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This paper presents results of a molecular dynamics simulation study of dehydrated 2:1 clay minerals using the Parrinello-Rahman
constant-pressure molecular dynamics method. The method is capable of simulating a system under the most general applied
stress conditions by considering the changes of MD cell size and shape. Given the advantage of the method, it is the major goal
of the paper to investigate the influence of imposed cell boundary conditions on the molecular structural transformation of 2:1
clay minerals under different normal pressures. Simulation results show that the degrees of freedom of the simulation cell (i.e.,
whether the cell size or shape change is allowed) determines the final equilibrated crystal structure of clay minerals. Both the MD
method and the static method have successfully revealed unforeseen structural transformations of clay minerals upon relaxation
under different normal pressures. It is found that large shear distortions of clay minerals occur when full allowance is given to the
cell size and shape change. A complete elimination of the interlayer spacing is observed in a static simulation. However, when only
the cell size change is allowed, interlayer spacing is retained, but large internal shear stresses also exist.

1. Introduction

In the last two decades, computer simulation methods,
including the Monte Carlo (MC) method and the Molecular
Dynamics (MD) method, have been successfully used in
the studies of dehydrates/hydrates of 2:1 clay minerals
[1–4]. Computational molecular models based on well-
calibrated intermolecular potentials, supported by ever-
increasing computer capabilities, have offered unmatched
advantages in probing the molecular mechanisms and sur-
face properties of the clay-water system [2, 3, 5–13]. Of the
two methods, however, the MC method has received a much
wider application in previous studies, mainly because it is
relatively easy for the method to calculate desired properties
of the system under any specified pressure, temperature, and
volume. Based on the repeated random sampling and proba-
bility theory, the MC method is a procedure for evaluating
average properties of phase space equilibrium of constant
temperature ensembles, such as the canonical (NVT) ensem-
ble and the isothermal-isobaric (NPT) ensemble. Average

macrostate properties of a clay-mineral system, particularly
under the conditions of volume and/or pressure changes, can
thus be readily predicted by the method. A major limitation
of the MC method, however, is that it only deals with
position variables of the system and provides no informa-
tion about the time dependency of properties and their
fluctuations.

In comparison, the MD method, which is based on the
Newtonian equations of motion of particles, is a classical
method to calculate average properties of a molecular
system varying as a function of time. For the conventional
MD method, the energy, volume, and number of particles
are fixed for a particular system, and it is assumed that
time averages of properties of the system are equal to
the microcanonical (NVE) ensemble averages of the same
properties. When such a system moves along its trajectory,
the pressure and temperature will change. Such a limitation
hinders the application of the MD method to the study of
clay minerals to a large extent.
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Table 1: Initial atom positions and effective charges in the unit cell of a dioctahedral clay mineral layer as reported by Skipper et al. [2].

Atom q/e x (Å) y (Å) z (Å) Atom q/e x (Å) y (Å) z (Å)

