‖𝑦‖2 − 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;
(b) ‖𝜆𝑥 + 𝜇𝑦‖2 = 𝜆‖𝑥‖2+𝜇‖𝑦‖2−𝜆𝜇‖𝑥 − 𝑦‖2 for all 𝑥, 𝑦 ∈
𝐻 and 𝜆, 𝜇 ∈ [0, 1] with 𝜆 + 𝜇 = 1;

(c) if {𝑥
𝑛
} is a sequence in 𝐻 such that 𝑥

𝑛
⇀ 𝑥, it follows

that

lim sup
𝑛→∞

𝑥𝑛 − 𝑦


2
= lim sup
𝑛→∞

𝑥𝑛 − 𝑥


2
+
𝑥 − 𝑦



2
, ∀𝑦 ∈ 𝐻.

(38)

Assume that𝑅 : 𝐷(𝑅) ⊂ 𝐻 → 2
𝐻 is amaximalmonotone

mapping. Then, for 𝜆 > 0, associated with 𝑅, the resolvent
operator 𝐽

𝑅,𝜆
can be defined as

𝐽
𝑅,𝜆
𝑥 = (𝐼 + 𝜆𝑅)

−1
𝑥, ∀𝑥 ∈ 𝐻. (39)

In terms of Huang [21] (see also [22]), there holds the following
property for the resolvent operator 𝐽

𝑅,𝜆
: 𝐻 → 𝐷(𝑅).

Lemma 17. 𝐽
𝑅,𝜆

is single-valued and firmly nonexpansive; that
is,

⟨𝐽
𝑅,𝜆
𝑥 − 𝐽
𝑅,𝜆
𝑦, 𝑥 − 𝑦⟩ ≥

𝐽𝑅,𝜆𝑥 − 𝐽𝑅,𝜆𝑦


2
, ∀𝑥, 𝑦 ∈ 𝐻.

(40)

Consequently, 𝐽
𝑅,𝜆

is nonexpansive and monotone.

Lemma 18 (see [23]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶. Then for any given 𝜆 > 0, 𝑢 ∈ 𝐶 is a solution
of problem (11) if and only if 𝑢 ∈ 𝐶 satisfies

𝑢 = 𝐽
𝑅,𝜆 (𝑢 − 𝜆𝐵𝑢) . (41)

Lemma 19 (see [22]). Let 𝑅 be a maximal monotone mapping
with 𝐷(𝑅) = 𝐶 and let 𝐵 : 𝐶 → 𝐻 be a strongly monotone,
continuous, and single-valued mapping. Then for each 𝑧 ∈ 𝐻,
the equation 𝑧 ∈ (𝐵+𝜆𝑅)𝑥 has a unique solution 𝑥

𝜆
for 𝜆 > 0.

Lemma 20 (see [23]). Let𝑅 be amaximal monotone mapping
with𝐷(𝑅) = 𝐶 and 𝐵 : 𝐶 → 𝐻 a monotone, continuous, and
single-valued mapping. Then (𝐼 + 𝜆(𝑅 + 𝐵))𝐶 = 𝐻 for each
𝜆 > 0. In this case, 𝑅 + 𝐵 is maximal monotone.

Lemma 21 (see [22, Lemma 2.5]). Let 𝐻 be a real Hilbert
space. Given a nonempty closed convex subset of𝐻 and points
𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a real number 𝑎 ∈ R, the set

{V ∈ 𝐶 : 𝑦 − V


2
≤ ‖𝑥 − V‖2 + ⟨𝑧, V⟩ + 𝑎} (42)

is convex (and closed).
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Recall that a set-valued mapping 𝑇 : 𝐷(𝑇) ⊂ 𝐻 → 2
𝐻 is

called monotone if for all 𝑥, 𝑦 ∈ 𝐷(𝑇), 𝑓 ∈ 𝑇𝑥 and 𝑔 ∈ 𝑇𝑦
imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (43)

A set-valued mapping 𝑇 is called maximal monotone if 𝑇 is
monotone and (𝐼 + 𝜆𝑇)𝐷(𝑇) = 𝐻 for each 𝜆 > 0, where 𝐼 is
the identity mapping of𝐻. We denote by 𝐺(𝑇) the graph of 𝑇.
It is known that a monotone mapping 𝑇 is maximal if and only
if, for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑓−𝑔, 𝑥−𝑦⟩ ≥ 0 for every (𝑦, 𝑔) ∈ 𝐺(𝑇)
implies 𝑓 ∈ 𝑇𝑥. Let 𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-
continuous mapping and let 𝑁

𝐶
V be the normal cone to 𝐶 at

V ∈ 𝐶; that is,

𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢,𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶} . (44)

Define

𝑇V = {
𝐴V + 𝑁

𝐶
V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(45)

Then, 𝑇 is maximal monotone and 0 ∈ 𝑇V if and only if V ∈
𝑉𝐼(𝐶, 𝐴); see [24].

Lemma 22 (see [15, Lemma 2.6]). Let𝐶 be a nonempty subset
of a Hilbert space 𝐻 and 𝑆 : 𝐶 → 𝐶 an asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then

𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦


≤
1

1 − 𝑘
(𝑘
𝑥 − 𝑦



+√(1 + (1 − 𝑘) 𝛾𝑛)
𝑥 − 𝑦



2
+ (1 − 𝑘) 𝑐𝑛)

(46)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.

Lemma 23 (see [15, Lemma 2.7]). Let 𝐶 be a nonempty
subset of a Hilbert space 𝐻 and 𝑆 : 𝐶 → 𝐶 a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense with sequence {𝛾𝑛}. Let {𝑥𝑛} be a
sequence in𝐶 such that ‖𝑥𝑛−𝑥𝑛+1‖ → 0 and ‖𝑥𝑛−𝑆𝑛𝑥𝑛‖ → 0

as 𝑛 → ∞. Then ‖𝑥𝑛 − 𝑆𝑥𝑛‖ → 0 as 𝑛 → ∞.

Lemma 24 (see [15, Proposition 3.1] demiclosedness princi-
ple). Let 𝐶 be a nonempty closed convex subset of a Hilbert
space 𝐻 and 𝑆 : 𝐶 → 𝐶 a continuous asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾𝑛}. Then 𝐼−𝑆 is demiclosed at zero in the sense
that if {𝑥𝑛} is a sequence in 𝐶 such that 𝑥𝑛 ⇀ 𝑥 ∈ 𝐶 and
lim sup

𝑚→∞
lim sup

𝑛→∞
‖𝑥
𝑛
− 𝑆
𝑚
𝑥
𝑛
‖ = 0, then (𝐼 − 𝑆)𝑥 = 0.

Lemma 25 (see [15, Proposition 3.2]). Let 𝐶 be a nonempty
closed convex subset of aHilbert space𝐻 and 𝑆 : 𝐶 → 𝐶 a con-
tinuous asymptotically 𝑘-strict pseudocontractive mapping in
the intermediate sense with sequence {𝛾

𝑛
} such that Fix(𝑆) ̸= 0.

Then Fix(𝑆) is closed and convex.

3. Strong Convergence Theorem

In this section, we will introduce and analyze one multistep
iterative algorithm by hybrid shrinking projection method
for finding a solution of the SGEP (8) with constraints of
several problems: the GMEP (4), the CMP (12), finitely
many variational inclusions, and the fixed point problem
of an asymptotically strict pseudocontractive mapping in
the intermediate sense in a real Hilbert space. We prove
strong convergence theorem for the iterative algorithm under
suitable conditions. This iterative algorithm is based on Kor-
pelevich’s extragradient method, strongly positive bounded
linear operator approach, viscosity approximation method,
averaged mapping approach to the GPA in [16], Mann-type
iteration method, and shrinking projection method. The
following proposition will play a key role in the proof of the
main results in this paper.
Proposition CY (see [7]). Let Θ1, Θ2 : 𝐶 × 𝐶 → R be
two bifunctions satisfying conditions (H1)–(H4) and let 𝐴𝑘 :
𝐶 → 𝐻 be 𝜁𝑘-inverse-strongly monotone for 𝑘 = 1, 2. Let
]𝑘 ∈ (0, 2𝜁𝑘) for 𝑘 = 1, 2. Then, (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 is a solution
of SGEP (8) if and only if 𝑥∗ is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by 𝐺 = 𝑇Θ1]

1

(𝐼 − ]1𝐴1)𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2),
where 𝑦∗ = 𝑇Θ2]

2

(𝐼−]2𝐴2)𝑥
∗. Here, we denote by SGEP(𝐺) the

fixed point set of 𝐺.

Theorem 26. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑁 be an integer. Let 𝑓 : 𝐶 → R be
a convex functional with 𝐿-Lipschitz continuous gradient ∇𝑓.
Let Θ,Θ

1
, Θ
2
be three bifunctions from 𝐶 × 𝐶 to R satisfying

(H1)–(H4) and 𝜑 : 𝐶 → R a lower semicontinuous and
convex functional. Let 𝑅

𝑖
: 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻

be 𝜁-inverse strongly monotone, 𝜁𝑘-inverse strongly monotone,
and 𝜂𝑖-inverse-strongly monotone, respectively, for 𝑘 = 1, 2

and 𝑖 = 1, 2, . . . , 𝑁. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾𝑛} ⊂ [0,∞) such that lim𝑛→∞𝛾𝑛 = 0 and {𝑐𝑛} ⊂ [0,∞) such
that lim𝑛→∞𝑐𝑛 = 0. Let 𝑉 be a 𝛾-strongly positive bounded
linear operator and 𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < 𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩
∩
𝑁

𝑖=1
I(𝐵
𝑖
, 𝑅
𝑖
) ∩ Fix(𝑆) ∩ Γ is nonempty and bounded, where

𝐺 is defined as in Proposition CY. Let {𝑟
𝑛
} be a sequence in

[0, 2𝜁] and {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛿

𝑛
} sequences in [0, 1] such that

0 < 𝛼 ≤ 𝛼
𝑛
≤ 1 and 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1, and let ]

𝑘
∈ (0, 2𝜁

𝑘
),

𝑘 = 1, 2, and {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁}. Pick

any 𝑥
0
∈ 𝐻 and set𝐶

1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆𝑁−1,𝑛𝐵𝑁−1) , . . . , 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑧
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
,
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𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1 = {𝑧 ∈ 𝐶𝑛 :

𝑦𝑛 − 𝑧


2
≤
𝑥𝑛 − 𝑧



2
+ 𝜃𝑛} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 1,

(47)

where𝑃𝐶(𝐼−𝜆𝑛∇𝑓) = 𝑠𝑛𝐼+(1−𝑠𝑛)𝑇𝑛 (here𝑇𝑛 is nonexpansive;
𝑠𝑛 = (2 − 𝜆𝑛𝐿)/4 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿)), and
𝜃
𝑛
= (𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝛾𝑄 − 𝑉)𝑝‖
2
/(𝛾 − 𝛾𝑙) : 𝑝 ∈ Ω} < ∞. Assume that the

following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;

(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶
and 𝑧𝑥 ∈ 𝐶 such that for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(48)

(iii) 𝑠
𝑛
∈ (0, 1/2) for each𝜆

𝑛
∈ (0, 2/𝐿), and lim

𝑛→∞
𝑠
𝑛
= 0

(⇔ lim
𝑛→∞

𝜆
𝑛
= 2/𝐿);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive. Then we have

(i) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃Ω𝑥0;

(ii) {𝑥
𝑛} converges strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 → 0)

to 𝑥∗ = 𝑃Ω𝑥0 provided that ‖𝑥𝑛 − 𝑧𝑛‖ = 𝑜(𝑠𝑛), which
is the unique solution in Ω to the VIP

⟨(𝛾𝑄 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (49)

Equivalently, 𝑥∗ = 𝑃Ω(𝐼 − 𝑉 + 𝛾𝑄)𝑥
∗.

