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We are interested in a nonsmooth minimax programming Problem (SIP). Firstly, we establish the necessary optimality conditions
theorems for Problem (SIP) when using the well-known Caratheodory’s theorem. Under the Lipschitz (Φ, 𝜌)-invexity assumptions,
we derive the sufficiency of the necessary optimality conditions for the same problem. We also formulate dual and establish weak,
strong, and strict converse duality theorems for Problem (SIP) and its dual. These results extend several known results to a wider
class of problems.

1. Introduction

Convexity plays a central role in many aspects of mathe-
matical programming including analysis of stability, suffi-
cient optimality conditions, and duality. Based on convex-
ity assumptions, nonlinear programming problems can be
solved efficiently. There have been many attempts to weaken
the convexity assumptions in order to treat many practical
problems. Therefore, many concepts of generalized convex
functions have been introduced and applied to mathematical
programming problems in the literature [1]. One of these
concepts, invexity, was introduced by Hanson in [2]. Hanson
has shown that invexity has a common property in math-
ematical programming with convexity that Karush-Kuhn-
Tucker conditions are sufficient for global optimality of
nonlinear programming under the invexity assumptions.
Ben-Israel and Mond [3] introduced the concept of preinvex
functions which is a special case of invexity. Many other
concepts of generalized convexity such as (𝑝, 𝑟)-invexity [4],
(𝐹, 𝜌)-convexity [5], (𝐹, 𝛼, 𝜌, 𝑑)-convexity [6], (𝐶, 𝛼, 𝜌, 𝑑)-
convexity [7], and𝑉-𝑟-invexity [8] have also been introduced.
With these definitions of generalized invexity on the hand,
several authors have been interested recently in the optimality
conditions and duality results for different classes ofminimax
programming problems; see [9–12] for details.

Recently, Antczak and Stasiak [13] generalized the defini-
tion of (Φ, 𝜌)-invexity notion introduced by Caristi et al. and
M. V. Ştefănescu and A. Ştefănescu [14, 15] for differentiable
optimization problems to the case of mathematical pro-
gramming problems with locally Lipschitz functions. They
proved sufficient optimality conditions and duality results
for nondifferentiable optimization problems involving locally
Lipschitz (Φ, 𝜌)-invex functions. Antczak [16] also consid-
ered a class of nonsmooth minimax programming problems
in which functions involved are locally Lipschitz (Φ, 𝜌)-
invex. We point out that this locally Lipschitz (Φ, 𝜌)-invexity
includes the (𝐶, 𝛼, 𝜌, 𝑑)-convexity as a special case and Yuan
et al. [7] defined firstly the (𝐶, 𝛼, 𝜌, 𝑑)-convexity with a con-
vex functional 𝐶.

Due to a growing number of theoretical and practical
applications, semi-infinite programminghas recently become
one of the most substantial research areas in applied math-
ematics and operations research. For more details on semi-
infinite programming we refer to the survey papers [17–19]
and for clear understanding of different aspects of semi-
infinite programming we refer to [20]. M. V. Ştefănescu and
A. Ştefănescu [17] considered differentiable Problem (SIP)
with new (Φ, 𝜌)-invexity. However, the results of this kind
of programming can not be used to deal with the concrete
nonsmooth semi-infinite minimax programming problem
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as presenting in Example 9 in Section 3 since the objective
function is nondifferentiable at 𝑥 = 1.Therefore, we are inter-
ested in dealing with nonsmooth Problem (SIP) with locally
Lipschitz (Φ, 𝜌)-invexity proposed in [13], in this paper.

The rest of the paper is organized as follows. In Section 2,
we present concepts regarding Lipschtiz (Φ, 𝜌)-invexity. In
Section 3, we present not only necessary but also sufficient
optimality conditions for nonsmooth Problem (SIP). When
the necessary optimality conditions and the (Φ, 𝜌)-invexity
concept are utilized, dual Problem (DI) is formulated for the
primal (SIP) and duality results between them are presented
in Section 4. Section 5 is our conclusions.

2. Notations and Preliminaries

In this section, we provide some definitions and results that
we shall use in the sequel. Let𝑋 be a subset ofR𝑛 and denote
𝑄 := {1, 2, . . . , 𝑞},𝑄∗ := {1, 2, . . . , 𝑞∗},𝑀 := {1, 2, . . . , 𝑚}, and
𝑀∗ := {1, 2, . . . , 𝑚∗}.