Na 1.0 0.0 0.0 0.5 Na 1.0 3.52 9.14 −0.5

Al 3.0 4.4 1.52 0.0 Al 3.0 7.04 6.09 0.0

Al 3.0 4.4 −1.52 0.0 AL 3.0 7.04 3.05 0.0

O −0.8 3.96 2.28 3.28 O −0.8 0.88 9.14 −3.28

O −1.7175 0.0 0.0 1.06 O −0.8 2.2 6.86 −3.28

H 0.7175 0.8815 0.0 1.434 O −0.8 −0.44 6.86 −3.28

Si 1.2 2.64 1.52 2.73 O −1.7175 3.52 9.14 −1.06

Si 1.2 0.0 3.05 2.73 H 0.7175 2.6385 9.14 −1.434

O −1.0 2.64 1.52 1.06 Si 1.2 0.88 7.62 −2.73

O −1.0 0.0 3.05 1.06 Si 1.2 3.52 6.09 −2.73

O −0.8 2.64 0.0 3.28 O −1.0 0.88 7.62 −1.06

O −0.8 1.32 2.28 3.28 O −1.0 3.52 6.09 −1.06

O −0.8 0.0 4.57 3.28 O −0.8 3.52 4.57 −3.28

O −0.8 3.96 6.85 3.28 O −0.8 −0.44 2.29 −3.28

O −0.8 1.32 6.85 3.28 O −0.8 2.2 2.29 −3.28

O −1.7175 2.64 4.57 1.06 O −1.7175 0.88 4.57 −1.06

H 0.7175 3.5215 4.57 1.434 H 0.7175 −0.0015 4.57 −1.434

Si 1.2 0.0 6.09 2.73 Si 1.2 3.52 3.05 −2.73

Si 1.2 2.64 7.62 2.73 Si 1.2 0.88 1.52 −2.73

O −1.0 0.0 6.09 1.06 O −1.0 3.52 3.05 −1.06

O −1.0 2.64 7.62 1.06 O −1.0 0.88 1.52 −1.06

To remove such a limitation and render the MD method
applicable to more general conditions, Andersen [15] pro-
posed new MD methods which can handle the simulation at
constant pressure and/or temperature. Following Andersen
[15], Parrinello and Rahman [16] extended the method
by taking into account the MD cell shape change. This
is achieved by introducing a tensor defining fully the cell
size and shape, which are incorporated as extra degrees
of freedom into Hamiltonian equations of motion. The
P-R method has been frequently used in the studies of
structural transformations of solids or liquids with volume
and temperature fluctuations under constant external stress
conditions. For example, in the same paper, Parrinello and
Rahman [16] applied the method to the simulation of a
lattice model of Nickel subjected to uniaxial compression
and tensile load and uncovered unforeseen patterns of crystal
transition. Yamakov et al. [17, 18] studied the nanocrystalline
aluminum using the P-R method and showed that it was a
powerful new tool for elucidating and quantifying the atomic
level mechanisms controlling the complex dislocation and
grain-boundary processes in heavily deformed nanocrys-
talline materials. Success was also achieved by Tsuneyuki
et al. [19] in applying the method to the simulation of
pressure-induced structural transitions of various poly-
morphs of silica, which experiences discontinuous volume
reduction and novel structural phases with increasing hydro-
static pressures. Little study, however, has been published
on the application of the method to clay minerals. In the
development and employment of a general force field in the
simulation of clay minerals, Cygan et al. [20] adopted the
P-R technique, but no attempt was made in exploring the

effects of external stress and cell boundary condition on the
structural transition behavior of clay minerals.

In this paper, we apply for the first time the P-R method
to the simulations of 2:1 clay minerals. The focus of the study
is on the interlayer molecular structural transformations of
dehydrated dioctahedral smectites bearing octahedral layer
charges. Given the advantage of the method, it is our major
goal to predict the behavior of dehydrated smectite sheets
under a constant normal pressure but varying degrees of
cell boundary constraints. In particular, the effects of cell
volume and shape changes on the structural transformation
of clay minerals will be fully investigated. The coupled
changes of cell configuration and atomic positions driven
by the external and internal stress imbalance, which cannot
be predicted by the conventional MD method, provide new
insights on the atomic-scale behavior of clay minerals.

To better study the equilibrium structures of clay
minerals after a large number of time steps, over which
cumulative computational errors may affect the simulation
results, we also study the problem by using a static version
of the method, in which time variations of system properties
are disregarded, and only atom positional variables are
involved. As a result, the static simulation provides results
that represent the behavior of clay minerals at zero Kelvin.

2. MD Simulation Method

2.1. Molecular Model of Na-Saturated Smectite. The unit-cell
formula of Na-saturated dioctahedral smectite is [21]:

Nax(Si8−mAlm)
(

Al4−nMgn
)

O20(OH)4, (1)
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Figure 1: Crystal structure of a periodically repeated dehydrate of 2:1 dioctahedral mica. (a) 2D view in the a-b plane. (b) 2D view in the a-c
plane. (c) 3D view.

where x = m + n is the overall layer charge neutralized by
the Na+ counterions, with m and n equal to the number
of tetrahedral substitutions of Si by Al and octahedral
substitutions of Al by Mg, respectively. In this paper, we
studied the behavior of true micas bearing an octahedral
layer charge of −2.0 (i.e., x = n = 2, m = 0) [22]. The
crystallographic structure of mica is monoclinic (C2/c) with
unit cell dimensions a = 5.28 Å, b = 9.15 Å, and c = 6.56 Å.
The initial atom positions and charges are listed in Table 1
(adopted from Skipper et al. [2]).