Proof. Since ∇𝑓 is 𝐿-Lipschitzian, it follows that ∇𝑓 is 1/𝐿-
ism; see [16]. By Proposition 6(ii) we know that for 𝜆 >

0, 𝜆∇𝑓 is (1/𝜆𝐿)-ism. So by Proposition 6(iii) we deduce that
𝐼 − 𝜆∇𝑓 is (𝜆𝐿/2)-averaged. Now since the projection 𝑃

𝐶

is 1/2-averaged, it is easy to see from Proposition 7(iv) that
the composite 𝑃𝐶(𝐼 − 𝜆∇𝑓) is (2 + 𝜆𝐿)/4-averaged for 𝜆 ∈
(0, 2/𝐿). Hence we obtain that for each 𝑛 ≥ 1, 𝑃𝐶(𝐼 − 𝜆𝑛∇𝑓)
is (2 + 𝜆𝑛𝐿)/4-averaged for each 𝜆𝑛 ∈ (0, 2/𝐿). Therefore, we
can write

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) =
2 − 𝜆
𝑛
𝐿

4
𝐼 +

2 + 𝜆
𝑛
𝐿

4
𝑇𝑛 = 𝑠𝑛𝐼 + (1 − 𝑠𝑛) 𝑇𝑛,

(50)

where 𝑇
𝑛
is nonexpansive and 𝑠

𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈

(0, 1/2) for each 𝜆
𝑛
∈ (0, 2/𝐿). It is clear that

𝜆
𝑛
→

2

𝐿
⇐⇒ 𝑠

𝑛
→ 0. (51)

As lim
𝑛→∞

𝑠
𝑛
= 0, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
<

1 and 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁, we may

assume, without loss of generality, that {𝛽
𝑛
} ⊂ [𝑎, 𝑎] ⊂ (0, 1),

{𝑟
𝑛
} ⊂ [𝑐, 𝑐] ⊂ (0, 2𝜁) and 𝛽

𝑛
+ 𝑠
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1. Since

𝑉 is a 𝛾-strongly positive bounded linear operator on 𝐻, we
know that

‖𝑉‖ = sup {⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1} ≥ 𝛾 > 𝛾𝑙. (52)

Taking into account that 𝛽
𝑛
+ 𝑠
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1, we have

⟨((1 − 𝛽
𝑛
) 𝐼 − 𝑠

𝑛
𝑉) 𝑢, 𝑢⟩ = 1 − 𝛽

𝑛
− 𝑠
𝑛 ⟨𝑉𝑢, 𝑢⟩

≥ 1 − 𝛽
𝑛
− 𝑠
𝑛 ‖𝑉‖

≥ 0;

(53)

that is, (1 − 𝛽
𝑛
)𝐼 − 𝑠
𝑛
𝑉 is positive. It follows that

(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉


= sup {⟨((1 − 𝛽
𝑛) 𝐼 − 𝑠𝑛𝑉) 𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

= sup {1 − 𝛽
𝑛
− 𝑠
𝑛 ⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽𝑛 − 𝑠𝑛𝛾.

(54)

Put

Λ
𝑖

𝑛
= 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆𝑖−1,𝑛𝐵𝑖−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1)

(55)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ0
𝑛
= 𝐼, where 𝐼 is the identity

mapping on𝐻. Then we have V
𝑛 = Λ
𝑁

𝑛
𝑢𝑛.

We divide the rest of the proof into several steps.
Step 1. We show that {𝑥

𝑛
} is well defined. It is obvious that

𝐶
𝑛
is closed and convex. As the defining inequality in 𝐶

𝑛
is

equivalent to the inequality

⟨2 (𝑥
𝑛
− 𝑦
𝑛
) , 𝑧⟩ ≤

𝑥𝑛


2
−
𝑦𝑛


2
+ 𝜃
𝑛
, (56)

by Lemma 21 we know that 𝐶
𝑛
is convex for every 𝑛 ≥ 1.
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First of all, let us show thatΩ ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Suppose

that Ω ⊂ 𝐶
𝑛
for some 𝑛 ≥ 1. Take 𝑝 ∈ Ω arbitrarily. Since

𝑝 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑝 − 𝑟
𝑛
𝐴𝑝), 𝐴 is 𝜁-inverse strongly monotone and

0 ≤ 𝑟
𝑛
≤ 2𝜁, we have, for any 𝑛 ≥ 1,

𝑢𝑛 − 𝑝


2
=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝



2

≤
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2

=
(𝑥𝑛 − 𝑝) − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2

=
𝑥𝑛 − 𝑝



2
− 2𝑟
𝑛
⟨𝑥
𝑛
− 𝑝, 𝐴𝑥

𝑛
− 𝐴𝑝⟩

+ 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
− 2𝑟
𝑛
𝜁
𝐴𝑥𝑛 − 𝐴𝑝



2

+ 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2

=
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2

≤
𝑥𝑛 − 𝑝



2
.

(57)

Since 𝑝 = 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
)𝑝, Λ𝑖

𝑛
𝑝 = 𝑝 and 𝐵

𝑖
is 𝜂
𝑖
-inverse

strongly monotone, where 𝜆
𝑖,𝑛
∈ (0, 2𝜂

𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁}, by

Lemma 17 we deduce that for each 𝑛 ≥ 1,

V𝑛 − 𝑝
 =


𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑢
𝑛

−𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑝


≤

(𝐼 − 𝜆

𝑁,𝑛𝐵𝑁) Λ
𝑁−1

𝑛
𝑢𝑛 − (𝐼 − 𝜆𝑁,𝑛𝐵𝑁) Λ

𝑁−1

𝑛
𝑝


≤

Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁−1

𝑛
𝑝


...

≤

Λ
0

𝑛
𝑥𝑛 − Λ

0

𝑛
𝑝


=
𝑢𝑛 − 𝑝

 .

(58)

Combining (57) and (58), we have

V𝑛 − 𝑝
 ≤

𝑥𝑛 − 𝑝
 . (59)

Since 𝑝 = 𝐺𝑝 = 𝑇Θ1]
1

(𝐼 − ]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝, 𝐴
𝑘
is 𝜁
𝑘
-

inverse-strongly monotone for 𝑘 = 1, 2, and 0 ≤ ]
𝑘
≤ 2𝜁
𝑘
for

𝑘 = 1, 2, we deduce that, for any 𝑛 ≥ 1,

𝐺V𝑛 − 𝑝


2

=

𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

−𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤

(𝐼 − ]

1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

− (𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

=

[𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝]

− ]
1 [𝐴1𝑇

Θ
2

]
2

(𝐼 − ]2𝐴2) V𝑛 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝]


2

≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

+ ]
1
(]
1
− 2𝜁
1
)

×

𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤
(𝐼 − ]2𝐴2) V𝑛 − (I − ]2𝐴2) 𝑝



2

=
(V𝑛 − 𝑝) − ]2 (𝐴2V𝑛 − 𝐴2𝑝)



2

≤
V𝑛 − 𝑝



2
+ ]
2
(]
2
− 2𝜁
2
)
𝐴2V𝑛 − 𝐴2𝑝



2

≤
V𝑛 − 𝑝



2
.

(60)

(This shows that 𝐺 is nonexpansive.) Also, from (47), (54),
(59), and (60), it follows that

𝑧𝑛 − 𝑝


=
𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝑠𝑛𝛾 (𝑄𝑥𝑛 − 𝑄𝑝) + [(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉]

× (𝑇
𝑛
𝐺V
𝑛
− 𝑝) + 𝑠

𝑛
(𝛾𝑄 − 𝑉) 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝑠𝑛𝛾

𝑄𝑥𝑛 − 𝑄𝑝


+
[(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉] (𝑇𝑛𝐺V𝑛 − 𝑝)

 + 𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝑠𝑛𝛾𝑙

𝑥𝑛 − 𝑝
 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

×
𝑇𝑛𝐺V𝑛 − 𝑝

 + 𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝑠𝑛𝛾𝑙

𝑥𝑛 − 𝑝


+ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
𝐺V𝑛 − 𝑝

 + 𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝



= (𝛽
𝑛
+ 𝑠
𝑛
𝛾𝑙)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝐺V𝑛 − 𝑝





Abstract and Applied Analysis 9

+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾𝑙)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
V𝑛 − 𝑝



+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾𝑙)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝑥𝑛 − 𝑝



+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


= (1 − 𝑠
𝑛
(𝛾 − 𝛾𝑙))

𝑥𝑛 − 𝑝
 + 𝑠𝑛

(𝛾𝑄 − 𝑉) 𝑝


= (1 − 𝑠
𝑛 (𝛾 − 𝛾𝑙))

𝑥𝑛 − 𝑝
 + 𝑠𝑛 (𝛾 − 𝛾𝑙)

(𝛾𝑄 − 𝑉)𝑝


𝛾 − 𝛾𝑙
,

(61)

which hence yields

𝑧𝑛 − 𝑝


2

≤ (1 − 𝑠𝑛 (𝛾 − 𝛾𝑙))
𝑥𝑛 − 𝑝



2
+ 𝑠𝑛 (𝛾 − 𝛾𝑙)

(𝛾𝑄 − 𝑉) 𝑝


2

(𝛾 − 𝛾𝑙)
2

≤
𝑥𝑛 − 𝑝



2
+ 𝑠𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
.

(62)

By Lemma 16(b), we deduce from (47) and (62) that

𝑘𝑛 − 𝑝


2

=
𝛿𝑛 (𝑧𝑛 − 𝑝) + (1 − 𝛿𝑛) (𝑆

𝑛
𝑧𝑛 − 𝑝)



2

= 𝛿
𝑛

𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)
𝑆
𝑛
𝑧
𝑛
− 𝑝


2

− 𝛿𝑛 (1 − 𝛿𝑛)
𝑧𝑛 − 𝑆

𝑛
𝑧𝑛


2

≤ 𝛿
𝑛

𝑧𝑛 − 𝑝


2
+ (1 − 𝛿

𝑛
)

× [(1 + 𝛾
𝑛
)
𝑧𝑛 − 𝑝



2
+ 𝑘
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛
]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2

= [1 + 𝛾𝑛 (1 − 𝛿𝑛)]
𝑧𝑛 − 𝑝



2

+ (1 − 𝛿
𝑛
) (𝑘 − 𝛿

𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ (1 + 𝛾𝑛)
𝑧𝑛 − 𝑝



2
+ (1 − 𝛿𝑛) (𝑘 − 𝛿𝑛)

×
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛

≤ (1 + 𝛾𝑛)
𝑧𝑛 − 𝑝



2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)(
𝑥𝑛 − 𝑝



2
+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛
.

(63)

So, from (47) and (63) we get

𝑦𝑛 − 𝑝


2

=
(1 − 𝛼𝑛) (𝑥𝑛 − 𝑝) + 𝛼𝑛 (𝑘𝑛 − 𝑝)



2

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2
+ 𝛼𝑛

𝑘𝑛 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)

× (
𝑥𝑛 − 𝑝



2
+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛
]

≤ (1 + 𝛾
𝑛
)(
𝑥𝑛 − 𝑝



2
+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛

=
𝑥𝑛 − 𝑝



2
+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ (1 + 𝛾
𝑛
) 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
+ 𝑐
𝑛

≤
𝑥𝑛 − 𝑝



2
+ 𝛾
𝑛
(1 + 𝛾

𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝑠
𝑛
(1 + 𝛾

𝑛
)

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
+ 𝑐
𝑛

≤
𝑥𝑛 − 𝑝



2
+ (𝛾
𝑛
+ 𝑠
𝑛
) (1 + 𝛾

𝑛
)
𝑥𝑛 − 𝑝



2

+ (𝑠
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
+ 𝑐
𝑛

=
𝑥𝑛 − 𝑝



2
+ (𝑠𝑛 + 𝛾𝑛) (1 + 𝛾𝑛)

× (
𝑥𝑛 − 𝑝



2
+

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛

≤
𝑥𝑛 − 𝑝



2
+ (𝑠
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
) Δ
𝑛
+ 𝑐
𝑛

=
𝑥𝑛 − 𝑝



2
+ 𝜃
𝑛
,

(64)

where 𝜃
𝑛
= (𝑠
𝑛
+𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝛾𝑄 − 𝑉)𝑝‖
2
/(𝛾 − 𝛾𝑙) : 𝑝 ∈ Ω} < ∞. Hence 𝑝 ∈ 𝐶

𝑛+1
.