Definition 1. A real-valued function 𝑓 : 𝑋 → R is said to be
locally Lipschitz on 𝑋 if, for any 𝑥 ∈ 𝑋, there exist a neigh-
borhood 𝑈 of 𝑥 and a positive constant 𝑇

𝑥
> 0 such that

𝑓 (𝑦) − 𝑓 (𝑧)
 ≤ 𝑇
𝑥

𝑦 − 𝑧
 , ∀𝑦, 𝑧 ∈ 𝑈. (1)

Definition 2 (see [21]). Let 𝑑 ∈ R𝑛 and 𝑓 : 𝑋 → R. If

𝑓
0

(𝑥; 𝑑) := lim
𝑦→𝑥

𝜇↓0

sup 1

𝜇
(𝑓 (𝑦 + 𝜇𝑑) − 𝑓 (𝑦)) (2)

exists, then 𝑓0(𝑥; 𝑑) is said to be the Clarke derivative of 𝑓
at 𝑥 in the direction 𝑑. If this limit superior exists for all 𝑑 ∈

R𝑛, then 𝑓 is called Clarke differentiable at 𝑥. The set

𝜕𝑓 (𝑥) = {𝜁 | 𝑓
0

(𝑥; 𝑑) ≥ ⟨𝜁, 𝑑⟩ , ∀𝑑 ∈ R
𝑛

} (3)

is called the Clarke subgradient of 𝑓 at 𝑥.

Note that if a function is locally Lipschitz, then its Clarke
subgradient must exist.

The definition of the locally Lipschitz (Φ, 𝜌)-invexity was
introduced by Antczak and Stasiak [13]; see also the following
Definition 3. This generalized invexity was introduced as a
generalization of differentiable (Φ, 𝜌)-invexity notion defined
by Caristi et al. and M. V. Ştefănescu and A. Ştefănescu in
[14, 17].Themain tool used in the definition of the locally Lip-
schitz (Φ, 𝜌)-invexity notion is the above Clarke generalized
subgradient (see Definition 2).

Definition 3. Let 𝑓 : 𝑋 → R be a real-valued Lipschitz
function on 𝑋. For fixed 𝑢 ∈ 𝑋, let Φ : 𝑋 × 𝑋 × R𝑛+1 → R

be convex with respect to the third argument on R𝑛+1 such
thatΦ(𝑥, 𝑢, (0, 𝑎)) ≥ 0 for every 𝑥 ∈ 𝑋 and any 𝑎 ≥ 0. If there
exists a real-valued function 𝜌(⋅, ⋅) : 𝑋 × 𝑋 → R such that

𝑓 (𝑥) − 𝑓 (𝑢) ≥ (>)Φ (𝑥, 𝑢, (𝜉, 𝜌 (𝑥, 𝑢))) , ∀𝜉 ∈ 𝜕𝑓 (𝑢)

(4)

holds for all𝑥 ∈ 𝑋 (𝑥 ̸= 𝑢), then𝑓 is said to be (strictly) locally
Lipschitz (Φ, 𝜌)-invex at 𝑢 on 𝑋 or shortly (strictly) (Φ, 𝜌)-
invex at 𝑢 on𝑋. If 𝑓 is (strictly) locally Lipschitz (Φ, 𝜌)-invex
at any 𝑢 of𝑋, then𝑓 is (strictly) locally Lipschitz (Φ, 𝜌)-invex
on𝑋.

Remark 4. In order to define an analogous class of (strictly)
locally Lipschitz (Φ, 𝜌)-incave functions, the direction of the
inequality in the definition of these functions should be
changed to the opposite one.

In this paper, we deal with the nonsmooth semi-infinite
minimax programming Problem (SIP) with the locally Lip-
schitz (Φ, 𝜌)-invexity proposed by Antczak and Stasiak [13].
Here, Problem (SIP) is

min sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦)

subject to 𝜓 (𝑥, 𝑧) ≤ 0, 𝑧 ∈ 𝑍,
(SIP)

where 𝑌 and 𝑍 are compact subsets of some Hausdorff
topological spaces,𝜙(⋅, ⋅) : R𝑛×𝑌 → R,𝜓(⋅, ⋅) : R𝑛×𝑍 → R.
Let 𝐸SIP be the set of feasible solutions of Problem (SIP); in
other words, 𝐸SIP = {𝑥 ∈ R𝑛 | 𝜓(𝑥, 𝑧) ≤ 0, 𝑧 ∈ 𝑍}. For
convenience, let us define the following sets for every 𝑥 ∈