To appropriately represent the infinitely extended clay
sheets using very limited number of repeating unit cells in
the simulation cell, 3D periodic boundary conditions must
be imposed to ensure that every atom interacts with all the
other atoms in the simulation cell as well as their infinitely
repeating images (including images of itself) outside of the
simulation cell [2, 23, 24]. Practically, this representation
scheme can be greatly simplified by applying a cut-off to

the short-range contributions to the interatomic potentials
so that every atom only interacts with its nearest images
(called the “minimum image convention”). As a result, the
minimum length of any side of the simulation cell is twice the
value of the cut-off. In this study, we have selected 9 Å for the
cut-off, resulting in a 21.12 Å × 18.3 Å rectangle in the basal
plane including eight repeating unit cells. In the dimension
normal to the basal plane (i.e., [001] direction), we selected
to include two single sheets of mica because we found that
this was the minimum size that the simulation cell could
have to be faithfully representative of the macroscopic clay
system. The dimension of the simulation cell in the [001]
direction, therefore, is twice the sum of clay sheet thickness
(i.e., c = 6.56 Å) and interlayer spacing (d). This selection was
based on an extensive parametric study, which showed that
other smaller simulation cells with less number of atoms had
numerical problems and could not converge into a stable
condition in most cases. Under this arrangement, a typical
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Figure 2: Relaxation behavior of the dehydrated mica bearing an octahedral layer charge of +2e under zero normal pressure. Only the cell
size change is allowed. The initial interlayer spacing d0 = 9.5 Å. (a) Evolution of the average unbalanced forces per atom. (b) Evolution of the
average momentum per atom. (c) Evolution of the atomic level internal stress tensor. (d) Evolution of the simulation cell tensor indicating
cell size changes.

simulation cell for the dehydrated mica contains a total
number of 672 atoms. Figure 1 shows the crystal structure of
the dehydrated mica contained in a typical simulation cell.

2.2. Interatomic Potential Functions. In the current study,
we have adopted a uniform potential functional form for
all atom-atom pairs (i.e., two-body term) in the simulation
system as follows [25, 26]:

Uij

(
ri j
)
= qiq je2

4πε0ri j
+ f0

(
bi + bj

)
exp

[
ai + aj − ri j
bi + bj

]
− cic j

r6
i j

+D1i j exp
(
−β1i j ri j

)
+D2i j exp

(
−β2i j ri j

)
.

(2)

Equation (2) consists of Coulomb energy (the first term),
short-range repulsion with Born-Mayer-Higgins (the second
term), van der Waals attraction (the third term), and covalent
Morse terms (the last two terms). In (2), q is the charge

for each atom, ri j is the interatomic distant, ε0 = 8.854 ×
10−12 C2N−1m−2 is the dielectric constant for vacuum, f0 =
6.9511 × 10−11 N is the constant for unit conversion, a,
b, and c are material constants of different atom species,
and Dk and βk (k = 1, 2) denote the depths and shape
of the Modified Morse type potential, respectively. This
comprehensive potential function has been successfully used
in the MC simulations [2, 9] and MD simulations [25, 26]
of smectite-type clay minerals. To determine the parameters
{q,D,β}, we have followed the scheme by Skipper et al.
[2], which is based on the optimal use of MCY water-
water model [27] by representing the clay mineral solely by
water molecules (under the consideration that the valence
electrons in hydroxyl, tetrahedral, and octahedral groups are
centered on the O atoms, which will dominate any short-
range interaction with a clay mineral layer). The resulting
parameter values are listed in Table 2. For the octahedral
substitution of Al by Mg, the charge on the cation site is
simply reduced from +3e to +2e whereas the tetrahedral
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Figure 3: Equilibrated molecular structures of the dehydrated mica after the complete relaxation process shown in Figure 2. (a) a-b plane
view. (b) a-c plane view. (c) b-c plane view. (d) 3D view.

substitution of Si by Al corresponds to the charge reduction
from +1.2e to +0.2e. The parameters {a, b, c} in (2), as listed
in Table 3, are determined so as to reproduce the structural
and physical properties of water and several oxide crystals
[25, 28, 29].