This implies that Ω ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Therefore, {𝑥

𝑛
} is well

defined.
Step 2. We prove that ‖𝑥

𝑛
− 𝑘
𝑛
‖ → 0, ‖𝑥

𝑛
− 𝑧
𝑛
‖ → 0 and

‖𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞.
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Indeed, let 𝑥∗ = 𝑃
Ω
𝑥
0
. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and 𝑥∗ ∈ Ω ⊂

𝐶
𝑛
, we obtain

𝑥𝑛 − 𝑥0
 ≤

𝑥
∗
− 𝑥
0

 . (65)

This implies that {𝑥
𝑛
} is bounded and hence {𝑢

𝑛
}, {V
𝑛
}, {𝑧
𝑛
},

{𝑘
𝑛
}, and {𝑦

𝑛
} are also bounded. Since 𝑥

𝑛+1
∈ 𝐶
𝑛+1
⊂ 𝐶
𝑛
and

𝑥
𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, we have

𝑥𝑛 − 𝑥0
 ≤

𝑥𝑛+1 − 𝑥0
 , ∀ 𝑛 ≥ 1. (66)

Therefore lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
0
‖ exists. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, 𝑥
𝑛+1
∈

𝐶
𝑛+1
⊂ 𝐶
𝑛
, by Proposition 3(ii) we obtain

𝑥𝑛+1 − 𝑥𝑛


2
≤
𝑥0 − 𝑥𝑛+1



2
−
𝑥0 − 𝑥𝑛



2
, (67)

which implies

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0. (68)

It follows from 𝑥
𝑛+1

∈ 𝐶
𝑛+1

that ‖𝑦
𝑛
− 𝑥
𝑛+1
‖
2
≤

‖𝑥
𝑛 − 𝑥𝑛+1‖

2
+ 𝜃𝑛, and hence

𝑥𝑛 − 𝑦𝑛


2
≤ 2 (

𝑥𝑛 − 𝑥𝑛+1


2
+
𝑥𝑛+1 − 𝑦𝑛



2
)

≤ 2 (
𝑥𝑛 − 𝑥𝑛+1



2
+
𝑥𝑛 − 𝑥𝑛+1



2
+ 𝜃𝑛)

= 2 (2
𝑥𝑛 − 𝑥𝑛+1



2
+ 𝜃𝑛) .

(69)

From (68) and lim
𝑛→∞

𝜃
𝑛
= 0, we have

lim
𝑛→∞

𝑥𝑛 − 𝑦𝑛
 = 0. (70)

Since 𝑦
𝑛
− 𝑥
𝑛
= 𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) and 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, we have

𝛼
𝑘𝑛 − 𝑥𝑛

 ≤ 𝛼𝑛
𝑘𝑛 − 𝑥𝑛

 =
𝑦𝑛 − 𝑥𝑛

 , (71)

which immediately leads to

lim
𝑛→∞

𝑘𝑛 − 𝑥𝑛
 = 0. (72)

Also, utilizing Lemmas 10 and 16(b)we obtain from (47), (59),
(60), and (63) that

𝑧𝑛 − 𝑝


2

=
𝛽𝑛𝑥𝑛 + 𝑠𝑛𝛾𝑄𝑥𝑛 + [(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉]𝑇𝑛𝐺V𝑛 − 𝑝



2

=
𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠
𝑛
(𝛾𝑄𝑥
𝑛
− 𝑉𝑇
𝑛
𝐺V
𝑛
)


2

≤
𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)



2

+ 2𝑠
𝑛
⟨(𝛾𝑄𝑥

𝑛
− 𝑉𝑇
𝑛
𝐺V
𝑛
) , 𝑧
𝑛
− 𝑝⟩

= 𝛽𝑛
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛)

𝑇𝑛𝐺V𝑛 − 𝑝


2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠𝑛 ⟨(𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛) , 𝑧𝑛 − 𝑝⟩

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝐺V𝑛 − 𝑝



2

− 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
V𝑛 − 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝



=
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 ,

(73)

and hence

𝑦𝑛 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛

𝑘𝑛 − 𝑝


2

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2
+ 𝛼𝑛 [(1 + 𝛾𝑛)

𝑧𝑛 − 𝑝


2
+ 𝑐𝑛]

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
[ (1 + 𝛾

𝑛
) (
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝

 ) + 𝑐𝑛]
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≤ (1 − 𝛼
𝑛)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛 (1 + 𝛾𝑛)

× (
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝

) + 𝑐𝑛

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2
+ 𝛼𝑛 (1 + 𝛾𝑛)

𝑥𝑛 − 𝑝


2

− 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ (1 + 𝛾𝑛) 2𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
𝑥𝑛 − 𝑝



2
− 𝛼
𝑛
(1 + 𝛾

𝑛
)

× 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛.

(74)

So, it follows that

𝛼 (1 + 𝛾
𝑛
) 𝑎 (1 − 𝑎)

𝑥𝑛 − 𝑇𝑛𝐺V𝑛


2

≤ 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑦𝑛 − 𝑝



2
+ 𝛾𝑛

𝑥𝑛 − 𝑝


2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛

≤
𝑥𝑛 − 𝑦𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2
+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)

×
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛.

(75)

Since lim
𝑛→∞𝑠𝑛 = 0, lim𝑛→∞𝛾𝑛 = 0 and lim𝑛→∞𝑐𝑛 = 0, it

follows from (70) and the boundedness of {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛}, and
{V𝑛} that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑛𝐺V𝑛
 = 0. (76)

Note that
𝑧𝑛 − 𝑥𝑛



=
(1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑥𝑛) + 𝑠𝑛 (𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛)



≤ (1 − 𝛽
𝑛
)
𝑇𝑛𝐺V𝑛 − 𝑥𝑛

 + 𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛



≤
𝑇𝑛𝐺V𝑛 − 𝑥𝑛

 + 𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

 .

(77)

Hence, it follows from (76) and lim
𝑛→∞𝑠𝑛 = 0 that

lim
𝑛→∞

𝑥𝑛 − 𝑧𝑛
 = 0. (78)

Note that
𝑘𝑛 − 𝑧𝑛

 ≤
𝑘𝑛 − 𝑥𝑛

 +
𝑥𝑛 − 𝑧𝑛

 . (79)

Thus, we deduce from (72) and (78) that

lim
𝑛→∞

𝑘𝑛 − 𝑧𝑛
 = 0. (80)

Since 𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
) and 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1, we

have

(1 − 𝑑)
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

 ≤ (1 − 𝛿𝑛)
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

 =
𝑘𝑛 − 𝑧𝑛

 ,

(81)

which together with (80), yields

lim
𝑛→∞

𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

 = 0. (82)

Step 3. We prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, ‖𝑥

𝑛
− V
𝑛
‖ → 0, ‖V

𝑛
−

𝐺V
𝑛
‖ → 0, ‖V

𝑛
−𝑃
𝐶
(𝐼−(2/𝐿)∇𝑓)V

𝑛
‖ → 0 and ‖𝑧

𝑛
−𝑆𝑧
𝑛
‖ → 0

as 𝑛 → ∞.
Indeed, from (58), (60), and 𝛾𝑙 < 𝛾, it follows that

𝑧𝑛 − 𝑝


2

=
𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝑠𝑛𝛾 (𝑄𝑥𝑛 − 𝑄𝑝)

+ [(1 − 𝛽
𝑛
) 𝐼 − 𝑠

𝑛
𝑉] (𝑇
𝑛
𝐺V
𝑛
− 𝑝) + 𝑠

𝑛
(𝛾𝑄 − 𝑉) 𝑝



2

≤
𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝑠𝑛𝛾 (𝑄𝑥𝑛 − 𝑄𝑝)

+ [(1 − 𝛽
𝑛
) 𝐼 − 𝑠

𝑛
𝑉] (𝑇
𝑛
𝐺V
𝑛
− 𝑝)



2

+ 2𝑠𝑛 ⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝑠𝑛𝛾

𝑄𝑥𝑛 − 𝑄𝑝


+ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
𝑇𝑛𝐺V𝑛 − 𝑝

]
2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ [𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝑠𝑛𝛾𝑙

𝑥𝑛 − 𝑝
 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

𝐺V𝑛 − 𝑝
]
2

+ 2𝑠𝑛 ⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧𝑛 − 𝑝⟩

= [(𝛽
𝑛
+ 𝑠
𝑛
𝛾𝑙)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝐺V𝑛 − 𝑝

]
2

+ 2𝑠𝑛 ⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [(𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝐺V𝑛 − 𝑝

]
2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝐺V𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
V𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

z𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

𝑢𝑛 − 𝑝


2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(83)
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Next let us show that

lim
𝑛→∞

𝑥𝑛 − 𝑢𝑛
 = 0. (84)

For 𝑝 ∈ Ω, we find that

𝑢𝑛 − 𝑝


2
=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑝


2

≤
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2

=
𝑥𝑛 − 𝑝 − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2

≤
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2
.

(85)

Combining (83) and (85), we obtain

𝑧𝑛 − 𝑝


2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝑢𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
𝑥𝑛 − 𝑝



2
+ 𝑟𝑛 (𝑟𝑛 − 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2
]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾) 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

𝐴𝑥𝑛 − 𝐴𝑝


2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(86)

which immediately implies that

(1 − 𝑎 − 𝑠
𝑛
𝛾) 𝑐 (2𝜁 − 𝑐)

𝐴𝑥𝑛 − 𝐴𝑝


2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾) 𝑟
𝑛
(2𝜁 − 𝑟

𝑛
)
𝐴𝑥𝑛 − 𝐴𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2
+ 2𝑠𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(87)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
} and {𝑧

𝑛
} are bounded

sequences, it follows from (78) that

lim
𝑛→∞

𝐴𝑥𝑛 − 𝐴𝑝
 = 0. (88)

Furthermore, from the firm nonexpansivity of 𝑆(Θ,𝜑)
𝑟
𝑛

, we have

𝑢𝑛 − 𝑝


2

=

𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝



2

≤ ⟨(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴)𝑝, 𝑢

𝑛
− 𝑝⟩

=
1

2
[
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝



2
+
𝑢𝑛 − 𝑝



2

−
(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝 − (𝑢𝑛 − 𝑝)



2
]

≤
1

2
[
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2

−
𝑥𝑛 − 𝑢𝑛 − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)



2
]

=
1

2
[
𝑥𝑛 − 𝑝



2
+
𝑢𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛
⟨𝐴𝑥
𝑛
− 𝐴𝑝, 𝑥

𝑛
− 𝑢
𝑛
⟩ − 𝑟
2

𝑛

𝐴𝑥𝑛 − 𝐴𝑝


2
] ,

(89)

which leads to

𝑢𝑛 − 𝑝


2
≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝

𝑥𝑛 − 𝑢𝑛

 .

(90)

From (83) and (90), we have

𝑧𝑛 − 𝑝


2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝑢𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
𝑥𝑛 − 𝑝



2
−
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝

𝑥𝑛 − 𝑢𝑛

 ]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑢𝑛



2

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝

𝑥𝑛 − 𝑢𝑛



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(91)
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which hence implies that

(1 − 𝑎 − 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑢𝑛



2

≤ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝑥𝑛 − 𝑢𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2
+ 2𝑟𝑛

𝐴𝑥𝑛 − 𝐴𝑝

𝑥𝑛 − 𝑢𝑛



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2𝑟
𝑛

𝐴𝑥𝑛 − 𝐴𝑝

𝑥𝑛 − 𝑢𝑛



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(92)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
}, {𝑢
𝑛
}, and {𝑧

𝑛
} are bounded

sequences, it follows from (78) and (88) that (84) holds.
Next we show that lim

𝑛→∞
‖𝐵
𝑖
Λ
𝑖

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. As a matter of fact, observe that


Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

=

𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖) Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐽𝑅

𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑝


2

≤

(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝


2

≤

Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑝


2

+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

≤
𝑢𝑛 − 𝑝



2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

≤
𝑥𝑛 − 𝑝



2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

.

(93)

Combining (60), (83), and (93), we have

𝑧𝑛 − 𝑝


2

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

V𝑛 − 𝑝


2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

+ 2𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝


𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
𝑥𝑛 − 𝑝



2
+ 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

]

+ 2𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝


𝑧𝑛 − 𝑝



=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾) 𝜆
𝑖,𝑛
(𝜆
𝑖,𝑛
− 2𝜂
𝑖
)

×

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(94)

which together with {𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), for all 𝑖 ∈

{1, 2, . . . , 𝑁}, implies that

(1 − 𝑎 − 𝑠
𝑛
𝛾) 𝑎
𝑖
(2𝜂
𝑖
− 𝑏
𝑖
)

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

≤ (1 − 𝛽𝑛 − 𝑠𝑛𝛾) 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2
+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(95)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
} and {𝑧

𝑛
} are bounded

sequences, it follows from (78) that

lim
𝑛→∞


𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

= 0, 𝑖 = 1, 2, . . . , 𝑁. (96)

By Lemma 16(a) and Lemma 17, we obtain


Λ
𝑖

𝑛
𝑢𝑛 − 𝑝



2

=

𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝑝


2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝, Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝⟩

=
1

2
(

(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝


2

+

Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

−

(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛

− (𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝑝 − (Λ

𝑖

𝑛
𝑢
𝑛
− 𝑝)



2

)

≤
1

2
(

Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑝


2

+

Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

)

≤
1

2
(
𝑢𝑛 − 𝑝



2
+

Λ
𝑖

𝑛
𝑢𝑛 − 𝑝



2

−

Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛 − 𝜆𝑖,𝑛 (𝐵𝑖Λ

𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝)



2

)

≤
1

2
(
𝑥𝑛 − 𝑝



2
+

Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

) ,

(97)
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which implies


Λ
𝑖

𝑛
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛
(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)


2

=
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛



2

− 𝜆
2

𝑖,𝑛


𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝



2

+ 2𝜆
𝑖,𝑛
⟨Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
, 𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝⟩

≤
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

+ 2𝜆
𝑖,𝑛


Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

.