𝐸SIP:

𝐽 (𝑥) = {𝑧 ∈ 𝑍 | 𝜓 (𝑥, 𝑧) = 0} ,

𝑍 (𝑥) = {𝑧
∗

∈ 𝑍 | 𝜓 (𝑥, 𝑧
∗

) = sup
𝑧∈𝑍

𝜓 (𝑥, 𝑧)} ,

𝑌 (𝑥) = {𝑦
∗

∈ 𝑌 | 𝜙 (𝑥, 𝑦
∗

) = sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦)} .

(5)

If 𝑥 ∈ 𝐸SIP, then 𝐽(𝑥) represents the index set of the active
restrictions at 𝑥. Note that 𝐽(𝑥) = 𝑍(𝑥) when 𝐽(𝑥) is not
empty.

Consider the nonlinear programming problem

min 𝑓 (𝑥)

subject to 𝑔 (𝑥) ≤ 0,
(P)

where 𝑓, 𝑔 : R𝑛 → R. A particular case of Problem (P) is the
minimax problem (SIP) in which the functions𝑓, 𝑔 are given
by

𝑓 (𝑥) := sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) , (6)

𝑔 (𝑥) := sup
𝑧∈𝑍

𝜓 (𝑥, 𝑧) , (7)

respectively. Let 𝑥
0

∈ 𝐸SIP. Consider the following uncon-
strained optimization problem (P):

min {ℎ (𝑥) | 𝑥 ∈ R
𝑛

} , (P)

whereℎ(𝑥) := max{𝑓(𝑥)−𝑓(𝑥
0
), 𝑔(𝑥)}.Then, the relationship

between Problems (P) and (P) is given in the following
lemma.
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Lemma 5. If 𝑥
0
is a local minimizer for Problem (P), then 𝑥

0

is also a local minimizer for Problem (P).

To deal with the nonsmooth Problem (SIP), we need the
following Conditions 1 and 2.

Condition 1. Weassume that (a) the sets𝑌 and𝑍 are compact;
(b) the function 𝜙(𝑥, 𝑦) is upper semicontinuous in (𝑥, 𝑦),
and the function𝜓(𝑥, 𝑧) is upper semicontinuous in (𝑥, 𝑧); (c)
the function𝜙(𝑥, 𝑦) is locally Lipschitz in𝑥 and uniformly for
𝑦 in 𝑌, and the function 𝜓(𝑥, 𝑦) is locally Lipschitz in 𝑥 and
uniformly for 𝑧 in 𝑍; (d) the function 𝜙(𝑥, 𝑦) is regular in 𝑥;
that is, 𝜙∘

𝑥
(𝑥, 𝑦; ⋅ ) = 𝜙

𝑥
(𝑥, 𝑦; ⋅ ), where the symbol 𝜙

𝑥
denotes

the derivative with respect to 𝑥; also the function 𝜓(𝑥, 𝑧)

is regular in 𝑥; (e) the set-valued map 𝜕𝜙
𝑥
(𝑥, 𝑦) is upper

semicontinuous in (𝑥, 𝑦), and the set-valued map 𝜕𝜓
𝑥
(𝑥, 𝑧)

is upper semicontinuous in (𝑥, 𝑧).

Condition 2. For any finite subset 𝑍 ⊂ 𝑍(𝑥∗), for some 𝑥∗ ∈
𝐸SIP, the equality ∑

𝑧∈𝑍
 𝜂
𝑧
𝜁
𝑧
= 0 with 𝜂

𝑧
≥ 0, 𝜁

𝑧
∈ 𝜕𝜓(𝑥∗, 𝑧),

𝑧 ∈ 𝑍, implies that

𝜂
𝑧
= 0, ∀𝑧 ∈ 𝑍



. (8)

Clarke [22, Theorem 2.1] has shown that, under the
assumptions (a)–(e) of Condition 1, the maximum function
𝑓 defined by (6) is locally Lipschitz; 𝑓(𝑥, 𝑑) exists and is
given by the formula

𝑓


(𝑥, 𝑑) = 𝑓
∘

(𝑥, 𝑑)