In the handling of long-range coulomb interaction in the
first term in (2), a real-space cut-off cannot be applied to
the summation of this term over an infinite number of atom
pairs without causing serious nonconvergence problems
[24]. Therefore, the Ewald summation technique [23, 30, 31]
was used to treat this problem. In the Ewald sum, the total
Coulomb energy is divided into two rapidly convergent
series, one in real space and the other in reciprocal space. The
rate of convergence depends on a common parameter α in
both series, and a balance must be achieved between accuracy
and the speed of convergence by selecting an appropriate
value of α [30, 32, 33]. We used the value of 0.1 Å−1 for α
in this study, with the resulting error of Ewald sum energy
less than 0.5%.

3. Simulation Results

In order to carry out a physically sound MD simulation
for the clay mineral system, a parametric study has been
made to determine the time step Δt. It is found that the
time step essentially controls the convergence of the system
and a value of 1.0 × 10−17 sec for Δt is determined to be
appropriate. In the following sections, we present results of
MD simulations of dehydrated Na-mica under structural
relaxation under different normal pressures. It is our major
interest to study the effects of cell boundary constraints on
the model behavior, that is, whether the cell size or shape is
allowed to change. Results from static simulations are also
presented for a comparison study.

3.1. Relaxation Behavior with Cell Size Change. A first MD
simulation of the dehydrated mica relaxed under zero
external stress (i.e., σi j = 0) is carried out, where only the
cell size change is allowed (i.e., no shear distortion is allowed,
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Figure 4: Relaxation behavior of the dehydrated mica bearing an octahedral layer charge of +2e under zero normal pressure. Full allowance
of cell size and shape changes is given. The initial interlayer spacing d0 = 9.5 Å. (a) Evolution of the average unbalanced forces per atom. (b)
Evolution of the average momentum per atom. (c) Evolution of the atomic level internal stress tensor. (d) Evolution of the simulation cell
tensor indicating cell size and shape changes.

Δhi j = 0, for i /= j). The initial interlayer spacing (d0) is 9.5 Å.
The time variations of the relaxation behavior are shown in
Figure 2. The system starts from the initial atom positions
shown in Table 1 with zero velocities and evolves according to
the dictates of the equations of motion of the system. Driven
by the large imbalance between the initial internal stress (π)
and zero external stress (σ), the MD cell starts to distort
away from its initial shape. This is reflected in the changes
of diagonal terms of the cell matrix h (Figure 2(d)). The
nondiagonal terms are equal to zero due to the prohibition
of any shear distortion. Structural equilibrium is deemed to
be achieved after about 20 000 time steps, where the average
particle momentums in the three Cartesian directions start
to fluctuate around a mean value of 1.8 × 10−14 kg·m/sec
(Figure 2(b)). Time evolutions of the average unbalanced

interparticle forces are shown in Figure 2(a). Because of
the effects of thermal motions, these average unbalanced
interparticle forces do not diminish completely but fluctuate
around certain values under the equilibrium condition. As
can be readily understood and inferred, in a static simulation
where all thermal motions are removed, these unbalanced
interparticle forces should approach zero upon equilibrium.
This will be verified later.

The evolutions of the internal stress tensor π shown
in Figure 2(c) indicate that all the diagonal terms reduce
remarkably from high initial values and end up with fluc-
tuations around low values near zero. These low-amplitude,
nonzero fluctuations at equilibrium, are again attributed
to the thermal motions of the system and will likewise
disappear in a static simulation. The nondiagonal stress
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Figure 5: Equilibrated molecular structures of the dehydrated mica after the complete relaxation process shown in Figure 4. (a) a-b plane
view. (b) a-c plane view. (c) b-c plane view. (d) 3D view.

Table 2: Parameters for the covalent Morse potential based on the MCY model.

