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The approximate solution of nth-order fuzzy linear differential equations in which coefficient functions maintainthe sign is
investigated by the undetermined fuzzy coefficients method. The differential equations is converted to a crisp function system
of linear equations according to the operations of fuzzy numbers. The fuzzy approximate solution of the fuzzy linear differential
equation is obtained by solving the crisp linear equations. Some numerical examples are given to illustrate the proposed method.
It is an extension of Allahviranloo’s results.

1. Introduction

Fuzzy differential equations (FDEs), which are utilized for the
purpose of the modeling problems in science and engineer-
ing, have been studied by many researchers. Most practical
problems require the solutions of fuzzy differential equations
(FDEs) which are satisfied with fuzzy initial conditions, and
therefore a fuzzy initial problem occurs and needs to be
solved. However, most fuzzy initial value problems could
not be solved exactly. So it is necessary to consider their
approximating methods.

Prior to discussing fuzzy differential equations and their
associated numerical algorithms, it is necessary to present
an appropriate brief introduction to derivative of the fuzzy-
valued function. The concept of a fuzzy derivative was first
introduced by Chang and Zadeh [1], and it was followed up
by Dubois and Prade [2] who used the extension principle
in their approach. Other fuzzy derivative concepts have been
proposed by Puri and Ralescu [3] and Goetschel Jr. and
Voxman [4] as an extension of the Hukuhara derivative of
multivalued functions. In recent years, many works have
been produced in the aspects of theories and applications
on fuzzy differential equations; see [5–15]. The notation
of fuzzy differential equation was initially introduced by
Kandel and Byatt [16, 17] who later applied the concept of
fuzzy differential equation to the analysis of fuzzy dynamical

problems [18, 19]. A thorough theoretical research of fuzzy
Cauchy problems was given by Kaleva [20, 21], Seikkala
[22], Ouyang and Wu [23], Kloeden [24], and Wu [25]. A
generalization of fuzzy differential equation was given by
Aubin [26, 27], Baı̆dosov [6], Leland [28], and Colombo
and K ̌rivan [29]. Some numerical methods for solving fuzzy
differential equations were introduced in [30–33].

For an 𝑛th-order linear differential equation

𝑦

(𝑛)
+ 𝑎𝑛−1 (𝑡) 𝑦

(𝑛−1)
+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦

󸀠
+ 𝑎0 (𝑡) 𝑦 = 𝑔 (𝑡) (1)

with fuzzy initial conditions

𝑦 (𝑡0) =
̃

𝑏0, 𝑦
󸀠
(𝑡0) =

̃

𝑏1, . . . , 𝑦
(𝑛−1)

(𝑡0) =
̃

𝑏𝑛−1, (2)
where 𝑔(𝑡), 𝑎𝑖(𝑡), 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑡 ∈ [𝑡0, 𝑇] are
continuous functions, Buckley and Feuring [34] presented
two analytical methods for solving them. The first was to
fuzzify the crisp solution and then check to see if it satisfies
the fuzzy differential equations with fuzzy initial conditions.
The second method was the reverse of the first one, in
that they firstly solved the fuzzy initial value problem and
then checked to see if it defines a fuzzy function. In 2008,
Allahviranloo et al. [35] utilized the collocation method to
transfer (1) and (2) into a crisp 2(𝑛 + 1) × 2(𝑛 + 1) system of
linear equations

𝑆 (𝑡)𝑋 = 𝑌 (𝑟) (3)
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for three specious cases; that is, all coefficient functions 𝑎𝑘(𝑡)
are positive, negative, 𝑎𝑘(𝑡) (𝑘 = 0, 1, . . . , 𝑛 − 𝑚), are negative
𝑎𝑘(𝑡) (𝑘 = 𝑛 − 𝑚 + 1, . . . , 𝑛 − 1) are positive, respectively.
By computing (3), they obtained the approximate solution of
(1) and (2). However, their methods will be restricted for the
general case.

In this paper, the 𝑛th-order linear differential equation
with fuzzy initial conditions is further investigated. It shows
that the result obtained in this paper is an extension of
Allahviranloo’s conclusions. In addition, considering that the
case of the order of the fuzzy differential equation and the
number of basic functions in assumed solution are not always
equal, we obtain the approximate solution of the original
equations (1) and (2) by calculating the minimal norm least
squares solution of crisp system of linear equations. Three
illustrating examples are given, and one of them is compared
withAllahviranloo’s work and is shown bemore accurate.The
structure of this paper is organized as follows.

In Section 2, we recall some basic definitions and results
about fuzzy numbers and the undetermined fuzzy coeffi-
cients method. In Section 3, a class of 𝑛th-order fuzzy linear
differential equations is investigated by converting it to a
crisp system of linear equations, and some corollaries for
the special cases are given. The proposed algorithms are
illustrated by solving some examples in Section 4, and the
conclusion is drawn in Section 5.

2. Preliminaries

2.1. Fuzzy Number

Definition 1 (see [1]). A fuzzy number is a fuzzy set like 𝑢 :
𝑅 → 𝐼 = [0, 1] which satisfies the following.

(1) 𝑢 is upper semicontinuous.

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0, 1].

(3) 𝑢 is normal; that is, there exists 𝑥0 ∈ 𝑅 such that
𝑢(𝑥0) = 1.