(98)

Combining (60), (83), and (98), we have

𝑧𝑛 − 𝑝


2

≤ (𝛽n + 𝑠𝑛𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

V𝑛 − 𝑝


2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)


Λ
𝑖

𝑛
𝑢𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

+ 2𝜆
𝑖,𝑛


Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝

]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

+ 2𝜆𝑖,𝑛


Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛




𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(99)

So, we conclude that

(1 − 𝑎 − 𝑠
𝑛
𝛾)

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2

+ 2𝜆
𝑖,𝑛


Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉)𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2𝑏
𝑖


Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛




𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉)𝑝

𝑧𝑛 − 𝑝

 .

(100)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
}, {𝑧
𝑛
}, and {𝑢

𝑛
} are bounded,

from (78) and (96) we get

lim
𝑛→∞


Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛


= 0. (101)

From (101) we get

𝑢𝑛 − V𝑛
 =


Λ
0

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛



≤

Λ
0

𝑛
𝑢
𝑛
− Λ
1

𝑛
𝑢
𝑛


+

Λ
1

𝑛
𝑢
𝑛
− Λ
2

𝑛
𝑢
𝑛



+ ⋅ ⋅ ⋅ +

Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛



→ 0 as 𝑛 → ∞.

(102)

Taking into account that ‖𝑥
𝑛
−V
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑢
𝑛
‖+‖𝑢
𝑛
−V
𝑛
‖,

we conclude from (84) and (102) that

lim
𝑛→∞

𝑥𝑛 − V𝑛
 = 0. (103)

On the other hand, for simplicity, we write 𝑝 = 𝑇Θ2]
2

(𝐼 −

]
2
𝐴
2
)𝑝, Ṽ
𝑛
= 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
and 𝑤

𝑛
= 𝐺V

𝑛
= 𝑇
Θ
1

]
1

(𝐼 −

]
1
𝐴
1
)Ṽ
𝑛
for all 𝑛 ≥ 1. Then

𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑝

= 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝.

(104)

We now show that lim
𝑛→∞

‖𝐺V
𝑛
− V
𝑛
‖ = 0; that is,

lim
𝑛→∞

‖𝑤
𝑛
− V
𝑛
‖ = 0. As a matter of fact, for 𝑝 ∈ Ω, it

follows from (59), (60), and (83) that

𝑧𝑛 − 𝑝


2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝐺V𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



= (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝑤𝑛 − 𝑝



2

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝
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≤ (𝛽
𝑛
+ 𝑠
𝑛𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛𝛾)

× [
Ṽ𝑛 − 𝑝



2
+ ]
1
(]
1
− 2𝜁
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
V𝑛 − 𝑝



2
+ ]2 (]2 − 2𝜁2)

𝐴2V𝑛 − 𝐴2𝑝


2

+ ]
1
(]
1
− 2𝜁
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
𝑥𝑛 − 𝑝



2
+ ]
2
(]
2
− 2𝜁
2
)
𝐴2V𝑛 − 𝐴2𝑝



2

+ ]1 (]1 − 2𝜁1)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

+ 2𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝


𝑧𝑛 − 𝑝



=
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× []
2
(]
2
− 2𝜁
2
)
𝐴2V𝑛 − 𝐴2𝑝



2

+ ]
1
(]
1
− 2𝜁
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(105)

which immediately yields

(1 − 𝑎 − 𝑠
𝑛
𝛾) []
2
(2𝜁
2
− ]
2
)
𝐴2V𝑛 − 𝐴2𝑝



2

+ ]
1
(2𝜁
1
− ]
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾) []
2
(2𝜁
2
− ]
2
)
𝐴2V𝑛 − 𝐴2𝑝



2

+ ]
1
(2𝜁
1
− ]
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2
+ 2𝑠𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(106)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
} and {𝑧

𝑛
} are bounded, from

(78) we get

lim
𝑛→∞

𝐴2V𝑛 − 𝐴2𝑝
 = 0, lim

𝑛→∞

𝐴1Ṽ𝑛 − 𝐴1𝑝
 = 0.

(107)

Also, in terms of the firm nonexpansivity of 𝑇Θ𝑘]
𝑘

and the 𝜁
𝑘
-

inverse strong monotonicity of 𝐴
𝑘
for 𝑘 = 1, 2, we obtain

from ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and (60) that

Ṽ𝑛 − 𝑝


2

=

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤ ⟨(𝐼 − ]
2
𝐴
2
) V
𝑛
− (𝐼 − ]

2
𝐴
2
) 𝑝, Ṽ
𝑛
− 𝑝⟩

=
1

2
[
(𝐼 − ]2𝐴2) V𝑛 − (𝐼 − ]2𝐴2) 𝑝



2
+
Ṽ𝑛 − 𝑝



2

−
(𝐼 − ]2𝐴2) V𝑛 − (𝐼 − ]2𝐴2) 𝑝 − (Ṽ𝑛 − 𝑝)



2
]

≤
1

2
[
V𝑛 − 𝑝



2
+
Ṽ𝑛 − 𝑝



2

−
(V𝑛 − Ṽ𝑛) − ]2 (𝐴2V𝑛 − 𝐴2𝑝) − (𝑝 − 𝑝)



2
]

=
1

2
[
V𝑛 − 𝑝



2
+
Ṽ𝑛 − 𝑝



2
−
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐴2V𝑛 − 𝐴2𝑝⟩

− ]2
2

𝐴2V𝑛 − 𝐴2𝑝


2
] ,

𝑤𝑛 − 𝑝


2

=

𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) Ṽ
𝑛
− 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑝


2

≤ ⟨(𝐼 − ]1𝐴1) Ṽ𝑛 − (𝐼 − ]1𝐴1) 𝑝, 𝑤𝑛 − 𝑝⟩

=
1

2
[
(𝐼 − ]1𝐴1) Ṽ𝑛 − (𝐼 − ]1𝐴1) 𝑝



2
+
𝑤𝑛 − 𝑝



2

−
(𝐼 − ]1𝐴1) Ṽ𝑛 − (𝐼 − ]1𝐴1) 𝑝 − (𝑤𝑛 − 𝑝)



2
]

≤
1

2
[
Ṽ𝑛 − 𝑝



2
+
𝑤𝑛 − 𝑝



2
−
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1
⟨𝐴
1
Ṽ
𝑛
− 𝐴
1
𝑝, (Ṽ
𝑛
− 𝑤
𝑛
) + (𝑝 − 𝑝)⟩

− ]2
1

𝐴1Ṽ𝑛 − 𝐴1𝑝


2
]

≤
1

2
[
V𝑛 − 𝑝



2
+
𝑤𝑛 − 𝑝



2
−
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1
⟨𝐴
1
Ṽ
𝑛
− 𝐴
1
𝑝, (Ṽ
𝑛
− 𝑤
𝑛
) + (𝑝 − 𝑝)⟩] .

(108)
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Thus, we have

Ṽ𝑛 − 𝑝


2
≤
V𝑛 − 𝑝



2
−
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐴2V𝑛 − 𝐴2𝑝⟩

− ]2
2

𝐴2V𝑛 − 𝐴2𝑝


2
,

(109)

𝑤𝑛 − 𝑝


2
≤
V𝑛 − 𝑝



2
−
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

 .

(110)

Consequently, from (59), (105), and (109) it follows that

𝑧𝑛 − 𝑝


2

≤ (𝛽𝑛 + 𝑠𝑛𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
Ṽ𝑛 − 𝑝



2
+ ]
1
(]
1
− 2𝜁
1
)
𝐴1Ṽ𝑛 − 𝐴1𝑝



2
]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
Ṽ𝑛 − 𝑝



2

+ 2𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝


𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
V𝑛 − 𝑝



2
−
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

+ 2]
2
⟨(V
𝑛
− Ṽ
𝑛
) − (𝑝 − 𝑝) , 𝐴

2
V
𝑛
− 𝐴
2
𝑝⟩

− ]2
2

𝐴2V𝑛 − 𝐴2𝑝


2
]

+ 2𝑠𝑛
(𝛾𝑄 − 𝑉) 𝑝


𝑧𝑛 − 𝑝



≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

× [
𝑥𝑛 − 𝑝



2
−
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

+ 2]
2

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

𝐴2V𝑛 − 𝐴2𝑝

]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)


2

+ 2]
2

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

𝐴2V𝑛 − 𝐴2𝑝



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(111)

which hence leads to

(1 − 𝑎 − 𝑠𝑛𝛾)
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2

+ 2]2
(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)


𝐴2V𝑛 − 𝐴2𝑝



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2]
2

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

𝐴2V𝑛 − 𝐴2𝑝



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(112)

Since lim
𝑛→∞𝑠𝑛 = 0 and {𝑥𝑛}, {𝑧𝑛}, {V𝑛}, and {Ṽ𝑛} are

bounded sequences, we conclude from (78) and (107) that

lim
𝑛→∞

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)
 = 0. (113)

Furthermore, from (59), (105), and (110) it follows that

𝑧𝑛 − 𝑝


2

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)

×
𝑤𝑛 − 𝑝



2
+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
V𝑛 − 𝑝



2
−
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

 ]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

× [
𝑥𝑛 − 𝑝



2
−
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

 ]

+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑝



2
− (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 ,

(114)
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which hence yields

(1 − 𝑎 − 𝑠
𝑛𝛾)
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

≤ (1 − 𝛽
𝑛
− 𝑠
𝑛
𝛾)
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



2

≤
𝑥𝑛 − 𝑝



2
−
𝑧𝑛 − 𝑝



2

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑧𝑛

 (
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

)

+ 2]
1

𝐴1Ṽ𝑛 − 𝐴1𝑝

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)



+ 2𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝

𝑧𝑛 − 𝑝

 .

(115)

Since lim
𝑛→∞

𝑠
𝑛
= 0 and {𝑥

𝑛
}, {𝑧
𝑛
}, {𝑤
𝑛
}, and {Ṽ

𝑛
} are

bounded sequences, we conclude from (78) and (107) that

lim
𝑛→∞

(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
 = 0. (116)

Note that

V𝑛 − 𝑤𝑛
 ≤

(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)
 +
(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

 .

(117)

Hence from (113) and (116) we get

lim
𝑛→∞

V𝑛 − 𝐺V𝑛
 = lim
𝑛→∞

V𝑛 − 𝑤𝑛
 = 0. (118)

Observe that

V𝑛 − 𝑇𝑛V𝑛
 ≤

V𝑛 − 𝑥𝑛
 +
𝑥𝑛 − 𝑇𝑛𝐺V𝑛

 +
𝑇𝑛𝐺V𝑛 − 𝑇𝑛V𝑛



≤
V𝑛 − 𝑥𝑛

 +
𝑥𝑛 − 𝑇𝑛𝐺V𝑛

 +
𝐺V𝑛 − V𝑛

 .

(119)

Hence, from (76), (103), and (118) we have

lim
𝑛→∞

V𝑛 − 𝑇𝑛V𝑛
 = 0. (120)

It is clear that

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V𝑛
 =

𝑠𝑛V𝑛 + (1 − 𝑠𝑛) 𝑇𝑛V𝑛 − V𝑛


= (1 − 𝑠
𝑛
)
𝑇𝑛V𝑛 − V𝑛



≤
𝑇𝑛V𝑛 − V𝑛

 ,

(121)

where 𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿).

Hence we have

𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− V
𝑛



≤


𝑃
𝐶 (𝐼 −

2

𝐿
∇𝑓) V𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛



+
𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V𝑛



≤


(𝐼 −

2

𝐿
∇𝑓) V

𝑛
− (𝐼 − 𝜆

𝑛
∇𝑓) V
𝑛



+
𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) V𝑛 − V𝑛



≤ (
2

𝐿
− 𝜆𝑛)

∇𝑓 (V𝑛)
 +
𝑇𝑛V𝑛 − V𝑛

 .