Atom-Atom D1i j (kcal/mol) β1i j (Å−1) D2i j (kcal/mol) β2i j (Å−1)

H−H 666.33 2.7608 0 0

H−O 1455.4 2.9619 −273.59 2.2333

H−Na 2051.9 2.361 −884.2 1.9349

H−Si 577.23 2.1564 −2.137 1.22

H−Al 577.23 2.15646 −2.137 1.22

H−Mg 742.0 1.681 0 0

O−O 1088213 5.1527 0 0

O−Na 61888 4.0849 −25.948 0.7746

O−Si 13061 3.2037 −1345.8 2.2671

O−Al 13061 3.2037 −1345.8 2.2671

O−Mg 11767.2 2.393 6801.5 2.1037

Si−Na 2164.54 2.1209 −1505.4 1.8652

Si−Mg 6938.73 2.009 186446.6 4.827

Al−Na 2164.54 2.1209 −1505.4 1.8652
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Figure 6: Relaxation behavior of the same dehydrated mica predicted by the static method. Only the cell size change is allowed. (a) Evolution
of the average unbalanced forces per atom. (b) Evolution of the maximum unbalanced atomic forces in the system. (c) Evolution of the atomic
level internal stress tensor. (d) Evolution of the simulation cell tensor indicating cell size changes.

Table 3: Parameters for the short-term repulsion potential with
Born-Mayer-Higgins and van der Waals potentials.

Atom a (Å) b (Å) c (kJ/mol)0.5· Å3

Al 1.015 0.08 0.0

Si 0.908 0.09 0.0

Na 1.318 0.12 37.683

Mg 1.161 0.08 0.0

O 1.841 0.124 57.288

H 0.036 0.058 0.0

terms, however, retain almost constant values throughout the
whole simulation. This is particularly the case for π12 (and
π21), which suggests a large shear stress in the a-b plane. The
existence of these deviatoric stress terms is mainly due to the
restraint from shear distortions of the MD cell.

2D and 3D views of the MD cell structure with all the
atom positions at equilibrium are illustrated in Figure 3. It
is seen that relaxation under zero external stresses results
in moderate rearrangement of atom positions under the

equilibrium condition. The average values of h11, h22, and
h33 during the last 5 000 time steps are 2.86 nm, 1.94 nm
and 3.55 nm, respectively, indicating that the MD cell
undergoes expansions in all the three axial directions. The
final interlayer spacing is estimated to be about 7.5 Å.

3.2. Relaxation Behavior with Both Cell Size and Shape
Changes. Figure 4 shows the results of an MD run in
which full freedom is given to the MD cell size and shape
changes. All the other conditions remain the same as the last
simulation. It is noted that two distinct features appear that
are different from the last simulation: (2) shear distortions of
the MD cell take place as indicated by the gradual increases
of nondiagonal terms of the h matrix, with the largest shear
distortion occurring in the sheet plane (Figure 4(d)); (2) all
the terms of the internal stress tensor π, including deviatoric
stress terms, tend to approach zero (with mild fluctuations)
at the equilibrium state. The above two features, which
are predicted by the current MD method for the first
time, suggest the inherent correlations between the bound-
ary constraint and external stress conditions imposed on
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Figure 7: Relaxation behavior of the same dehydrated mica predicted by the static method. Full allowance of cell size and shape changes is
given. (a) Evolution of the average unbalanced forces per atom. (b) Evolution of the maximum unbalanced atomic forces in the system. (c)
Evolution of the atomic level internal stress tensor. (d) Evolution of the simulation cell tensor indicating cell size and shape changes.

the MD cell, and resulted cell deformation and internal stress
conditions. The time averages of the matrix h during the last
10 000 time steps are:

⎛
⎜⎜⎝

2.924 0.405 0.140

0.454 1.968 0.141

0.144 0.104 3.558

⎞
⎟⎟⎠, (3)

based on which we calculated the angles between the
otherwise orthogonal axes to be 70◦ (±3◦), 85◦ (±2◦), and
85◦ (±2◦). It is found that the time averages of h11, h22, and
h33 are very close to those in the last simulation, indicating
that there is little correlation between the axial and shear
deformations of the MD cell under zero external pressures.

The equilibrated MD cell structure in the simulation
is shown in Figure 5. Overall, it is seen that more atom
positional rearrangements are obtained as the system moves
along its trajectory towards equilibrium. Shear distortions,
especially in the a-b plane, are distinctly visualized in the
corresponding 2D views (Figures 5(a)−5(c)). The interlayer
spacing, when examined carefully, is found to be slightly

less than that in the last simulation (i.e., by comparing
Figure 5(c) and Figure 3(c)).