= max {𝜉 ⋅ 𝑑 | 𝜉 ∈ 𝜕
𝑥
𝜙 (𝑥, 𝑦) , 𝑦 ∈ 𝑌 (𝑥)} ,

(9)

where 𝜉 ⋅ 𝑑 denotes the inner product of vectors 𝜉 and 𝑑.
Moreover, the sup in (6) can be replaced by max and the
subgradient 𝜕𝑓(𝑥) is given by

𝜕𝑓 (𝑥) = co
{

{

{

⋃
𝑦∈𝑌(𝑥)

𝜕
𝑥
𝜙 (𝑥, 𝑦)

}

}

}

. (10)

Similarly, the maximum function 𝑔 defined by (7) is
locally Lipschitz; 𝑔(𝑥, 𝑑) and 𝜕𝑔(𝑥) are given by

𝑔


(𝑥, 𝑑) = 𝑔
∘

(𝑥, 𝑑)

= max {𝜁 ⋅ 𝑑 | 𝜁 ∈ 𝜕
𝑥
𝜓 (𝑥, 𝑧) , 𝑧 ∈ 𝑍 (𝑥)} ,

𝜕𝑔 (𝑥) = co{ ⋃
𝑧∈𝑍(𝑥)

𝜕
𝑥
𝜓 (𝑥, 𝑧)} ,

(11)

respectively.

3. Optimality Conditions

In this section, we establish not only the necessary optimality
conditions theorems but also the sufficient optimality condi-
tions theorems for Problem (SIP)with the functions involved
being locally Lipschitz with respect to the variable 𝑥.

Theorem 6 (necessary optimality conditions). Let 𝑥∗ be an
optimal solution of (SIP). One also assume that Condition 1
holds.Then there exist nonnegative integers 𝑞∗ and𝑚∗ with 1 ≤

𝑞∗ +𝑚∗ ≤ 𝑛+1, vectors 𝑦∗
𝑖
∈ 𝑌(𝑥∗) (𝑖 ∈ 𝑄∗), 𝑧∗

𝑗
∈ 𝑍(𝑥∗) (𝑗 ∈

𝑀∗), and scalars 𝜆∗
𝑖
> 0 (𝑖 ∈ 𝑄∗), 𝜇∗

𝑗
> 0 (𝑗 ∈ 𝑀∗) such that

0 ∈

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
𝜕
𝑥
𝜙 (𝑥
∗

, 𝑦
∗

𝑖
) +

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧
∗

𝑗
) , (12)

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
+

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
̸= 0. (13)

Here, one allow the case, where if 𝑞∗ = 0, then the set𝑄∗ is
empty; similarly, if𝑚∗ = 0, then the set𝑀∗ is empty.

Proof. Let 𝑥∗ be a local minimizer for Problem (SIP). This
means that 𝑥∗ is a local minimizer for Problem (P), where 𝑓
and 𝑔 are given by (6) and (7), respectively. Therefore, 𝑥∗ is a
local minimizer for Problem (P).

By Condition 1 and [22, Theorem 2.1], 𝑓 is locally Lips-
chitzian and regular at 𝑥∗, so the function

𝑓 (𝑥) := 𝑓 (𝑥) − 𝑓 (𝑥
∗

) (14)

has the same properties. Then, using [21, Propositions 2.3.2
and 2.3.12], we obtain

0 ∈ 𝜕ℎ (𝑥
∗

)

= co {𝜕𝑓 (𝑥
∗

) ∪ 𝜕𝑔 (𝑥
∗

)} = co {𝜕𝑓 (𝑥
∗

) ∪ 𝜕𝑔 (𝑥
∗

)}

= co
{

{

{

co
{

{

{

⋃
𝑦∈𝑌(𝑥

∗
)

𝜕
𝑥
𝜙 (𝑥
∗

, 𝑦)
}

}

}

∪ co{ ⋃
𝑧∈𝑍(𝑥

∗
)

𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧)}
}

}

}

= co
{

{

{

⋃
𝑦∈𝑌(𝑥

∗
)

𝜕
𝑥
𝜙 (𝑥
∗

, 𝑦) ∪ ⋃
𝑧∈𝑍(𝑥

∗
)

𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧)
}

}

}

;