(4) supp 𝑢 = {𝑥 ∈ 𝑅 | 𝑢(𝑥) > 0} is the support of 𝑢, and
its closure cl(supp 𝑢) is compact.

Let 𝐸1 be the set of all fuzzy numbers on 𝑅.

Definition 2 (see [36]). A fuzzy number 𝑢 in parametric form
is a pair (𝑢, 𝑢)of functions𝑢(𝑟),𝑢(𝑟), 0 ≤ 𝑟 ≤ 1, which satisfies
the following requirements.

(1) 𝑢(𝑟) is a bounded monotonic increasing left continu-
ous function.

(2) 𝑢(𝑟) is a bounded monotonic decreasing left continu-
ous function.

(3) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1.

For arbitrary fuzzy number 𝑥 = (𝑥(𝑟), 𝑥(𝑟)), 𝑦 =

(𝑦(𝑟), 𝑦(𝑟)) ∈ 𝐸

1, 0 ≤ 𝑟 ≤ 1, and real number 𝑘 ∈ 𝑅,

(1) 𝑥 = 𝑦 if and only if 𝑥(𝑟) = 𝑦(𝑟) and 𝑥(𝑟) = 𝑦(𝑟);

(2) 𝑥 + 𝑦 = (𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑦(𝑟));

(3) 𝑥 − 𝑦 = (𝑥(𝑟) − 𝑦(𝑟), 𝑥(𝑟) − 𝑦(𝑟));

(4)

𝑘𝑥 = {

(𝑘𝑥 (𝑟) , 𝑘𝑥 (𝑟)) , 𝑘 ≥ 0,

(𝑘𝑥 (𝑟) , 𝑘𝑥 (𝑟)), 𝑘 < 0.

(4)

Definition 3 (see [23]). For arbitrary 𝑢 = (𝑢(𝑟), 𝑢(𝑟)), V =

(V(𝑟), V(𝑟)) ∈ 𝐸1, 0 ≤ 𝑟 ≤ 1, the quantity

𝐷 (𝑢, V) = (∫
1

0

(𝑢 (𝑟) − V (𝑟))
2
𝑑𝑟 + ∫

1

0

(𝑢 (𝑟) − V (𝑟))
2
𝑑𝑟)

1/2

(5)

is the distance between fuzzy numbers 𝑢 and V.

2.2.The Undetermined Fuzzy Coefficients Method. The unde-
termined fuzzy coefficients method is to seek an approximate
solution as

𝑦𝑁 (𝑡) =

𝑁

∑

𝑘=0

𝛼̃𝑘𝜙𝑘 (𝑡) , (6)

where 𝜙𝑘(𝑡), 𝑘 = 0, 1, . . . , 𝑁, are positive basic functions
whose all differentiations are positive. We compute the fuzzy
coefficients 𝛼̃𝑘 in (6) by setting the error to zero as follows:

𝐸 = 𝐷(𝑦

(𝑛)
+ 𝑎𝑛−1 (𝑡) 𝑦

(𝑛−1)
+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦

󸀠
+ 𝑎0 (𝑡) 𝑦, 𝑔 (𝑡))

+ 𝐷 (𝑦 (𝑡0) ,
̃

𝑏0) + ⋅ ⋅ ⋅ + 𝐷 (𝑦
(𝑛−1)

(𝑡0) ,
̃

𝑏𝑛−1) .

(7)

We substitute (6) in (7) and represent them in parametric
forms; then,

𝑦

(𝑛)
(𝑡, 𝑟) + 𝑎𝑛−1 (𝑡) 𝑦

(𝑛−1)
(𝑡, 𝑟) + ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦

󸀠
(𝑡, 𝑟) + 𝑎0 (𝑡) 𝑦 (𝑡, 𝑟)

= 𝑔 (𝑡, 𝑟),

𝑦 (𝑡0, 𝑟) = 𝑏0 (𝑟) ,

...
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𝑦

(𝑛−1)
(𝑡0, 𝑟) = 𝑏𝑛−1 (𝑟) ,

𝑦(𝑛) (𝑡, 𝑟) + 𝑎𝑛−1 (𝑡) 𝑦
(𝑛−1) (𝑡, 𝑟) + ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦

󸀠 (𝑡, 𝑟) + 𝑎0 (𝑡) 𝑦 (𝑡, 𝑟)

= 𝑔 (𝑡, 𝑟),

𝑦 (𝑡0, 𝑟) = 𝑏0 (𝑟) ,

...

𝑦

(𝑛−1)
(𝑡0, 𝑟) = 𝑏𝑛−1 (𝑟) .

(8)

Lemma 4 (see [35]). Let basic functions 𝜙𝑘(𝑡), 𝑘 = 0, 1, . . . ,
𝑁, and all of their differentiations be positive; without loss of
generality, then (𝑦

𝑁
)

(𝑖)
(𝑡) = 𝑦

(𝑖)

𝑁
(𝑡) and (𝑦𝑁)

(𝑖)
(𝑡) = 𝑦

(𝑖)

𝑁
(𝑡), 𝑖 =

0, 1, . . . , 𝑛.

3. Basic Results

In order to solve (1) and (2), we need to consider the system of
linear equations (8). In this section, we study its general case
at first then give some corollaries for some special cases.