(122)

From the boundedness of {V
𝑛
}, 𝑠
𝑛
→ 0 (⇔ 𝜆

𝑛
→ 2/𝐿) and

‖𝑇
𝑛
V
𝑛
− V
𝑛
‖ → 0 (due to (120)), it follows that

lim
𝑛→∞


V
𝑛
− 𝑃
𝐶
(𝐼 −

2

𝐿
∇𝑓) V

𝑛


= 0. (123)

In addition, from (68) and (78), we have
𝑧𝑛+1 − 𝑧𝑛

 ≤
𝑧𝑛+1 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑥𝑛

 +
𝑥𝑛 − 𝑧𝑛



→ 0 as 𝑛 → ∞.

(124)

We note that

𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1
𝑧
𝑛



≤
𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

 +
𝑧𝑛 − 𝑧𝑛+1

 +

𝑧
𝑛+1
− 𝑆
𝑛+1
𝑧
𝑛+1



+

𝑆
𝑛+1
𝑧
𝑛+1
− 𝑆
𝑛+1
𝑧
𝑛


.

(125)

From (82), (124), and Lemma 22, we obtain

lim
𝑛→∞


𝑆
𝑛
𝑧𝑛 − 𝑆

𝑛+1
𝑧𝑛


= 0. (126)

In the meantime, we note that
𝑧𝑛 − 𝑆𝑧𝑛

 ≤
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

 +

𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1
𝑧
𝑛



+

𝑆
𝑛+1
𝑧
𝑛
− 𝑆𝑧
𝑛


.

(127)

From (82), (126), and the uniform continuity of 𝑆, we have

lim
𝑛→∞

𝑧𝑛 − 𝑆𝑧𝑛
 = 0. (128)

Step 4.We prove that 𝑥
𝑛
→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Indeed, since {𝑥𝑛} is bounded, there exists a subsequence
{𝑥𝑛
𝑖

} which converges weakly to some 𝑤. From (78), (84),
(103), and (101), we have that 𝑧𝑛

𝑖

⇀ 𝑤, 𝑢𝑛
𝑖

⇀ 𝑤, V𝑛
𝑖

⇀ 𝑤 and
Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤, where 𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly
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continuous, by (128) we get lim
𝑛→∞

‖𝑧
𝑛
− 𝑆
𝑚
𝑧
𝑛
‖ = 0 for any

𝑚 ≥ 1. Hence from Lemma 24, we obtain 𝑤 ∈ Fix(𝑆). In
the meantime, utilizing Lemma 12, we deduce from V

𝑛
𝑖

⇀ 𝑤,
𝑥
𝑛
𝑖

⇀ 𝑤, (118), and (123) that 𝑤 ∈ SGEP(𝐺) and 𝑤 ∈

Fix(𝑃
𝐶
(𝐼 − (2/𝐿)∇𝑓)) = 𝑉𝐼(𝐶, ∇𝑓) = Γ. Next we prove that

𝑤 ∈ ∩
𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
). As a matter of fact, since 𝐵

𝑚
is 𝜂
𝑚
-

inverse strongly monotone, 𝐵m is a monotone and Lipschitz
continuousmapping. It follows from Lemma 20 that 𝑅𝑚+𝐵𝑚
is maximal monotone. Let (V, 𝑔) ∈ 𝐺(𝑅𝑚 + 𝐵𝑚); that is, 𝑔 −
𝐵
𝑚
V ∈ 𝑅
𝑚
V. Again, sinceΛ𝑚

𝑛
𝑢
𝑛
= 𝐽
𝑅
𝑚
,𝜆
𝑚,𝑛

(𝐼−𝜆
𝑚,𝑛
𝐵
𝑚
)Λ
𝑚−1

𝑛
𝑢
𝑛
,

𝑛 ≥ 1,𝑚 ∈ {1, 2, . . . , 𝑁}, we have

Λ
𝑚−1

𝑛
𝑢𝑛 − 𝜆𝑚,𝑛𝐵𝑚Λ

𝑚−1

𝑛
𝑢𝑛 ∈ (𝐼 + 𝜆𝑚,𝑛𝑅𝑚) Λ

𝑚

𝑛
𝑢𝑛; (129)

that is,

1

𝜆
𝑚,𝑛

(Λ
𝑚−1

𝑛
𝑢
𝑛
− Λ
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
) ∈ 𝑅
𝑚
Λ
𝑚

𝑛
𝑢
𝑛
.

(130)

In terms of the monotonicity of 𝑅
𝑚, we get

⟨V − Λ𝑚
𝑛
𝑢𝑛, 𝑔 − 𝐵𝑚V −

1

𝜆
𝑚,𝑛

× (Λ
𝑚−1

𝑛
𝑢
𝑛
− Λ
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
)⟩ ≥ 0,

(131)

and hence

⟨V − Λ𝑚
𝑛
𝑢
𝑛
, 𝑔⟩

≥ ⟨V − Λ𝑚
𝑛
𝑢𝑛, 𝐵𝑚V +

1

𝜆
𝑚,𝑛

× (Λ
𝑚−1

𝑛
𝑢
𝑛
− Λ
𝑚

𝑛
𝑢
𝑛
− 𝜆
𝑚,𝑛
𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
)⟩

= ⟨V − Λ𝑚
𝑛
𝑢
𝑛
, 𝐵
𝑚
V − 𝐵
𝑚
Λ
𝑚

𝑛
𝑢
𝑛
+ 𝐵
𝑚
Λ
𝑚

𝑛
𝑢
𝑛

−𝐵𝑚Λ
𝑚−1

𝑛
𝑢𝑛 +

1

𝜆
𝑚,𝑛

(Λ
𝑚−1

𝑛
𝑢𝑛 − Λ

𝑚

𝑛
𝑢𝑛)⟩

≥ ⟨V − Λ𝑚
𝑛
𝑢
𝑛
, 𝐵
𝑚
Λ
𝑚

𝑛
𝑢
𝑛
− 𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
⟩

+ ⟨V − Λ𝑚
𝑛
𝑢
𝑛
,
1

𝜆𝑚,𝑛

(Λ
𝑚−1

𝑛
𝑢
𝑛
− Λ
𝑚

𝑛
𝑢
𝑛
)⟩ .

(132)

In particular,

⟨V − Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

, 𝑔⟩

≥ ⟨V − Λ𝑚
𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐵
𝑚
Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− 𝐵
𝑚
Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

+ ⟨V − Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

,
1

𝜆
𝑚,𝑛
𝑖

(Λ
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

− Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

)⟩ .

(133)

Since ‖Λ𝑚
𝑛
𝑢
𝑛
− Λ
𝑚−1

𝑛
𝑢
𝑛
‖ → 0 (due to (90)) and ‖𝐵

𝑚
Λ
𝑚

𝑛
𝑢
𝑛
−

𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
‖ → 0 (due to the Lipschitz continuity of 𝐵

𝑚
),

we conclude from Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀ 𝑤 and {𝜆
𝑚,𝑛
} ⊂ [𝑎

𝑚
, 𝑏
𝑚
] ⊂

(0, 2𝜂
𝑚) that

lim
𝑖→∞

⟨V − Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

, 𝑔⟩ = ⟨V − 𝑤, 𝑔⟩ ≥ 0. (134)

It follows from the maximal monotonicity of 𝐵
𝑚
+ 𝑅
𝑚
that

0 ∈ (𝑅
𝑚
+ 𝐵
𝑚
)𝑤; that is, 𝑤 ∈ 𝐼(𝐵

𝑚
, 𝑅
𝑚
). Therefore, 𝑤 ∈

∩
𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
).

Next, we show that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). In fact, from
𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
, we know that

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟
𝑛

⟨𝐾

(𝑢
𝑛
) − 𝐾

(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(135)

From (H2) it follows that

𝜑 (𝑦) − 𝜑 (𝑢
𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝐾

(𝑢𝑛) − 𝐾


(𝑥𝑛) , 𝑦 − 𝑢𝑛⟩

≥ Θ (𝑦, 𝑢
𝑛
) , ∀𝑦 ∈ 𝐶.

(136)

Replacing 𝑛 by 𝑛
𝑖, we have

𝜑 (𝑦) − 𝜑 (𝑢
𝑛
𝑖

) + ⟨𝐴𝑥𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩

+⟨

𝐾

(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩ ≥ Θ(𝑦, 𝑢𝑛
𝑖

) ,

∀𝑦 ∈ 𝐶.

(137)

Put 𝑢
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then,

from (137) we have

⟨𝑢𝑡 − 𝑢𝑛
𝑖

, 𝐴𝑢𝑡⟩

≥ ⟨𝑢𝑡 − 𝑢𝑛
𝑖

, 𝐴𝑢𝑡⟩ − 𝜑 (𝑢𝑡) + 𝜑 (𝑢𝑛
𝑖

)

− ⟨𝑢
𝑡 − 𝑢𝑛

𝑖

, 𝐴𝑥𝑛
𝑖

⟩−⟨

𝐾

(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢𝑡−𝑢𝑛
𝑖

⟩

+ Θ(𝑢𝑡, 𝑢𝑛
𝑖

)

≥ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩ + ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

⟩

− 𝜑 (𝑢
𝑡
) + 𝜑 (𝑢

𝑛
𝑖

)

−⟨

𝐾

(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢
𝑡
− 𝑢
𝑛
𝑖

⟩+Θ(𝑢
𝑡
, 𝑢
𝑛
𝑖

) .

(138)

Since ‖𝑢
𝑛
𝑖

− 𝑥
𝑛
𝑖

‖ → 0 as 𝑖 → ∞, we deduce from the
Lipschitz continuity of 𝐴 and 𝐾 that ‖𝐴𝑢

𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

‖ → 0

and ‖𝐾(𝑢
𝑛
𝑖

) − 𝐾

(𝑥
𝑛
𝑖

)‖ → 0 as 𝑖 → ∞. Further, from the
monotonicity of 𝐴, we have ⟨𝑢

𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩ ≥ 0. So,
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from (H4), the weakly lower semicontinuity of 𝜑, (𝐾(𝑢
𝑛
𝑖

) −

𝐾

(𝑥𝑛
𝑖

))/𝑟𝑛
𝑖

→ 0, and 𝑢𝑛
𝑖

⇀ 𝑤, we have

⟨𝑢
𝑡
− 𝑤,𝐴𝑢

𝑡
⟩ ≥ −𝜑 (𝑢𝑡) + 𝜑 (𝑤) + Θ (𝑢𝑡, 𝑤) , as 𝑖 → ∞.

(139)

From (H1), (H4), and (139) we also have

0 = Θ (𝑢
𝑡
, 𝑢
𝑡
) + 𝜑 (𝑢

𝑡
) − 𝜑 (𝑢

𝑡
)

≤ 𝑡Θ (𝑢
𝑡
, 𝑦) + (1 − 𝑡)Θ (𝑢𝑡, 𝑤)

+ 𝑡𝜑 (𝑦) + (1 − 𝑡) 𝜑 (𝑤) − 𝜑 (𝑢𝑡)

= 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)]

+ (1 − 𝑡) [Θ (𝑢𝑡, 𝑤) + 𝜑 (𝑤) − 𝜑 (𝑤) − 𝜑 (𝑢𝑡)]

≤ 𝑡 [Θ (𝑢𝑡, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑡)] + (1 − 𝑡) ⟨𝑢𝑡 − 𝑤,𝐴𝑢𝑡⟩

= 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)] + (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩ ,

(140)

and hence

0 ≤ Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑡) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝐴𝑢𝑡⟩ . (141)

Letting 𝑡 → 0, we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ (𝑤, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑤) + ⟨𝐴𝑤, 𝑦 − 𝑤⟩. (142)

This implies that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). Consequently, 𝑤 ∈

Ω = GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ (∩𝑁
𝑖=1
𝐼(Bi, 𝑅𝑖)) ∩ Fix(𝑆) ∩ Γ.

This shows that 𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω. From (65) and Lemma 15 we

infer that 𝑥
𝑛
→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Finally, assume additionally that ‖𝑥
𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
). It is

clear that

⟨(𝑉 − 𝛾𝑄) 𝑥 − (𝑉 − 𝛾𝑄) 𝑦, 𝑥 − 𝑦⟩ ≥ (𝛾 − 𝛾𝑙)
𝑥 − 𝑦



2
,

∀𝑥, 𝑦 ∈ 𝐻.