(15)

here the equality

co (co𝐴 ∪ co𝐵) = co (𝐴 ∪ 𝐵) (16)

is used in the fourth equality. Hence, by Caratheodory’s
theorem, there exist the nonnegative integers 𝑞∗ and𝑚∗ and
the scalars 𝜆∗

𝑖
> 0 (𝑖 ∈ 𝑄∗) and 𝜇∗

𝑗
> 0 (𝑗 ∈ 𝑀∗) such that

1 ≤ 𝑞
∗

+ 𝑚
∗

≤ 𝑛 + 1,

0 =

𝑞
∗

∑
𝑖=1

𝜆
𝑖
𝜉
𝑖
+

𝑚
∗

∑
𝑗=1

𝜇
𝑗
𝜁
𝑗

(17)
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for some 𝜉
𝑖
∈ ⋃
𝑦∈𝑌(𝑥

∗
)
𝜕
𝑥
𝜙(𝑥∗, 𝑦) and 𝜁

𝑗
∈ ⋃
𝑧∈𝑍(𝑥

∗
)
𝜕
𝑥
𝜓(𝑥∗, 𝑧).

Note that, for each 𝑖 ∈ 𝑄∗, 𝜉
𝑖
∈ ⋃
𝑦∈𝑌(𝑥

∗
)
𝜕
𝑥
𝜙(𝑥∗, 𝑦) means

that there exists 𝑦 ∈ 𝑌(𝑥
∗

) such that 𝜉
𝑖
∈ 𝜕
𝑥
𝜙(𝑥
∗

, 𝑦), and
denote this 𝑦 by 𝑦∗

𝑖
. Similarly, there exists 𝑧∗

𝑗
∈ 𝑍(𝑥∗) such

that 𝜁
𝑗

∈ 𝜕
𝑥
𝜓(𝑥∗, 𝑧∗

𝑗
) for each 𝑗 ∈ 𝑀∗. Now the desired

inequalities (12) and (13) can be deduced from the above
discussion.

Theorem 7 (necessary optimality conditions). Let 𝑥∗ be an
optimal solution of (SIP). One also assume that Conditions 1
and 2 hold. Then there exist the nonnegative integers 𝑞∗ > 0

and𝑚∗ with 1 ≤ 𝑞∗ +𝑚∗ ≤ 𝑛 + 1, the vectors 𝑦∗
𝑖
∈ 𝑌(𝑥∗) (𝑖 ∈

𝑄∗), 𝑧∗
𝑗
∈ 𝑍(𝑥∗) (𝑗 ∈ 𝑀∗), and the scalars 𝜆∗

𝑖
> 0 (𝑖 ∈ 𝑄∗),

𝜇∗
𝑗
> 0 (𝑗 ∈ 𝑀∗) satisfying (12) and

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
= 1. (18)

Proof. By Theorem 6, we need to prove 𝑞
∗

̸= 0, on the con-
trary, that is, 𝑞∗ = 0, then one obtains from (12) and (13) that

0 ∈

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧
∗

𝑗
) , (19)

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
̸= 0, (20)

respectively. By (19), there exist 𝜁
𝑗
∈ 𝜕
𝑥
𝜓(𝑥∗, 𝑧∗

𝑗
) for 𝑗 ∈ 𝑀∗

satisfying

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜁
𝑗
= 0. (21)

Now one obtains from the assumptions of Condition 2
that 𝜇∗

𝑗
= 0 for 𝑗 ∈ 𝑀∗; this contradicts to (20), andwe obtain

the desired results.

Next, we derive a sufficient optimality conditions theorem
for Problem (SIP) under the assumption of (Φ, 𝜌)-invexity as
defined in Definition 3.

Theorem 8 (sufficient optimality conditions). Let (𝑥∗, 𝑞∗,

𝑚∗, 𝜆∗, 𝜇∗, 𝑦∗, 𝑧∗) satisfy conditions (12) and (18), where𝑦∗ :=
(𝑦∗
1
, . . . , 𝑦∗

𝑞
∗) and 𝑧∗ := (𝑧∗

1
, . . . , 𝑧∗

𝑚
∗). Assume that 𝜙(⋅, 𝑦∗

𝑖
),

𝑖 ∈ 𝑄
∗, are (Φ, 𝜌

𝜙

𝑖
)-invex at 𝑥∗ on𝑋 and 𝜙(⋅, 𝑧

∗

𝑗
), 𝑗 ∈ 𝑀

∗, are
(Φ, 𝜌
𝜓

𝑗
)-invex at 𝑥∗ on 𝑋. If 𝐽(𝑥∗) ̸= 0 and

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
𝜌
𝜙

𝑖
(𝑥, 𝑥
∗

) +

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜌
𝜓

𝑗
(𝑥, 𝑥
∗

) ≥ 0, ∀𝑥 ∈ 𝑋, (22)

then 𝑥∗ is an optimal solution to (SIP).