3.1. New Models

Theorem 5. Suppose that each 𝑎𝑖(𝑡), 𝑖 = 0, 1, . . . , 𝑛 − 1, in
(1) is either nonnegative or negative over [𝑡0, 𝑇]; then, the 𝑛th-
order fuzzy linear differential equations

𝑦

(𝑛)
+ 𝑎𝑛−1 (𝑡) 𝑦

(𝑛−1)
+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦

󸀠
+ 𝑎0 (𝑡) 𝑦 = 𝑔 (𝑡) ,

𝑦 (𝑡0) =
̃

𝑏0, 𝑦
󸀠
(𝑡0) =

̃

𝑏1, . . . , 𝑦
(𝑛−1)

(𝑡0) =
̃

𝑏𝑛−1

(9)

can be extended into a system of linear equations

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑁 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(10)

where

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) + ∑

𝑎𝑖(𝑡)≥0

𝑎𝑖 (𝑡) 𝜙
(𝑖)

𝑘
(𝑡) , 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜉𝑘 = ∑

𝑎𝑖(𝑡)<0

𝑎𝑖 (𝑡) 𝜙
(𝑖)

𝑘
(𝑡) , 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(11)

By setting 𝑡 = 𝑎, 𝑎 ∈ [𝑡0, 𝑇], and by solving (10), the fuzzy
approximate solution of the original fuzzy linear differential
equations is obtained as follows:

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) ,

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) .

(12)

Proof. Let (5) be substituted in (1) and (2); we have

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙
(𝑛)

𝑘
(𝑡) + 𝑎𝑛−1 (𝑡)

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙
(𝑛−1)

𝑘
(𝑡) + ⋅ ⋅ ⋅

+ 𝑎1 (𝑡)

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙
󸀠

𝑘 (𝑡) + 𝑎0 (𝑡)

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙𝑘 (𝑡) = 𝑔 (𝑡) ,

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙𝑘 (𝑡0) =
̃

𝑏0 (𝑟) ,

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙
󸀠

𝑘 (𝑡0) =
̃

𝑏1 (𝑟) , . . . ,

𝑁

∑

𝑘=0

𝛼̃𝑘 (𝑟) 𝜙
(𝑛−1)

𝑘
(𝑡0) =

̃

𝑏𝑛−1 (𝑟) .

(13)
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We express the pervious equations in parametric forms;
then,

𝑁

∑

𝑘=0

(𝛼𝑘 (𝑟) , 𝛼𝑘 (𝑟)) 𝜙
(𝑛)

𝑘
(𝑡)

+ 𝑎𝑛−1 (𝑡)

𝑁

∑

𝑘=0

(𝛼𝑘 (𝑟) , 𝛼𝑘 (𝑟)) 𝜙
(𝑛−1)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡)

𝑁

∑

𝑘=0

(𝛼𝑘 (𝑟) , 𝛼𝑘 (𝑟)) 𝜙
󸀠

𝑘 (𝑡)

+𝑎0 (𝑡)

𝑁

∑

𝑘=0

(𝛼𝑘 (𝑟) , 𝛼𝑘 (𝑟)) 𝜙𝑘 (𝑡)=(𝑔 (𝑡, 𝑟) , 𝑔 (𝑡, 𝑟)) ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜙𝑘 (𝑡0)=𝑏0 (𝑟) , . . . ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜙
(𝑛−1)

𝑘
(𝑡0)=𝑏𝑛−1 (𝑟) ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜙𝑘 (𝑡0)=𝑏0 (𝑟) , . . . ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜙
(𝑛−1)

𝑘
(𝑡0)=𝑏𝑛−1 (𝑟) .

(14)

By setting

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) + ∑

𝑎𝑖(𝑡)≥0

𝑎𝑖 (𝑡) 𝜙
(𝑖)

𝑘
(𝑡) , 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜉𝑘 = ∑

𝑎𝑖(𝑡)<0

𝑎𝑖 (𝑡) 𝜙
(𝑖)

𝑘
(𝑡) , 𝑖 = 0, 1, . . . , 𝑛 − 1,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁,

(15)

thus we have the corresponding systems 𝑆(𝑡)𝑋(𝑟) = 𝑌(𝑟) as
follows:

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑁 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(16)

being 2(𝑛 + 1) × 2(𝑁 + 1) linear systems.
By setting 𝑡 = 𝑎, 𝑎 ∈ [𝑡0, 𝑇], and by solving (10), we obtain

the values of parameters

𝛼0 (𝑟) , 𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟) , 𝛼0 (𝑟) , 𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟) ; (17)

therefore, we get the fuzzy approximate solution of the
original fuzzy equation as follows:

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) ,

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) .

(18)

Now, we consider another special case; that is, coefficient
functions 𝑎𝑘(𝑡), 𝑘 = 0, 1, . . . , 𝑛 − 1, are positive and negative
alternately.

Corollary 6. Suppose that the coefficients functions
𝑎𝑛−1(𝑡), 𝑎𝑛−3(𝑡), . . . are positive and 𝑎𝑛−2(𝑡), 𝑎𝑛−4(𝑡), . . .

are negative, and 𝑛 is an odd number. Then, the 𝑛th-order
fuzzy linear differential equations (1) and (2) can be extended
into the following linear equations:

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝛽𝑘 +

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝛾𝑘 = 𝑔 (𝑡, 𝑟) ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜎0𝑘 = 𝑏0 (𝑟) ,

...

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜎𝑛−1,𝑘 = 𝑏𝑛−1 (𝑟) ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝛽𝑘 +

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝛾𝑘 = 𝑔 (𝑡, 𝑟) ,

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜎0𝑘 = 𝑏0 (𝑟) ,

...