3.3. Results of Static Simulations. The two simulations
described in Sections 3.1 and 3.2 are recalculated using the
static version of the method, which provides better pic-
tures of the relationship between boundary constraints and
resulted internal stresses, because all the thermal fluctuations
are removed. However, the observed behavior is only valid
at zero Kelvin. The results of the two static simulations are
shown in Figures 6 and 7, respectively.

It is clear that with the removal of thermal fluctuations,
all the curves become much more smooth and well defined
in terms of the trend of convergence. The average and
maximum unbalanced interparticle forces, which are now
used as major criteria for judgment of convergence, mono-
tonically approach zero towards equilibrium (Figures 6(a)
and 6(b) and Figures 7(a) and 7(b)). It is more interesting to
examine the evolutions of the internal stress tensor π and cell
matrix h. Firstly, for the case where merely cell size change is
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Figure 8: Equilibrated molecular structures of the dehydrated mica predicted by the static method. Full allowance of cell size and shape
changes is given. (a) 3D view. (b) a-b plane view.

allowed, it is clear that all the diagonal stress terms have been
reduced to zero as a result of cell dimension changes while all
the nondiagonal stress terms retain nearly constant, nonzero
values at equilibrium state (Figure 6(c)) due to the constraint
of cell shear distortion. Particularly, we note the high shear
stress π12 (and π21) = 1.7 GPa in the sheet plane, which is
about 55% higher than the value in the corresponding MD
run. Final values of cell dimensions are h11 = 2.46 nm, h22

= 1.81 nm, and h33 = 3.17 nm (Figure 6(d)), which are also
smaller than those in the MD run. These differences suggest
that the system becomes more “compacted” in an idealized
static condition.

In the second case where full freedom is given to the
cell size and shape change, it is interesting to observe
that the entire tensor π decays to zero after about 16 000
iterations (Figure 7(c)), and in order to allow that to
happen, remarkable changes have occurred to the matrix h
(Figure 7(d)): (2) h11 and h33 undergo a significant increase
and decrease to reach a value of 3.36 nm and 2.24 nm,
respectively, with the latter essentially eliminating any
existing interlayer spacing (see Figure 8(a)); (2) h12 and h21

undergo significant increases to reach an approximate value
of 9.8 Å, implying a much larger shear distortion in the sheet
plane (see Figure 8(b)). Changes in h13 and h31, and h23

and h32 are much smaller and close to each other in each
symmetric pair. As compared to the MD runs, it is quite
remarkable to observe these severe crystal transformations
of the clay mineral that are required to take place to dissipate
all the internal stress terms to reach an equilibrium status,
as predicted by static simulations. However, it should be
noted that these results only represent idealized behavior

at zero temperature and should be cautiously interpreted
with regard to their implications to more realistic material
behavior at finite temperatures.

3.4. Effects of Normal Pressures. In addition to the relaxation
behavior of clay minerals under zero normal pressure, we
are more interested to find out how the interlayer spacing
at equilibrium will vary with the normal pressure placed on
the sheet plane. Figure 9 shows the interlayer spacing-versus-
normal pressure relationships from two monotonic axial
compression simulations, where the cell shear distortion is
allowed and prohibited in the first and second simulations,
respectively. The axial compression starts with the fully
relaxed structure under zero normal pressure and applies
an incremental axial load of 0.2 GPa per load step. The
interlayer spacing is recorded after the structure achieves
an equilibrium in each step. It is seen that the interlayer
spacing decreases approximately in a linear fashion with the
normal pressure within the whole pressure range when no
cell shear distortion is allowed (Figure 9(b)). For the case
with cell shear distortion, a nonlinear, slower decrease of
interlayer spacing is found in the low pressure range of 0∼
4 GPa, which is followed by a higher rate, linear reduction
in the high pressure range (Figure 9(a)). These results clearly
indicate that the compressibility of dehydrated mice sheets
in the [001] direction is chiefly due to the existing interlayer
spacing.