Proof. Suppose, contrary to the result, that 𝑥∗ is not an opti-
mal solution for Problem (SIP). Hence, there exists 𝑥

0
∈ 𝐸SIP

such that

sup
𝑦∈𝑌

𝜙 (𝑥
0
, 𝑦) < 𝜙 (𝑥

∗

, 𝑦
∗

𝑖
) , 𝑖 ∈ 𝑄

∗

,

𝜓 (𝑥
0
, 𝑧) ≤ 0 = 𝜓 (𝑥

∗

, 𝑧
∗

𝑗
) , 𝑗 ∈ 𝑀

∗

.

(23)

Thus,

𝜙 (𝑥
0
, 𝑦
∗

𝑖
) < 𝜙 (𝑥

∗

, 𝑦
∗

𝑖
) , 𝑖 ∈ 𝑄

∗

,

𝜓 (𝑥
0
, 𝑧
∗

𝑗
) ≤ 𝜓 (𝑥

∗

, 𝑧
∗

𝑗
) , 𝑗 ∈ 𝑀

∗

.
(24)

Now, we can write the following statement:

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
(𝜙 (𝑥
0
, 𝑦
∗

𝑖
) − 𝜙 (𝑥

∗

, 𝑦
∗

𝑖
))

+

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
(𝜓 (𝑥

0
, 𝑧
∗

𝑗
) − 𝜓 (𝑥

∗

, 𝑧
∗

𝑗
)) < 0.

(25)

By the generalized invexity assumptions of 𝜙(⋅, 𝑦∗
𝑖
) and

𝜓(⋅, 𝑧∗
𝑗
), we have

𝜙 (𝑥
0
, 𝑦
∗

𝑖
) − 𝜙 (𝑥

∗

, 𝑦
∗

𝑖
)

≥ Φ (𝑥
0
, 𝑥
∗

, (𝜉
𝑖
, 𝜌
𝜙

𝑖
(𝑥
0
, 𝑥
∗

))) , ∀𝜉
𝑖
∈ 𝜕
𝑥
𝜙 (𝑥
∗

, 𝑦
∗

𝑖
) ,

𝜓 (𝑥
0
, 𝑧
∗

𝑗
) − 𝜓 (𝑥

∗

, 𝑧
∗

𝑗
)

≥ Φ (𝑥
0
, 𝑥
∗

, (𝜁
𝑗
, 𝜌
𝜓

𝑗
(𝑥
0
, 𝑥
∗

))) , ∀𝜁
𝑗
∈ 𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧
∗

𝑗
) .

(26)

Employing (26) to (25), we have

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
Φ(𝑥
0
, 𝑥
∗

, (𝜉
𝑖
, 𝜌
𝜙

𝑖
(𝑥
0
, 𝑥
∗

)))

+

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
Φ(𝑥
0
, 𝑥
∗

, (𝜁
𝑗
, 𝜌
𝜓

𝑗
(𝑥
0
, 𝑥
∗

))) < 0.

(27)

By (18) and the convexity of Φ, we deduce that

Φ(𝑥
0
, 𝑥
∗

, (

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
𝜉
𝑖
+

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜁
𝑗
,

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
𝜌
𝜙

𝑖
(𝑥
0
, 𝑥
∗

)

+

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜌
𝜓

𝑗
(𝑥
0
, 𝑥
∗

))) < 0.

(28)

This, together with (40) and the assumption Φ(𝑥
0
, 𝑥∗,

(0, 𝑎)) ≥ 0 for any 𝑎 ≥ 0, follows that

0 ∉

𝑞
∗

∑
𝑖=1

𝜆
∗

𝑖
𝜕
𝑥
𝜙 (𝑥
∗

, 𝑦
∗

𝑖
) +

𝑚
∗

∑
𝑗=1

𝜇
∗

𝑗
𝜕
𝑥
𝜓 (𝑥
∗

, 𝑧
∗

𝑗
) . (29)

This is a contradiction to condition (12).
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Example 9. Let 𝑌 = [0, 1] and 𝑍 = [1, 2]. Define

𝜙 (𝑥, 𝑦) = {
𝑥 + 2𝑦, 𝑦 ≥ 𝑥,

2𝑥 + 𝑦, 𝑥 < 𝑦,
𝜓 (𝑥, 𝑧) =


𝑥 −

3

2


−

𝑧

2
.