𝑁

∑

𝑘=0

𝛼𝑘 (𝑟) 𝜎𝑛−1,𝑘 = 𝑏𝑛−1 (𝑟) ,

(19)
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where

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) + 𝑎𝑛−1 (𝑡) 𝜙

(𝑛−1)

𝑘
(𝑡) + 𝑎𝑛−3 (𝑡) 𝜙

(𝑛−3)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎0 (𝑡) 𝜙𝑘 (𝑡) ,

𝛾𝑘 = 𝑎𝑛−2 (𝑡) 𝜙
(𝑛−2)

𝑘
(𝑡) + 𝑎𝑛−4 (𝑡) 𝜙

(𝑛−4)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝜙
󸀠

𝑘 (𝑡) ,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(20)

By setting

𝑋 (𝑟) = (𝛼0 (𝑟) , 𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟) , 𝛼0 (𝑟) ,

𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟))
⊤
,

𝑌 (𝑟) = (𝑔 (𝑡, 𝑟) , 𝑏0 (𝑟) , . . . , 𝑏𝑛−1 (𝑟) , 𝑔 (𝑡, 𝑟) ,

𝑏0 (𝑟) , . . . , 𝑏𝑛−1 (𝑟))
⊤
,

(21)

(19) is a system of linear equations 𝑆(𝑡)𝑋(𝑟) = 𝑌(𝑟) such that

𝑆 (𝑡) = (

𝑆1 𝑆2

𝑆2 𝑆1

) , (22)

where

𝑆1 = (

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

),

𝑆2 = (

𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁

0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0

) .

(23)

When 𝑛 is an even number, then the 𝑛th-order fuzzy linear
differential equations (1) and (2) can be extended into a system
of linear equations

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(24)

where

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) + 𝑎𝑛−1 (𝑡) 𝜙

(𝑛−1)

𝑘
(𝑡) + 𝑎𝑛−3 (𝑡) 𝜙

(𝑛−3)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝜙
󸀠

𝑘 (𝑡) ,

𝛾𝑘 = 𝑎𝑛−2 (𝑡) 𝜙
(𝑛−2)

𝑘
(𝑡) + 𝑎𝑛−4 (𝑡) 𝜙

(𝑛−4)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎0 (𝑡) 𝜙𝑘 (𝑡) ,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(25)

Three special cases in Allahviranloo et al.’s paper [35] are
viewed as corollaries fromTheorem 5.

Corollary 7. Suppose that coefficients functions 𝑎𝑘(𝑡), 𝑘 =

0, 1, 2, . . . , 𝑛 − 1, are nonnegative; then, the 𝑛th-order fuzzy
linear differential equations (1) and (2) can be extended into
the following linear equations:

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 0 0 ⋅ ⋅ ⋅ 0

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)
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Table 1: Comparisons between the exact solution and the approxi-
mate solution.

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 2.00400200066667 2.00300328843835 0.00099871222831
0.1 2.10430240100020 2.10320316558466 0.00109923541554
0.2 2.20460280133373 2.20340304273096 0.00119975860278
0.3 2.30490320166727 2.30360291987726 0.00130028179001
0.4 2.40520360200080 2.40380279702356 0.00140080497724
0.5 2.50550400233433 2.50400267416986 0.00150132816447
0.6 2.60580440266787 2.60420255131616 0.00160185135171
0.7 2.70610480300140 2.70440242846246 0.00170237453894
0.8 2.80640520333493 2.80460230560876 0.00180289772617
0.9 2.90670560366847 2.90480218275507 0.00190342091340
1 3.00700600400200 3.00500205990137 0.00200394410063

Table 2: Comparisons between the exact solution and the approxi-
mate solution.

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0 4.01001000733734 4.00899990996165 0.00101009737569
0.1 3.90970960700380 3.90880003281535 0.00090957418846
0.2 3.80940920667027 3.80860015566904 0.00080905100122
0.3 3.70910880633673 3.70840027852274 0.00070852781399
0.4 3.60880840600320 3.60820040137644 0.00060800462676
0.5 3.50850800566967 3.50800052423014 0.00050748143953
0.6 3.40820760533613 3.40780064708384 0.00040695825230
0.7 3.30790720500260 3.30760076993754 0.00030643506506
0.8 3.20760680466907 3.20740089279124 0.00020591187783
0.9 3.10730640433553 3.10720101564493 0.00010538869060
1 3.00700600400200 3.00700113849863 0.00000486550337

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(26)

where

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) + 𝑎𝑛−1 (𝑡) 𝜙

(𝑛−1)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝜙
󸀠

𝑘 (𝑡) + 𝑎0 (𝑡) 𝜙𝑘 (𝑡) ,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(27)

Corollary 8. Suppose that coefficients functions 𝑎𝑘(𝑡), 𝑘 =

0, 1, 2, . . . , 𝑛 − 1, are negative; then, the 𝑛th-order fuzzy linear
differential equations (1) and (2) can be extended into a system
of linear equations

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(28)

where

𝛽𝑘 = 𝜙
(𝑛)

𝑘
(𝑡) ,

𝛾𝑘 = 𝑎𝑛−1 (𝑡) 𝜙
(𝑛−1)

𝑘
(𝑡) + 𝑎𝑛−2 (𝑡) 𝜙

(𝑛−2)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎0 (𝑡) 𝜙𝑘 (𝑡) ,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(29)