The above results agree well with the previous exper-
imental observations on monoclinic dioctahedral micas by
Gatta et al. [14] and Zanazzi and Pavese [34]. To further
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Figure 9: Comparison of the volume-pressure relationships from the current MD study and the experimental study by Gatta et al. [14].
(a) interlayer spacing-versus-normal pressure relationship from the current MD study with cell shear distortion allowed. (b) Interlayer
spacing-versus-normal pressure relationship from the current MD study with cell shear distortion prohibited. (c) K-polyhedron volume-
versus-hydrostatic pressure relationship of a 3T-phengite mica by Gatta et al. [14].

demonstrate this deformation mechanism and validate the
current MD model, we compare our simulation results
with the K-polyhedron volume-versus-hydrostatic pressure
relationship observed recently by Gatta et al. [14] in an in
situ single-crystal X-ray diffraction study on a 3T-phengite
mica, as shown in Figure 9(c). In this experimental study,
Gatta et al. [14] found that the compressibility of the
phengite mica was mainly attributed to the reduction
of K-polyhedron volume, which is equivalent to the

reduction of interlayer spacing observed in the current study.
Although the chemical formula of the 3T-phengite mica
((K0.90Na0.05)(Al1.51Mg0.32Fe0.18Ti0.03)(Si3.40Al0.60)O10(OH)2)
is much more complicated than that of the Na-saturated
mica used in the current study, it is clear in Figure 9 that
the same structural deformation mechanism is displayed for
micas subject to hydrostatic or normal compressions.

Figure 10 shows the result of the same axial compression
simulation without cell shear distortion using the static
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method. Interestingly, a drastically different behavior fea-
tured with an instantaneous drop of the interlayer spacing
from 9.3 Å to 4.1 Å at a normal pressure of about 1.5 GPa is
observed. Before and after this collapsing behavior, the rate
of compression is very low and keeps a constant within the
whole pressure range. At zero temperature, such a brittle
collapse behavior can be readily understood because the
energy barrier, in the absence of any thermal agitation, is
solely a function of the positional variables of the system. The
very low rate of compression other than the collapsing drop is
mainly attributed to the volume reduction of the individual
mica sheets, which possess a very high compressive modulus.

4. Concluding Remarks

In this paper, we have applied the Parrinello-Rahman
constant-pressure molecular dynamics method to the study
of dehydrated mica, in which unforeseen patterns of crystal
structural transformation of mica relaxed under constant
normal pressures have been uncovered. We are particularly
impressed to see the large shear distortion of the MD
cell and the accompanied disappearance of deviatoric stress
terms under zero boundary constraint (or its opposite
scenario). Under monotonic axial loading conditions, an
approximate linear reduction of interlayer spacing with the
applied normal pressure is observed from an MD simulation
while a brittle-type collapse of the interlayer spacing at a
certain normal pressure is yielded by a static simulation.
These results reveal the inherent relationships between the
external applied and internal generated stress tensors and
imposed cell boundary conditions and attest exactly to the
capability of the method to predict phase transitions of solids
in relation to particle interactions.

We have noticed the differences of results from the
static method and the full MD method. The differences are
attributed to the thermal agitations of the system, without
which a much more well-defined correlation of stress and
structural deformation is observed. It is particularly noted
that the interlayer spacing of mica is completely eliminated
when the maximum degrees of freedom of the MD cell are
given in a static simulation. This behavior, however, may
not be valid in a finite temperature condition, as predicted
otherwise by an MD simulation. The existence of interlayer
spacing, as shown by both methods, has a close relationship
with the compressive modulus behavior of clay mineral.

The successful application of the Parrinello-Rahman
constant-pressure MD method to a model phyllosilicate sys-
tem which is governed by multiple pair interactions between
different species of atoms (instead of a single pair interaction
among uniform atoms in metals) demonstrates that the
method is a robust and a general one that is not limited by
the type of the interatomic potential, but could be applied to
many kinds of solids. Many other applications are conceived
to be possible, such as the studies of monotonic/cyclic
loading of clay minerals, the interactions and properties
of the clay-water-cation system, or the nanoindentation of
clay minerals. These proposed topics are currently under
investigation.
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