(30)

Then, 𝜙(⋅, 𝑦) is (Φ, 1)-invex at 𝑥 = 1 for each 𝑦 ∈ 𝑌, 𝜓 is
(Φ, 1)-invex at 𝑥 = 1 for each 𝑧 ∈ 𝑍, and

𝑓 (𝑥) := sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) = {
𝑥 + 2, 𝑦 ≥ 𝑥,

2𝑥 + 1, 𝑥 < 𝑦,

𝑔 (𝑥) := sup
𝑧∈𝑍

𝜓 (𝑥, 𝑧) =

𝑥 −

3

2


−

1

2
.

(31)

Note that

𝜕
𝑥
𝜙 (𝑥, 𝑦) =

{{{

{{{

{

1, 𝑦 ≥ 𝑥,

[1, 2] , 𝑥 = 𝑦,

2, 𝑥 < 𝑦,

𝜕
𝑥
𝜓 (𝑥, 𝑧) = ∇

𝑥
𝜓 (𝑥, 𝑧) = 1.

(32)

Consider 𝑥
0
= 1. Since 𝑌(𝑥

0
) = {1}, then we can assume

𝑞 = 1. Therefore,

0 ∈ 𝜆𝜕
𝑥
𝜙 (1, 1) − 𝜇𝜕

𝑥
𝜓 (1, 1) = 𝜆 [1, 2] − 𝜇, (33)

where 𝜆 = 𝜇 = 1. Now, from Theorem 8, we can say that
𝑥
0
= 1 is an optimal solution to (SIP).

4. Duality

Making use of the optimality conditions of the preceding
section, we present dual Problem (DI) to the primal one
(SIP) and establish weak, strong, and strict converse duality
theorems. For convenience, we use the following notations:

𝐾 (𝑥) = {(𝑞,𝑚, 𝜆, 𝑦, 𝑧) | 1 ≤ 𝑞 ≤ 𝑞 + 𝑚 ≤ 𝑛 + 1,

𝜆 = (𝜆
1
, . . . , 𝜆

𝑞
) with

𝑞

∑
𝑖=1

𝜆
𝑖
= 1,

𝜆
𝑖
> 0 for 𝑖 ∈ 𝑄,

𝑦 = (𝑦
1
, . . . , 𝑦

𝑞
) with 𝑦

𝑖
∈ 𝑌 (𝑥) , 𝑖 ∈ 𝑄,

𝑧 = (𝑧
1
, . . . , 𝑧

𝑚
) with 𝑧

𝑗
∈ 𝑍 (𝑥) , 𝑗 ∈ 𝑀} .

(34)

Our dual problem (DI) can be stated as follows:

max
(𝑞,𝑚,𝜆,𝑦,𝑧)∈𝐾(𝑤)

sup
(𝑤,𝜇,])∈𝐻

1
(𝑞,𝑚,𝜆,𝑦,𝑧)

],
(DI)

where 𝐻
1
(𝑞,𝑚, 𝜆, 𝑦, 𝑧) denotes the set of all (𝑤, 𝜇, ]) satisfy-

ing

0 ∈

𝑞

∑
𝑖=1

𝜆
𝑖
𝜕
𝑥
𝜙 (𝑤, 𝑦

𝑖
) +

𝑚

∑
𝑗=1

𝜇
𝑗
𝜕
𝑥
𝜓 (𝑤, 𝑧

𝑗
) , 𝑤 ∈ 𝑋, (35)

𝜙 (𝑤, 𝑦
𝑖
) ≥ ] ≥ 0, 𝑖 ∈ 𝑄, (36)

𝜇
𝑗
𝜓 (𝑤, 𝑧

𝑗
) ≥ 0, 𝑗 ∈ 𝑀, (37)

𝜇 = (𝜇
1
, . . . , 𝜇

𝑚
) with 𝜇

𝑗
> 0 for 𝑗 ∈ 𝑀, (38)

(𝑞,𝑚, 𝜆, 𝑦, 𝑧) ∈ 𝐾 (𝑤) . (39)

Note that if 𝐻
1
(𝑞,𝑚, 𝜆, 𝑦, 𝑧) is empty for some (𝑞,𝑚, 𝜆,

𝑦, 𝑧) ∈ 𝐾(𝑤), then define sup
(𝑤,𝜇,])∈𝐻

1
(𝑞,𝑚,𝜆,𝑦,𝑧)

] = −∞.