Corollary 9. Suppose that coefficients functions 𝑎𝑛−1(𝑡),
𝑎𝑛−3(𝑡), . . . , 𝑎𝑛−𝑚(𝑡) are nonnegative and 𝑎𝑛−𝑚−1(𝑡),

𝑎𝑛−𝑚−2(𝑡), . . . , 𝑎0(𝑡) are negative; then, the 𝑛th-order fuzzy
linear differential equations (1) and (2) can be extended into a
system of linear equations

(

(

(

(

(

(

(

(

𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁 𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁

𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁 0 0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁 0 0 ⋅ ⋅ ⋅ 0

𝛾0 𝛾1 ⋅ ⋅ ⋅ 𝛾𝑁 𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑁

0 0 ⋅ ⋅ ⋅ 0 𝜎00 𝜎01 ⋅ ⋅ ⋅ 𝜎0𝑁

...
... ⋅ ⋅ ⋅

...
...

... ⋅ ⋅ ⋅

...
0 0 ⋅ ⋅ ⋅ 0 𝜎𝑛−10 𝜎𝑛−11 ⋅ ⋅ ⋅ 𝜎𝑛−1𝑁

)

)

)

)

)

)

)

)

×

(

(

(

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

...
𝛼𝑁 (𝑟)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

𝑔(𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

𝑔 (𝑡, 𝑟)

𝑏0 (𝑟)

...
𝑏𝑛−1 (𝑟)

)

)

)

)

)

)

)

)

)

,

(30)
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Table 3: Comparisons between the exact solution and the approximate solution (𝑡 = 1.01).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 −0.00989800000000 −0.00989582400000 0.21760000006310𝑒 − 5

0.1 0.09111210000000 0.09111405840000 0.19583999990580𝑒 − 5

0.2 0.19212220000000 0.19212394080000 0.17408000001495𝑒 − 5

0.3 0.29313230000000 0.29313382320000 0.15232000003529𝑒 − 5

0.4 0.39414240000000 0.39414370560000 0.13055999996681𝑒 − 5

0.5 0.49515250000000 0.49515358800000 0.10879999998714𝑒 − 5

0.6 0.59616260000000 0.59616347040000 0.08704000005189𝑒 − 5

0.7 0.69717270000000 0.69717335280000 0.06527999985018𝑒 − 5

0.8 0.79818280000000 0.79818323520000 0.04352000000374𝑒 − 5

0.9 0.89919290000000 0.89919311760000 0.02176000011289𝑒 − 5

1 1.00020300000000 1.00020300000000 0

Table 4: Comparisons between the exact solution and the approximate solution (𝑡 = 1.01).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 2.01030400000000 2.01030182400000 0.21760000015192𝑒 − 5

0.1 1.90929390000000 1.90929194160000 0.19583999986139𝑒 − 5

0.2 1.80828380000000 1.80828205920000 0.17407999997054𝑒 − 5

0.3 1.70727370000000 1.70727217680000 0.15232000007970𝑒 − 5

0.4 1.60626360000000 1.60626229440000 0.13056000001122𝑒 − 5

0.5 1.50525350000000 1.50525241200000 0.10880000007596𝑒 − 5

0.6 1.40424340000000 1.40424252960000 0.08704000005189𝑒 − 5

0.7 1.30323330000000 1.30323264720000 0.06528000002781𝑒 − 5

0.8 1.20222320000000 1.20222276480000 0.04352000004815𝑒 − 5

0.9 1.10121310000000 1.10121288240000 0.02176000002407𝑒 − 5

1 1.00020300000000 1.00020300000000 0

where
𝛽𝑘 = 𝜙

(𝑛)

𝑘
(𝑡) + 𝑎𝑛−1 (𝑡) 𝜙

(𝑛−1)

𝑘
(𝑡) + ⋅ ⋅ ⋅ + 𝑎𝑛−𝑚 (𝑡) 𝜙

(𝑛−𝑚)

𝑘
(𝑡) ,

𝛾𝑘 = 𝑎𝑛−𝑚−1 (𝑡) 𝜙
(𝑛−𝑚−1)

𝑘
(𝑡) + 𝑎𝑛−𝑚−2 (𝑡) 𝜙

(𝑛−𝑚−2)

𝑘
(𝑡)

+ ⋅ ⋅ ⋅ + 𝑎0 (𝑡) 𝜙𝑘 (𝑡) ,

𝜎𝑗𝑘 = 𝜙
(𝑗)

𝑘
(𝑡0) , 𝑗 = 0, 1, . . . , 𝑛 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(31)

3.2. Method to Solve Linear Equations. The previous crisp
linear equations (10), (19), (24), (26), (28), and (30) are all
2(𝑛 + 1) × 2(𝑁 + 1) linear systems, and they have the same
form as follows:

𝑆 (𝑡)𝑋 (𝑟) = 𝑌 (𝑟) . (32)
In the process of solving (32) by setting 𝑡 = 𝑎, 𝑎 ∈

[𝑡0, 𝑇], whether it is consistent or inconsistent, we obtain
the minimal norm least squares solution [37] by using the
generalized inverse of the coefficient matrix 𝑆(𝑎); that is,

𝑋 (𝑟) = 𝑆

†
(𝑎) 𝑌 (𝑟) . (33)

Thus, we get
𝛼0 (𝑟) , 𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟) , 𝛼0 (𝑟) , 𝛼1 (𝑟) , . . . , 𝛼𝑁 (𝑟) . (34)

Therefore, we obtain the fuzzy approximate solution of the
original fuzzy equation as follows:

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) ,

𝑦 (𝑡, 𝑟) = 𝛼0 (𝑟) 𝜙0 (𝑡) + 𝛼1 (𝑟) 𝜙1 (𝑡) + ⋅ ⋅ ⋅ + 𝛼𝑁 (𝑟) 𝜙𝑁 (𝑡) .