(143)

So, we know that 𝑉 − 𝛾𝑄 is (𝛾 − 𝛾𝑙)-strongly monotone with
constant 𝛾 − 𝛾𝑙 > 0. In the meantime, it is easy to see that
𝑉− 𝛾𝑄 is (‖𝑉‖ + 𝛾𝑙)-Lipschitzian with constant ‖𝑉‖ + 𝛾𝑙 > 0.
Thus, there exists a unique solution 𝑥 inΩ to the VIP

⟨(𝛾𝑄 − 𝑉) 𝑥, 𝑝 − 𝑥⟩ ≤ 0, ∀𝑝 ∈ Ω. (144)

Equivalently, 𝑥 = 𝑃
Ω
(𝐼 − 𝑉 + 𝛾𝑄)𝑥. Furthermore, from (59),

(60), and (83) we get

𝑧𝑛 − 𝑝


2

≤ [(𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝

 + (1 − 𝛽𝑛 − 𝑠𝑛𝛾)
𝐺V𝑛 − 𝑝

]
2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛
+ 𝑠
𝑛
𝛾)
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽

𝑛
− 𝑠
𝑛
𝛾)
𝐺V𝑛 − 𝑝



2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

V𝑛 − 𝑝


2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

≤ (𝛽
𝑛 + 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽𝑛 − 𝑠𝑛𝛾)

𝑥𝑛 − 𝑝


2

+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩

=
𝑥𝑛 − 𝑝



2
+ 2𝑠
𝑛
⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑧

𝑛
− 𝑝⟩ ,

(145)

which hence yields

⟨(𝛾𝑄 − 𝑉)𝑝, 𝑝 − 𝑧
𝑛
⟩ ≤

𝑥𝑛 − 𝑝


2
−
𝑧𝑛 − 𝑝



2

2𝑠
𝑛

≤

𝑥𝑛 − 𝑧𝑛


2𝑠𝑛

(
𝑥𝑛 − 𝑝

 +
𝑧𝑛 − 𝑝

) .

(146)

Since ‖𝑥
𝑛 − 𝑧𝑛‖ = 𝑜(𝑠𝑛), lim𝑛→∞‖𝑥𝑛 − 𝑥

∗
‖ = 0, and {𝑥𝑛}, {𝑧𝑛}

are bounded, we infer from (146) that

⟨(𝛾𝑄 − 𝑉) 𝑝, 𝑝 − 𝑥
∗
⟩ ≤ 0, ∀𝑝 ∈ Ω, (147)

which together with Minty’s lemma [4] implies that

⟨(𝛾𝑄 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (148)

This shows that𝑥∗ is a solution inΩ to theVIP (144).Utilizing
the uniqueness of solutions inΩ to the VIP (144), we get 𝑥∗ =
𝑥. This completes the proof.

Corollary 27. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ,Θ1, Θ2 be
three bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and
𝜑 : 𝐶 → R a lower semicontinuous and convex functional.
Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal monotone mapping
and let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-
inverse strongly monotone, 𝜁

𝑘
-inverse strongly monotone, and

𝜂
𝑖
-inverse-strongly monotone, respectively, for 𝑘 = 1, 2 and
𝑖 = 1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptot-
ically 𝑘-strict pseudocontractive mapping in the intermediate
sense for some 0 ≤ 𝑘 < 1with sequence {𝛾

𝑛
} ⊂ [0,∞) such that
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lim
𝑛→∞

𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝑐
𝑛
= 0.

Let 𝑉 be a 𝛾-strongly positive bounded linear operator and
𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzian mapping with 𝛾𝑙 < 𝛾. Assume
thatΩ := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴)∩𝑆𝐺𝐸𝑃(𝐺)∩ I(𝐵

1
, 𝑅
1
) ∩ I(𝐵

2
, 𝑅
2
) ∩

Fix(𝑆) ∩ Γ is nonempty and bounded where 𝐺 is defined as in
Proposition CY. Let {𝑟

𝑛
} be a sequence in [0, 2𝜁] and {𝛼

𝑛
}, {𝛽
𝑛
},

and {𝛿𝑛} be sequences in [0, 1] such that 0 < 𝛼 ≤ 𝛼
𝑛
≤ 1

and 𝑘 ≤ 𝛿𝑛 ≤ 𝑑 < 1, and let ]𝑘 ∈ (0, 2𝜁𝑘), 𝑘 = 1, 2 and
{𝜆𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), 𝑖 = 1, 2. Pick any 𝑥0 ∈ 𝐻 and set
𝐶1 = 𝐶, 𝑥1 = 𝑃𝐶

1

𝑥0. Let {𝑥𝑛} be a sequence generated by the
following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆
2,𝑛
𝐵
2
) 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
:
𝑦𝑛 − 𝑧



2
≤
𝑥𝑛 − 𝑧



2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 1,

(149)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)), and

𝜃
𝑛
= (𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝛾𝑄 − 𝑉)𝑝‖
2
/(𝛾 − 𝛾𝑙) : 𝑝 ∈ Ω} < ∞. Assume that the

following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(150)

(iii) 𝑠𝑛 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿), and lim𝑛→∞𝑠𝑛 =
0 (⇔ lim𝑛→∞𝜆𝑛 = 2/𝐿);

(iv) 0 < lim inf
𝑛→∞𝛽𝑛 ≤ lim sup

𝑛→∞
𝛽𝑛 < 1 and 0 <

lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive. Then we have

(i) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿)(⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃
Ω
𝑥
0
;

(ii) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿)(⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃
Ω
𝑥
0
provided that ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
), which

is the unique solution in Ω to the VIP

⟨(𝛾𝑄 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (151)

Equivalently, 𝑥∗ = 𝑃
Ω
(𝐼 − 𝑉 + 𝛾𝑄)𝑥

∗.

Corollary 28. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient∇𝑓. LetΘ,Θ

1
, Θ
2
be three

bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 :

𝐶 → R a lower semicontinuous and convex functional. Let
𝑅 : 𝐶 → 2

𝐻 be a maximal monotone mapping and let𝐴,𝐴
𝑘
:

𝐻 → 𝐻 and 𝐵 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone, and 𝜉-inverse-strongly monotone,
respectively, for 𝑘 = 1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such

that lim
𝑛→∞

𝑐
𝑛
= 0. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator and𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < 𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩
I(𝐵, 𝑅)∩Fix(S)∩Γ is nonempty and boundedwhere𝐺 is defined
as in Proposition CY. Let {𝑟

𝑛
} be a sequence in [0, 2𝜁] and

{𝛼
𝑛
}, {𝛽
𝑛
} and {𝛿

𝑛
} be sequences in [0, 1] such that 0 < 𝛼 ≤

𝛼
𝑛
≤ 1 and 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1, and let ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2

and {𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉). Pick any 𝑥

0
∈ 𝐻 and set 𝐶

1
= 𝐶,

𝑥
1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a sequence generated by the following

algorithm:

𝑢𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛,

V𝑛 = 𝐽𝑅,𝜌
𝑛

(𝐼 − 𝜌𝑛𝐵) 𝑢𝑛,

𝑧
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶𝑛+1 = {𝑧 ∈ 𝐶𝑛 :
𝑦n − 𝑧



2
≤
𝑥𝑛 − 𝑧



2
+ 𝜃𝑛} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(152)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)) and

𝜃
𝑛
= (𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝛾𝑄 − 𝑉)𝑝‖
2
/(𝛾 − 𝛾l) : 𝑝 ∈ Ω} < ∞. Assume that the

following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦) +
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩

< 0;

(153)

(iii) 𝑠
𝑛 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿), and lim𝑛→∞𝑠𝑛 =
0 (⇔ lim𝑛→∞𝜆𝑛 = (2/𝐿));

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.
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Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive. Then we have

(i) {𝑥𝑛} converges strongly as 𝜆𝑛 → (2/𝐿)(⇔ 𝑠𝑛 → 0) to
𝑥
∗
= 𝑃Ω𝑥0;

(ii) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿)(⇔ 𝑠

𝑛
→ 0) to

𝑥
∗
= 𝑃
Ω
𝑥
0
provided that ‖𝑥

𝑛
− 𝑧
𝑛
‖ = 𝑜(𝑠

𝑛
), which is

the unique solution in Ω to the VIP

⟨(𝛾𝑄 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (154)

Equivalently, 𝑥∗ = 𝑃
Ω
(𝐼 − 𝑉 + 𝛾𝑄)𝑥

∗.

Corollary 29. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient ∇𝑓. Let Θ,Θ

1
, Θ
2
be

three bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and
𝜑 : 𝐶 → R a lower semicontinuous and convex functional. Let
𝑅 : 𝐶 → 2

𝐻 be a maximal monotone mapping and let𝐴,𝐴
𝑘
:

𝐻 → 𝐻 and 𝐵 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁
𝑘
-

inverse strongly monotone, and 𝜉-inverse-strongly monotone,
respectively, for 𝑘 = 1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
for some 0 ≤ 𝑘 < 1 with sequence {𝛾𝑛} ⊂ [0,∞) such that
lim𝑛→∞𝛾𝑛 = 0. Let 𝑉 be a 𝛾-strongly positive bounded linear
operator and𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzianmappingwith 𝛾𝑙 <
𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩ I(𝐵, 𝑅) ∩
Fix(𝑆) ∩ Γ is nonempty and bounded where 𝐺 is defined as in
Proposition CY. Let {𝑟𝑛} be a sequence in [0, 2𝜁] and {𝛼𝑛}, {𝛽𝑛},
and {𝛿𝑛} be sequences in [0, 1] such that 0 < 𝛼 ≤ 𝛼𝑛 ≤ 1 and
𝑘 ≤ 𝛿𝑛 ≤ 𝑑 < 1, and let ]𝑘 ∈ (0, 2𝜁𝑘), 𝑘 = 1, 2 and {𝜌𝑛} ⊂
[𝑎, 𝑏] ⊂ (0, 2𝜉). Pick any 𝑥

0
∈ 𝐻 and set 𝐶

1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
.

Let {𝑥
𝑛
} be a sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅,𝜌
𝑛

(𝐼 − 𝜌
𝑛
𝐵) 𝑢
𝑛
,

𝑧𝑛 = 𝑠𝑛𝛾𝑄𝑥𝑛 + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1
= {𝑧 ∈ 𝐶

𝑛
:
𝑦𝑛 − 𝑧



2
≤
𝑥𝑛 − 𝑧



2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1
= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(155)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)), and 𝜃

𝑛
=

(𝑠
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+ ‖(𝛾𝑄 − 𝑉)𝑝‖

2
/(𝛾 −

𝛾𝑙) : 𝑝 ∈ Ω} < ∞. Assume that the following conditions are
satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;

(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷
𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦) +

1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(156)

(iii) 𝑠
𝑛 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿), and lim𝑛→∞𝑠𝑛 =
0 (⇔ lim𝑛→∞𝜆𝑛 = 2/𝐿);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Assume that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive. Then we have

(i) {𝑥
𝑛
} converges strongly as 𝜆

𝑛
→ (2/𝐿) (⇔ 𝑠

𝑛
→ 0)

to 𝑥∗ = 𝑃
Ω
𝑥
0
;

(ii) {𝑥𝑛} converges strongly as 𝜆𝑛 → (2/𝐿) (⇔ 𝑠𝑛 → 0)

to 𝑥∗ = 𝑃Ω𝑥0 provided that ‖𝑥𝑛 − 𝑧𝑛‖ = 𝑜(𝑠𝑛), which is
the unique solution in Ω to the VIP

⟨(𝛾𝑄 − 𝑉) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (157)

Equivalently, 𝑥∗ = 𝑃Ω(𝐼 − 𝑉 + 𝛾𝑄)𝑥∗.

4. Weak Convergence Theorem

In this section, we will introduce and analyze another
multistep iterative algorithm involving no shrinking pro-
jection method for finding a solution of the SGEP (8)
with constraints of several problems: the GMEP (4), the
CMP (12), finitely many variational inclusions, and the fixed
point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense in a real Hilbert space.We
prove weak convergence theorem for the iterative algorithm
under mild assumptions. This iterative algorithm is based
on Korpelevich’s extragradient method, strongly positive
bounded linear operator approach, viscosity approximation
method, averaged mapping approach to the GPA in [16], and
Mann-type iteration method.