(35)

4. Numerical Examples

Example 1. Consider the following second-order fuzzy linear
differential equation:

𝑦

󸀠󸀠
− 4𝑦

󸀠
+ 4𝑦 = 4𝑡 − 4, 𝑡 ≥ 0,

𝑦 (0) = (2 + 𝑟, 4 − 𝑟) ,

𝑦

󸀠
(0) = (3 + 2𝑟, 9 − 2𝑟) .

(36)

The exact solution of equation is

𝑌 (𝑡, 𝑟) = (2 + 𝑟) 𝑒

2𝑡
+ (−1 + 𝑟) 𝑡𝑒

2𝑡
+ 𝑡,

𝑌 (𝑡, 𝑟) = (4 − 𝑟) 𝑒

2𝑡
+ (1 − 𝑟) 𝑡𝑒

2𝑡
+ 𝑡.

(37)
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Table 5: Comparisons between the exact solution and the approximate solution (𝑡 = 1.001).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 −0.00099899800000 −0.00099899582400 0.21760011570393𝑒 − 8

0.1 0.09910110210000 0.09910110405840 0.19584001087480𝑒 − 8

0.2 0.19920120220000 0.19920120394080 0.17407990604568𝑒 − 8

0.3 0.29930130230000 0.29930130382320 0.15232002326115𝑒 − 8

0.4 0.39940140240000 0.39940140370560 0.13056005165879𝑒 − 8

0.5 0.49950150250000 0.49950150358800 0.10879999123858𝑒 − 8

0.6 0.59960160260000 0.59960160347040 0.08703997522730𝑒 − 8

0.7 0.69970170270000 0.69970170335280 0.06527991480709𝑒 − 8

0.8 0.79980180280000 0.79980180323520 0.04352012084041𝑒 − 8

0.9 0.89990190290000 0.89990190311760 0.02176006042021𝑒 − 8

1 1.00000200300000 1.00000200300000 0

Table 6: Comparisons between the exact solution and the approximate solution (𝑡 = 1.001).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0 2.00100300400000 2.00100300182400 0.21760007129501𝑒 − 8

0.1 1.90090290390000 1.90090290194160 0.19583985544358𝑒 − 8

0.2 1.80080280380000 1.80080280205920 0.17407990604568𝑒 − 8

0.3 1.70070270370000 1.70070270217680 0.15232011207900𝑒 − 8

0.4 1.60060260360000 1.60060260229440 0.13056018488555𝑒 − 8

0.5 1.50050250350000 1.50050250241200 0.10880008005643𝑒 − 8

0.6 1.40040240340000 1.40040240252960 0.08703997522730𝑒 − 8

0.7 1.30030230330000 1.30030230264720 0.06528000362493𝑒 − 8

0.8 1.20020220320000 1.20020220276480 0.04352007643149𝑒 − 8

0.9 1.10010210310000 1.10010210288240 0.02176001601129𝑒 − 8

1 1.00000200300000 1.00000200300000 0

Let 𝜙𝑘(𝑡) = 𝑡
𝑘
, 𝑘 = 0, 1, 2, 3; then,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
.

(38)

From (10), the extended linear equation 𝑆(𝑡)𝑋(𝑟) = 𝑌(𝑟)
is as follows:

(

(

4 4𝑡 2 + 4𝑡

2
6𝑡 + 4𝑡

3
0 −4 −8𝑡 −12𝑡

2

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 −4 −8𝑡 −12𝑡

2
4 4𝑡 2 + 4𝑡

2
6𝑡 + 4𝑡

3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

)

)

×

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

)

)

)

)

)

=

(

(

4𝑡 − 4

2 + 𝑟

3 + 2𝑟

4𝑡 − 4

4 − 𝑟

9 − 2𝑟

)

)

.

(39)

By setting 𝑡 = 1/2, the parameters 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟),
𝛼3(𝑟), 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟), 𝛼3(𝑟) are obtained, and by putting
them into (38), we have

𝑦 (𝑡, 𝑟) = (2 + 𝑟) + (3 + 2𝑟) 𝑡

+ (3.28767123 − 1.22739726𝑟) 𝑡

2

+ (0.76712328 − 1.13972602𝑟) 𝑡

3
,

𝑦 (𝑡, 𝑟) = (4 − 𝑟) + (9 − 2𝑟) 𝑡

+ (−0.08767123 + 1.22739726𝑟) 𝑡

2

+ (−2.36712328 + 1.13972602𝑟) 𝑡

3
.

(40)

Tables 1 and 2 show comparisons between the exact
solution and the approximate solution at 𝑡 = 0.001 for some
𝑟 ∈ [0, 1], and all data were calculated by MATLAB 6.x.
Example 2. Consider the following three-order fuzzy linear
differential equation:

𝑡

3
𝑦

󸀠󸀠󸀠
− 3𝑡

2
𝑦

󸀠󸀠
+ 6𝑡𝑦

󸀠
− 6𝑦 = 0, 𝑡 ≥ 1,

𝑦 (1) = (𝑟, 2 − 𝑟) ,
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Table 7: Comparisons between the exact solution and the approximate solution (𝑡 = 0.01).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 −0.09911518137409 −0.09912683067200 0.11649297906799𝑒 − 4

0.1 −0.08901568303658 −0.08902706143300 0.11378396415129𝑒 − 4

0.2 −0.07891618469908 −0.07892729219400 0.11107494923460𝑒 − 4

0.3 −0.06881668636157 −0.06882752295500 0.10836593431776𝑒 − 4

0.4 −0.05871718802406 −0.05872775371600 0.10565691940079𝑒 − 4

0.5 −0.04861768968655 −0.04862798447700 0.10294790448395𝑒 − 4

0.6 −0.03851819134904 −0.03852821523800 0.10023888956719𝑒 − 4

0.7 −0.02841869301153 −0.02842844599900 0.09752987465039𝑒 − 4

0.8 −0.01831919467403 −0.01832867676000 0.09482085973359𝑒 − 4

0.9 −0.00821969633652 −0.00822890752100 0.09211184481680𝑒 − 4

1 0.00187980200099 0.00187086171800 0.08940282990000𝑒 − 4

Table 8: Comparisons between the exact solution and the approximate solution (𝑡 = 0.01).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0 0.10287478537607 0.10286855421000 0.62311660731923𝑒 − 5

0.1 0.09277528703856 0.09276878497120 0.65020673648691𝑒 − 5

0.2 0.08267578870106 0.08266901573240 0.67729686565599𝑒 − 5

0.3 0.07257629036355 0.07256924649360 0.70438699482367𝑒 − 5

0.4 0.06247679202604 0.06246947725480 0.73147712399066𝑒 − 5

0.5 0.05237729368853 0.05236970801600 0.75856725315904𝑒 − 5

0.6 0.04227779535102 0.04226993877720 0.78565738232741𝑒 − 5

0.7 0.03217829701351 0.03217016953840 0.81274751149579𝑒 − 5

0.8 0.02207879867601 0.02207040029960 0.83983764066348𝑒 − 5

0.9 0.01197930033850 0.01197063106080 0.86692776983185𝑒 − 5

1 0.00187980200099 0.00187086182200 0.89401789899965𝑒 − 5

𝑦

󸀠
(1) = (−1 + 𝑟, 1 − 𝑟) ,

𝑦

󸀠󸀠
(1) = (2 + 2𝑟, 6 − 2𝑟) .

(41)

The exact solution of equation is

𝑌 (𝑡, 𝑟) = (3 + 2𝑟) 𝑡 + (−5 − 2𝑟) 𝑡

2
+ (2 + 𝑟) 𝑡

3
,

𝑌 (𝑡, 𝑟) = (7 − 2𝑟) 𝑡 + (−9 + 2𝑟) 𝑡

2
+ (4 − 𝑟) 𝑡

3
.

(42)

Let 𝜙𝑘(𝑡) = 𝑡
𝑘
, 𝑘 = 0, 1, 2, 3; then,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
.

(43)

From (19), the extended linear equation 𝑆(𝑡)𝑋(𝑟) = 𝑌(𝑟)
is as follows:

(

(

(

(

(

(

(

(

0

6

𝑡

2

12

𝑡

24

−6

𝑡

3

−6

𝑡

2
−

12

𝑡

−24

1 1 1 1 0 0 0 0

0 1 2 3 0 0 0 0

0 0 2 6 0 0 0 0

−6

𝑡

3

−6

𝑡

2
−

12

𝑡

−24 0

6

𝑡

2

12

𝑡

24

0 0 0 0 1 1 1 1

0 0 0 0 0 1 2 3

0 0 0 0 0 0 2 6

)

)

)

)

)

)

)

)

×

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

)

)

)

)

)

=

(

(

(

(

(

0

𝑟

−1 + 𝑟

2 + 2𝑟

0

2 − 𝑟

1 − 𝑟

6 − 2𝑟

)

)

)

)

)

.

(44)
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Table 9: Comparisons between the exact solution and the approximate solution (𝑡 = 0.001).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error

0 −0.09991195018134 −0.09991206746457 0.11728323451310𝑒 − 6

0.1 −0.08990195518300 −0.08990206974373 0.11456072925020𝑒 − 6

0.2 −0.07989196018467 −0.07989207202289 0.11183822400118𝑒 − 6

0.3 −0.06988196518634 −0.06988207430206 0.10911571875216𝑒 − 6

0.4 −0.05987197018800 −0.05987207658122 0.10639321350314𝑒 − 6

0.5 −0.04986197518967 −0.04986207886038 0.10367070826106𝑒 − 6

0.6 −0.03985198019133 −0.03985208113954 0.10094820300510𝑒 − 6

0.7 −0.02984198519300 −0.02984208341870 0.09822569775955𝑒 − 6

0.8 −0.01983199019467 −0.01983208569786 0.09550319251053𝑒 − 6

0.9 −0.00982199519633 −0.00982208797702 0.09278068726151𝑒 − 6

1 0.00018799980200 0.00018790974382 0.09005818201011𝑒 − 6

Table 10: Comparisons between the exact solution and the approximate solution (𝑡 = 0.001).