Theorem 30. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑁 be an integer. Let 𝑓 : 𝐶 → R be
a convex functional with 𝐿-Lipschitz continuous gradient ∇𝑓.
Let Θ,Θ

1
, Θ
2
be three bifunctions from 𝐶 × 𝐶 to R satisfying

(H1)–(H4) and 𝜑 : 𝐶 → R a lower semicontinuous and
convex functional. Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal monotone
mapping and let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻

be 𝜁-inverse strongly monotone, 𝜁𝑘-inverse strongly monotone
and 𝜂𝑖-inverse-strongly monotone, respectively, for 𝑘 = 1, 2

and 𝑖 = 1, 2, . . . , 𝑁. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾𝑛} ⊂ [0,∞) such that ∑∞

𝑛=1
𝛾𝑛 < ∞ and {𝑐𝑛} ⊂ [0,∞)

such that ∑∞
𝑛=1
𝑐
𝑛
< ∞. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator and 𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < 𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩
∩
𝑁

𝑖=1
I(𝐵
𝑖
, 𝑅
𝑖
) ∩ Fix(𝑆) ∩ Γ is nonempty where 𝐺 is defined as in

Proposition CY. Let {𝑟
𝑛
} be a sequence in [0, 2𝜁] and {𝛼

𝑛
}, {𝛽
𝑛
}

and {𝛿
𝑛
} sequences in [0, 1] such that 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1 and
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0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛
≤ 𝑑 < 1, and let ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and

{𝜆
𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁}. Pick any 𝑥

1
∈ 𝐻

and let {𝑥
𝑛
} be a sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅
𝑁
,𝜆
𝑁,𝑛

(𝐼 − 𝜆
𝑁,𝑛
𝐵
𝑁
) 𝐽
𝑅
𝑁−1
,𝜆
𝑁−1,𝑛

× (𝐼 − 𝜆
𝑁−1,𝑛

𝐴
𝑁−1
) ⋅ ⋅ ⋅ 𝐽
𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆
1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛, ∀𝑛 ≥ 1,

(158)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)). Assume

that the following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶

and 𝑧𝑥 ∈ 𝐶 such that for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧𝑥) + 𝜑 (𝑧𝑥) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(159)

(iii) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), and ∑∞

𝑛=1
𝑠
𝑛
<

∞ (⇔ ∑
∞

𝑛=1
(2/𝐿 − 𝜆

𝑛
) < ∞);

(iv) 0 < lim inf𝑛→∞𝛽𝑛 ≤ lim sup
𝑛→∞

𝛽
𝑛
< 1 and 0 <

lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Then {𝑥𝑛} converges weakly to 𝑤 = lim𝑛→∞𝑃Ω𝑥𝑛 provided
that 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive.

Proof. Since ∇𝑓 is 𝐿-Lipschitzian, it follows that ∇𝑓 is
(1/𝐿)-ism; see [16]. Repeating the same arguments as in
Theorem 26, we can write

𝑃𝐶 (𝐼 − 𝜆𝑛∇𝑓) =
2 − 𝜆𝑛𝐿

4
𝐼 +

2 + 𝜆𝑛𝐿

4
𝑇𝑛 = 𝑠𝑛𝐼 + (1 − 𝑠𝑛) 𝑇𝑛,

(160)

where 𝑇
𝑛
is nonexpansive and 𝑠

𝑛
:= 𝑠
𝑛
(𝜆
𝑛
) = (2 − 𝜆

𝑛
𝐿)/4 ∈

(0, 1/2) for each 𝜆n ∈ (0, 2/𝐿). It is clear that
∞

∑

𝑛=1

(
2

𝐿
− 𝜆
𝑛
) < ∞ ⇐⇒

∞

∑

𝑛=1

𝑠
𝑛
< ∞. (161)

As lim
𝑛→∞

𝑠
𝑛
= 0, 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
<

1 and 0 < lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁, we may

assume, without loss of generality, that {𝛽
𝑛
} ⊂ [𝑎, 𝑎] ⊂ (0, 1),

{𝑟
𝑛
} ⊂ [𝑐, 𝑐] ⊂ (0, 2𝜁) and 𝛽

𝑛
+ 𝑠
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1. Put

Λ
𝑖

𝑛
= 𝐽
𝑅
𝑖
,𝜆
𝑖,𝑛

(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) 𝐽
𝑅
𝑖−1
,𝜆
𝑖−1,𝑛

× (𝐼 − 𝜆𝑖−1,𝑛𝐵𝑖−1) ⋅ ⋅ ⋅ 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1) ,

(162)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ0
𝑛
= 𝐼, where 𝐼 is the identity

mapping on𝐻. Then we have V
𝑛
= Λ
𝑁

𝑛
𝑢
𝑛
.

Take a fixed 𝑝 ∈ Ω arbitrarily. Let us show the existence
of lim

𝑛→∞
‖𝑥
𝑛
−𝑝‖. Indeed, repeating the same arguments as

in the proof of Theorem 26, we can obtain that

(1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉
 ≤ 1 − 𝛽𝑛 − 𝑠𝑛𝛾, (163)

𝑢𝑛 − 𝑝


2
≤
𝑥𝑛 − 𝑝



2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

×
𝐴𝑥𝑛 − 𝐴𝑝



2
≤
𝑥𝑛 − 𝑝



2
,

(164)

V𝑛 − 𝑝
 ≤

𝑢𝑛 − 𝑝
 , (165)

𝐺V𝑛 − 𝑝


2
≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

+ ]
1
(]
1
− 2𝜁
1
)

𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

−𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝


2

≤

𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑝


2

≤
V𝑛 − 𝑝



2
+ ]2 (]2 − 2𝜁2)

𝐴2V𝑛 − 𝐴2𝑝


2

≤
V𝑛 − 𝑝



2
,

(166)


Λ
𝑖

𝑛
𝑢𝑛 − 𝑝



2

≤
𝑥𝑛 − 𝑝



2
+ 𝜆𝑖,𝑛 (𝜆𝑖,𝑛 − 2𝜂𝑖)

×

𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝


2

, 𝑖 ∈ {1, 2, . . . , 𝑁} ,

(167)

𝑘𝑛 − 𝑝


2

≤ (1 + 𝛾𝑛)
𝑧𝑛 − 𝑝



2
+ (1 − 𝛿𝑛)

× (𝑘 − 𝛿𝑛)
𝑧𝑛 − 𝑆

𝑛
𝑧𝑛


2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
𝑧𝑛 − 𝑝



2
+ 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)(
𝑥𝑛 − 𝑝



2
+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛
,

(168)


Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝


2

≤
𝑥𝑛 − 𝑝



2
−

Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛



2

+ 2𝜆𝑖,𝑛


Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛




𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝


,

𝑖 ∈ {1, 2, . . . , 𝑁} .

(169)
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Utilizing (158) and (168) we obtain

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛

𝑘𝑛 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+𝛼
𝑛
[(1 + 𝛾

𝑛
)(
𝑥𝑛 − 𝑝



2
+ 𝑠
𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐
𝑛
]

≤ (1 + 𝛾
𝑛)(

𝑥𝑛 − 𝑝


2
+ 𝑠𝑛

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
) + 𝑐𝑛

=
𝑥𝑛 − 𝑝



2
+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑠𝑛 (1 + 𝛾𝑛)

(𝛾𝑄 − 𝑉) 𝑝


2

𝛾 − 𝛾𝑙
+ 𝑐𝑛.

(170)

Since ∑∞
𝑛=1
𝑠
𝑛
< ∞, ∑∞

𝑛=1
𝛾
𝑛
< ∞ and ∑∞

𝑛=1
𝑐
𝑛
< ∞, by

Lemma 13 we have that lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists. Thus {𝑥𝑛} is
bounded and so are the sequences {𝑢

𝑛
}, {V
𝑛
}, {𝑧
𝑛
} and {𝑘

𝑛
}.

Also, utilizing Lemmas 10 and 16(b) we obtain from (158),
(164), (165), and (168) that

𝑧𝑛 − 𝑝


2

=
𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)

+ 𝑠𝑛 (𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛)


2

≤
𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑝)



2

+ 2𝑠𝑛 ⟨(𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛) , 𝑧𝑛 − 𝑝⟩

= 𝛽
𝑛

𝑥𝑛 − 𝑝


2
+ (1 − 𝛽

𝑛
)
𝑇𝑛𝐺V𝑛 − 𝑝



2

− 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛
⟨(𝛾𝑄𝑥

𝑛
− 𝑉𝑇
𝑛
𝐺V
𝑛
) , 𝑧
𝑛
− 𝑝⟩

≤ 𝛽𝑛
𝑥𝑛 − 𝑝



2
+ (1 − 𝛽𝑛)

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝



=
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝



≤
𝑥𝑛 − 𝑝



2
+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝

 ,

(171)

and hence

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛

𝑘𝑛 − 𝑝


2

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2
+ 𝛼𝑛 [(1 + 𝛾𝑛)

𝑧𝑛 − 𝑝


2
+ 𝑐𝑛]

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
) (
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺v𝑛

𝑧𝑛 − 𝑝

 ) + 𝑐𝑛]

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)

× (
𝑥𝑛 − 𝑝



2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

𝑧𝑛 − 𝑝

 ) + 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛼𝑛 (1 + 𝛾𝑛) 𝛽𝑛 (1 − 𝛽𝑛)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛.

(172)

So, it follows that

𝛼 (1 + 𝛾
𝑛
) 𝑎 (1 − 𝑎)

𝑥𝑛 − 𝑇𝑛𝐺V𝑛


2

≤ 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑥𝑛 − 𝑇𝑛𝐺V𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2
+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛.

(173)

Since lim
𝑛→∞

𝑠
𝑛
= 0, lim

𝑛→∞
𝛾
𝑛
= 0 and lim

𝑛→∞
𝑐
𝑛
= 0,

it follows from the existence of lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ and the

boundedness of {𝑥
𝑛
}, {V
𝑛
}, and {𝑧

𝑛
} that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑛𝐺V𝑛
 = 0. (174)

Note that

𝑧𝑛 − 𝑥𝑛


=
(1 − 𝛽𝑛) (𝑇𝑛𝐺V𝑛 − 𝑥𝑛) + 𝑠𝑛 (𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛)



≤
𝑇𝑛𝐺V𝑛 − 𝑥𝑛

 + 𝑠𝑛
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛

 .

(175)

Hence, it follows from (171) and lim
𝑛→∞

𝑠
𝑛
= 0 that

lim
𝑛→∞

𝑥𝑛 − 𝑧𝑛
 = 0. (176)
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In the meantime, from (168) and (171) it follows that
𝑥𝑛+1 − 𝑝



2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛

𝑘𝑛 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
𝑧𝑛 − 𝑝



2
+ (1 − 𝛿

𝑛
)

× (𝑘 − 𝛿
𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛
]

≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑝



2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
) (
𝑥𝑛 − 𝑝



2
+ 2𝑠
𝑛

𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


×
𝑧𝑛 − 𝑝

 )

+ (1 − 𝛿
𝑛
) (𝑘 − 𝛿

𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛
]

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)
𝑥𝑛 − 𝑝



2

+ 2𝑠𝑛 (1 + 𝛾𝑛)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝



+ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝑘 − 𝛿

𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛

≤ (1 + 𝛾𝑛)
𝑥𝑛 − 𝑝



2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝



+ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝑘 − 𝛿

𝑛
)
𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛



2
+ 𝑐
𝑛
,

(177)

which together with 0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛 ≤ 𝑑 < 1 leads to

𝛼 (1 − 𝑑) 𝜖
𝑧𝑛 − 𝑆

𝑛
𝑧𝑛


2

≤ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝛿
𝑛
− 𝑘)

𝑧𝑛 − 𝑆
𝑛
𝑧
𝑛



2

≤
𝑥𝑛 − 𝑝



2
−
𝑥𝑛+1 − 𝑝



2
+ 𝛾𝑛

𝑥𝑛 − 𝑝


2

+ 2𝑠
𝑛
(1 + 𝛾

𝑛
)
𝛾𝑄𝑥𝑛 − 𝑉𝑇𝑛𝐺V𝑛


𝑧𝑛 − 𝑝

 + 𝑐𝑛.