𝑟 𝑌(𝑡, 𝑟) 𝑦(𝑡, 𝑟) Error
0 0.10028794978534 0.10028788695321 0.62832127500911𝑒 − 7

0.1 0.09027795478700 0.09027788923237 0.65554632569520𝑒 − 7

0.2 0.08026795978867 0.08026789151153 0.68277137610373𝑒 − 7

0.3 0.07025796479034 0.07025789379069 0.70999642678982𝑒 − 7

0.4 0.06024796979200 0.06024789606985 0.73722147712896𝑒 − 7

0.5 0.05023797479367 0.05023789834902 0.76444652760688𝑒 − 7

0.6 0.04022797979534 0.04022790062818 0.79167157815418𝑒 − 7

0.7 0.03021798479700 0.03021790290734 0.81889662859741𝑒 − 7

0.8 0.02020798979867 0.02020790518650 0.84612167911002𝑒 − 7

0.9 0.01019799480033 0.01019790746566 0.87334672960529𝑒 − 7

1 0.00018799980200 0.00018790974482 0.90057178009920𝑒 − 7

By setting 𝑡 = 4/3, the parameters 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟),
𝛼3(𝑟), 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟), 𝛼3(𝑟) are obtained, and by putting
them into (43), we have

𝑦 (𝑡, 𝑟) = (−2.1760 + 2.1760𝑟) + (9.5280 − 4.5280𝑟) 𝑡

+ (−11.5280 + 4.5280𝑟) 𝑡

2
+ (4.1760 − 1.1760𝑟) 𝑡

3
,

𝑦 (𝑡, 𝑟) = (2.1760 − 2.1760𝑟) + (0.4720 + 4.5280𝑟) 𝑡

+ (−2.4720 − 4.5280𝑟) 𝑡

2
+ (1.8240 + 1.1760𝑟) 𝑡

3
.

(45)

Tables 3, 4, 5, and 6 show comparisons between the exact
solution and the approximate solution at 𝑡 = 1.01 and 𝑡 =
1.001 for some 𝑟 ∈ [0, 1].

Example 3 (see [35]). Consider the following fuzzy linear
differential equation:

𝑦

󸀠󸀠
+ 𝑦 = −𝑡, 𝑡 ∈ [0, 1] ,

𝑦 (0) = (−0.1 + 0.1𝑟, 0.1 − 0.1𝑟) ,

𝑦

󸀠
(0) = (0.088 + 0.1𝑟, 0.288 − 0.1𝑟) .

(46)

The exact solution of equation is

𝑌 (𝑡, 𝑟) = (−0.1 + 0.1𝑟) cos 𝑡 + (1.088 + 0.1𝑟) sin 𝑡 − 𝑡,

𝑌 (𝑡, 𝑟) = (0.1 − 0.1𝑟) cos 𝑡 + (1.288 − 0.1𝑟) sin 𝑡 − 𝑡.
(47)

Let 𝜙𝑘(𝑡) = 𝑡
𝑘
, 𝑘 = 0, 1, 2, 3; then,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
,

𝑦 (𝑡, 𝑟) = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2
+ 𝛼3𝑡
3
.

(48)

From (26), the extended linear equation 𝑆(𝑡)𝑋(𝑟) = 𝑌(𝑟) is as
follows:

(

(

1 𝑡 2 + 𝑡

2
6𝑡 + 𝑡

3
0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 𝑡 2 + 𝑡

2
6𝑡 + 𝑡

3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

)

)
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×

(

(

(

(

(

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

𝛼0 (𝑟)

𝛼1 (𝑟)

𝛼2 (𝑟)

𝛼3 (𝑟)

)

)

)

)

)

=

(

(

−𝑡

−0.1 + 0.1𝑟

0.088 + 0.1𝑟

−𝑡

0.1 − 0.1𝑟

0.288 − 0.1𝑟

)

)

.

(49)

By setting 𝑡 = 1/2, the parameters 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟),
𝛼3(𝑟), 𝛼0(𝑟), 𝛼1(𝑟), 𝛼2(𝑟), 𝛼3(𝑟) are obtained, and by putting
them into (48), we have

𝑦 (𝑡, 𝑟) = (−0.100 + 0.100𝑟) + (0.088 + 0.100𝑟) 𝑡

+ (−0.067371 − 0.02276𝑟) 𝑡

2

+ (−0.093572 − 0.03161𝑟) 𝑡

3
,

𝑦 (𝑡, 𝑟) = (0.100 − 0.100𝑟) + (0.288 − 0.100𝑟) 𝑡

+ (−0.11289 + 0.022760𝑟) 𝑡

2

+ (−0.15679 + 0.031612𝑟) 𝑡

3
.

(50)

Tables 7, 8, 9, and 10 show comparisons between the exact
solution and the approximate solution at 𝑡 = 0.01 and 𝑡 =
0.001 for some 𝑟 ∈ [0, 1].

From Tables 7, 8, 9, and 10, we can see that our results are
more accurate than those of Example 3.1 [35] inAllahviranloo
et al.’s work.

5. Conclusion

In this paper, an approximate method similar to the unde-
termined fuzzy coefficients method, based on a positive basis
for solving fuzzy differential equations, was further discussed.
Themore general case was considered, and the model system
of linear equation was set up according to different case
of coefficient functions. Fuzzy approximate solution was
obtained by solving themodel system.Ourwork enriched the
theory of fuzzy linear differential equations.
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