(178)

Consequently, from lim
𝑛→∞

𝑠
𝑛
= 0, lim

𝑛→∞
𝛾
𝑛
= 0,

lim
𝑛→∞

𝑐
𝑛
= 0, and the existence of lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖, we

get

lim
𝑛→∞

𝑧𝑛 − 𝑆
𝑛
𝑧
𝑛

 = 0. (179)

Since 𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
), from (179) we have

lim
𝑛→∞

𝑘𝑛 − 𝑧𝑛
 = 0. (180)

Note that
𝑥𝑛+1 − 𝑥𝑛

 = 𝛼𝑛
𝑘𝑛 − 𝑥𝑛

 ≤
𝑘𝑛 − 𝑧𝑛

 +
𝑧𝑛 − 𝑥𝑛

 . (181)

Hence from (176) and (180) we have

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0. (182)

Repeating the same arguments as those of Step 3 in the
proof ofTheorem 26, we can obtain that ‖𝑥

𝑛
−𝑢
𝑛
‖ → 0, ‖𝑥

𝑛
−

V
𝑛
‖ → 0, ‖V

𝑛
− 𝐺V
𝑛
‖ → 0, ‖V

𝑛
− 𝑃
𝐶
(𝐼 − (2/𝐿)∇𝑓)V

𝑛
‖ → 0,

‖𝑧
𝑛
− 𝑆𝑧
𝑛
‖ → 0, and ‖Λ𝑖−1

𝑛
𝑢
𝑛
−Λ
𝑖

𝑛
𝑢
𝑛
‖ → 0, 𝑖 ∈ {1, 2, . . . , 𝑁}

as 𝑛 → ∞.
Since {𝑥

𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

}

of {𝑥
𝑛
} which converges weakly to 𝑤. It is easy to see that

𝑧𝑛
𝑖

⇀ 𝑤, 𝑢𝑛
𝑖

⇀ 𝑤, V𝑛
𝑖

⇀ 𝑤, and Λ𝑚
𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤,
where 𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly continuous
and ‖𝑧

𝑛
− 𝑆𝑧
𝑛
‖ → 0 as 𝑛 → ∞, we get lim

𝑛→∞
‖𝑧
𝑛
−

𝑆
𝑚
𝑧
𝑛
‖ = 0 for any 𝑚 ≥ 1. Hence from Lemma 24, we

obtain 𝑤 ∈ Fix(𝑆). In the meantime, utilizing Lemma 12,
we deduce from V

𝑛
𝑖

⇀ 𝑤, 𝑥
𝑛
𝑖

⇀ 𝑤, (118), and (123) that
𝑤 ∈ SGEP(𝐺) and𝑤 ∈ Fix(𝑃

𝐶
(𝐼−(2/𝐿)∇𝑓)) = 𝑉𝐼(𝐶, ∇𝑓) = Γ.

Repeating the same arguments as those of Step 4 in the proof
of Theorem 26, we can conclude that 𝑤 ∈ ∩

𝑁

𝑚=1
𝐼(𝐵
𝑚
, 𝑅
𝑚
)

and 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). Therefore, 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴) ∩
SGEP(𝐺) ∩ ∩𝑁

𝑖=1
𝐼(𝐵
𝑖
, 𝑅
𝑖
) ∩ Fix(𝑆) ∩ Γ =: Ω. This shows that

𝜔
𝑤
(𝑥
𝑛
) ⊂ Ω.

Next let us show that 𝜔
𝑤
(𝑥
𝑛
) is a single-point set. As a

matter of fact, let {𝑥
𝑛
𝑗

} be another subsequence of {𝑥
𝑛
} such

that 𝑥
𝑛
𝑗

⇀ 𝑤
. Then we get 𝑤 ∈ Ω. If 𝑤 ̸=𝑤

, from the Opial
condition, we have

lim
𝑛→∞

𝑥𝑛 − 𝑤
 = lim
𝑖→∞


𝑥
𝑛
𝑖

− 𝑤

< lim
𝑖→∞


𝑥
𝑛
𝑖

− 𝑤


= lim
𝑛→∞


𝑥
𝑛 − 𝑤

= lim
𝑗→∞


𝑥
𝑛
𝑗

− 𝑤



< lim
𝑗→∞


𝑥
𝑛
𝑗

− 𝑤

= lim
𝑛→∞

𝑥𝑛 − 𝑤
 .

(183)

This attains a contradiction. So we have 𝑤 = 𝑤
. Put 𝑤

𝑛
=

𝑃
Ω
𝑥
𝑛
. Since 𝑤 ∈ Ω, we have ⟨𝑥

𝑛
− 𝑤
𝑛
, 𝑤
𝑛
− 𝑤⟩ ≥ 0. By

Lemma 14, we have that {𝑤
𝑛
} converges strongly to some𝑤 ∈

Ω. Since {𝑥𝑛} converges weakly to 𝑤, we have

⟨𝑤 − 𝑤,𝑤 − 𝑤⟩ ≥ 0. (184)

Therefore we obtain 𝑤 = 𝑤 = lim
𝑛→∞

𝑃
Ω
𝑥
𝑛
. This completes

the proof.

Corollary 31. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient∇𝑓. LetΘ,Θ

1
, Θ
2
be three

bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 :

𝐶 → R be a lower semicontinuous and convex functional.
Let 𝑅𝑖 : 𝐶 → 2

𝐻 be a maximal monotone mapping
and let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-
inverse strongly monotone, 𝜁𝑘-inverse strongly monotone, and
𝜂𝑖-inverse-strongly monotone, respectively, for 𝑘 = 1, 2 and 𝑖 =
1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
for some 0 ≤ 𝑘 < 1 with sequence {𝛾𝑛} ⊂ [0,∞) such that
∑
∞

𝑛=1
𝛾𝑛 < ∞ and {𝑐𝑛} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑐𝑛 < ∞. Let 𝑉

be a 𝛾-strongly positive bounded linear operator and𝑄 : 𝐻 →

𝐻 an 𝑙-Lipschitzian mapping with 𝛾𝑙 < 𝛾. Assume that Ω :=

𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴)∩𝑆𝐺𝐸𝑃(𝐺)∩I(𝐵
1
, 𝑅
1
)∩I(𝐵

2
, 𝑅
2
)∩ Fix (𝑆)∩Γ

is nonempty where 𝐺 is defined as in Proposition CY. Let {𝑟
𝑛
}

be a sequence in [0, 2𝜁] and {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛿

𝑛
} sequences in
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[0, 1] such that 0 < 𝛼 ≤ 𝛼
𝑛
≤ 1 and 0 < 𝑘 + 𝜖 ≤ 𝛿

𝑛
≤ 𝑑 < 1,

and let ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
),

𝑖 = 1, 2. Pick any 𝑥
1
∈ 𝐻 and let {𝑥

𝑛
} be a sequence generated

by the following algorithm:

𝑢
𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛,

V𝑛 = 𝐽𝑅
2
,𝜆
2,𝑛

(𝐼 − 𝜆2,𝑛𝐵2) 𝐽𝑅
1
,𝜆
1,𝑛

(𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑧
𝑛 = 𝑠𝑛𝛾𝑄𝑥𝑛 + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
, ∀𝑛 ≥ 1,

(185)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)). Assume

that the following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;

(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷
𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(186)

(iii) 𝑠𝑛 ∈ (0, 1/2) for each 𝜆𝑛 ∈ (0, 2/𝐿), and ∑
∞

𝑛=1
𝑠𝑛 <

∞ (⇔ ∑
∞

𝑛=1
((2/𝐿) − 𝜆𝑛) < ∞);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Then {𝑥𝑛} converges weakly to 𝑤 = lim𝑛→∞𝑃Ω𝑥𝑛 provided
that 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive.

Corollary 32. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient∇𝑓. LetΘ,Θ

1
, Θ
2
be three

bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 :

𝐶 → R a lower semicontinuous and convex functional. Let
𝑅 : 𝐶 → 2

𝐻 be a maximal monotone mapping and let𝐴,𝐴
𝑘
:

𝐻 → 𝐻 and 𝐵 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone, and 𝜉-inverse-strongly monotone,
respectively, for 𝑘 = 1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾𝑛} ⊂ [0,∞) such that ∑∞

𝑛=1
𝛾𝑛 < ∞ and {𝑐𝑛} ⊂ [0,∞)

such that ∑∞
𝑛=1
𝑐𝑛 < ∞. Let 𝑉 be a 𝛾-strongly positive bounded

linear operator and 𝑄 : 𝐻 → 𝐻 an 𝑙-Lipschitzian mapping
with 𝛾𝑙 < 𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩
I(𝐵, 𝑅) ∩ Fix(𝑆) ∩ Γ is nonempty, where 𝐺 is defined as in
Proposition CY. Let {𝑟

𝑛
} be a sequence in [0, 2𝜁] and {𝛼

𝑛
}, {𝛽
𝑛
},

and {𝛿
𝑛
} sequences in [0, 1] such that 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1 and

0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛
≤ 𝑑 < 1, and let ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and

{𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉). Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a

sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅,𝜌
𝑛

(𝐼 − 𝜌
𝑛
𝐵) 𝑢
𝑛
,

𝑧
𝑛
= 𝑠
𝑛
𝛾𝑄𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝑠

𝑛
𝑉)𝑇
𝑛
𝐺V
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
, ∀𝑛 ≥ 1,

(187)

where𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)). Assume

that the following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;

(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷𝑥 ⊂ 𝐶
and 𝑧𝑥 ∈ 𝐶 such that for any 𝑦 ∉ 𝐷𝑥,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (z

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(188)

(iii) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), and ∑∞

𝑛=1
𝑠
𝑛
<

∞(⇔ ∑
∞

𝑛=1
((2/𝐿) − 𝜆

𝑛
) < ∞);

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Then {𝑥
𝑛} converges weakly to 𝑤 = lim𝑛→∞𝑃Ω𝑥𝑛 provided

that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.

Corollary 33. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝑓 : 𝐶 → R be a convex functional
with 𝐿-Lipschitz continuous gradient∇𝑓. LetΘ,Θ

1
, Θ
2
be three

bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 :

𝐶 → R a lower semicontinuous and convex functional. Let
𝑅 : 𝐶 → 2

𝐻 be a maximal monotone mapping and let𝐴,𝐴𝑘 :
𝐻 → 𝐻 and 𝐵 : 𝐶 → 𝐻 be 𝜁-inverse strongly monotone, 𝜁𝑘-
inverse strongly monotone, and 𝜉-inverse-strongly monotone,
respectively, for 𝑘 = 1, 2. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
for some 0 ≤ 𝑘 < 1 with sequence {𝛾𝑛} ⊂ [0,∞) such that
∑
∞

𝑛=1
𝛾𝑛 < ∞. Let 𝑉 be a 𝛾-strongly positive bounded linear

operator and 𝑄 : 𝐻 → 𝐻 be an 𝑙-Lipschitzian mapping with
𝛾𝑙 < 𝛾. Assume that Ω := 𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴) ∩ 𝑆𝐺𝐸𝑃(𝐺) ∩

I(𝐵, 𝑅) ∩ Fix(𝑆) ∩ Γ is nonempty, where 𝐺 is defined as in
Proposition CY. Let {𝑟

𝑛
} be a sequence in [0, 2𝜁] and {𝛼

𝑛
}, {𝛽
𝑛
},

and {𝛿
𝑛
} sequences in [0, 1] such that 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1 and

0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛
≤ 𝑑 < 1, and let ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2 and
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{𝜌
𝑛
} ⊂ [𝑎, 𝑏] ⊂ (0, 2𝜉). Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a

sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝐽
𝑅,𝜌
𝑛

(𝐼 − 𝜌
𝑛
𝐵) 𝑢
𝑛
,

𝑧𝑛 = 𝑠𝑛𝛾𝑄𝑥𝑛 + 𝛽𝑛𝑥𝑛 + ((1 − 𝛽𝑛) 𝐼 − 𝑠𝑛𝑉)𝑇𝑛𝐺V𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛, ∀𝑛 ≥ 1,

(189)

where𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓) = 𝑠

𝑛
𝐼+(1−𝑠

𝑛
)𝑇
𝑛
(here𝑇

𝑛
is nonexpansive,

𝑠
𝑛
= (2 − 𝜆

𝑛
𝐿)/4 ∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿)). Assume

that the following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 → ⟨𝑦 − 𝑥,𝐾


(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻, there exist a bounded subset 𝐷

𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾

(𝑦) − 𝐾


(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(190)

(iii) 𝑠
𝑛
∈ (0, 1/2) for each 𝜆

𝑛
∈ (0, 2/𝐿), and ∑∞

𝑛=1
𝑠
𝑛
<

∞ (⇔ ∑
∞

𝑛=1
((2/𝐿) − 𝜆𝑛) < ∞);

(iv) 0 < lim inf
𝑛→∞𝛽𝑛 ≤ lim sup

𝑛→∞
𝛽𝑛 < 1 and 0 <

lim inf𝑛→∞𝑟𝑛 ≤ lim sup
𝑛→∞

𝑟𝑛 < 2𝜁.

Then {𝑥
𝑛
} converges weakly to 𝑤 = lim

𝑛→∞
𝑃
Ω
𝑥
𝑛
provided

that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.
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