Theorem 10 (weak duality). Let 𝑥 and (𝑤, 𝑞,𝑚, 𝜆, 𝜇, ], 𝑦, 𝑧)
be (SIP)-feasible and (DI)-feasible, respectively. Suppose that
𝜙(⋅, 𝑦
𝑖
), 𝑖 ∈ 𝑄, are (Φ, 𝜌

𝜙

𝑖
)-invex at𝑤 on𝑋 and𝜓(⋅, 𝑧

𝑗
), 𝑗 ∈ 𝑀,

are (Φ, 𝜌
𝜓

𝑗
)-invex at 𝑤 on𝑋. If

𝑞

∑
𝑖=1

𝜆
𝑖
𝜌
𝜙

𝑖
(𝑥, 𝑤) +

𝑚

∑
𝑗=1

𝜇
𝑗
𝜌
𝜓

𝑗
(𝑥, 𝑤) ≥ 0, (40)

then

sup
𝑦∈𝑌

𝜙 (𝑥, 𝑦) ⩾ ]. (41)

Proof. Suppose to the contrary that sup
𝑦∈𝑌

𝜙(𝑥, 𝑦) < ].
Therefore, we obtain

𝜙 (𝑥, 𝑦) < ] ≤ 𝜙 (𝑤, 𝑦
𝑖
) , 𝑦

𝑖
∈ 𝑌 (𝑤) , ∀𝑦 ∈ 𝑌, 𝑖 ∈ 𝑄.

(42)

Thus, we obtain

𝜙 (𝑥, 𝑦
𝑖
) < 𝜙 (𝑤, 𝑦

𝑖
) , 𝑦

𝑖
∈ 𝑌 (𝑤) , 𝑖 ∈ 𝑄. (43)

Note that

𝜓 (𝑥, 𝑧) ≤ 0, 𝑧 ∈ 𝑍,

𝜇
𝑗
𝜓 (𝑤, 𝑧

𝑗
) ≥ 0, 𝜇

𝑗
> 0, 𝑧

𝑗
∈ 𝑍 (𝑤) , 𝑗 ∈ 𝑀.

(44)

We obtain that

𝜇
𝑗
𝜓 (𝑥, 𝑧

𝑗
) ≤ 𝜇
𝑗
𝜓 (𝑤, 𝑧

𝑗
) , 𝑗 ∈ 𝑀. (45)

Therefore,

𝑞

∑
𝑖=1

𝜆
𝑖
(𝜙 (𝑥, 𝑦

𝑖
) − 𝜙 (𝑤, 𝑦

𝑖
))

+

𝑚

∑
𝑗=1

𝜇
𝑗
(𝜓 (𝑥, 𝑧

𝑗
) − 𝜓 (𝑤, 𝑧

𝑗
)) < 0.

(46)
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Similar to the proof of Theorem 8, by (46) and the gen-
eralized invexity assumptions of 𝜙(⋅, 𝑦

𝑖
) and 𝜓(⋅, 𝑧

𝑗
), we have

Φ(𝑥,𝑤,(

𝑞

∑
𝑖=1

𝜆
𝑖
𝜉
𝑖
+

𝑚

∑
𝑗=1

𝜇
𝑗
𝜁
𝑗
,

𝑞

∑
𝑖=1

𝜆
𝑖
𝜌
𝜙

𝑖
(𝑥, 𝑤)

+

𝑚

∑
𝑗=1

𝜇
𝑗
𝜌
𝜓

𝑗
(𝑥, 𝑤))) < 0.

(47)

This follows that

0 ∉

𝑞

∑
𝑖=1

𝜆
𝑖
𝜕
𝑥
𝜙 (𝑤, 𝑦

𝑖
) +

𝑚

∑
𝑗=1

𝜇
𝑗
𝜕
𝑥
𝜓 (𝑤, 𝑧

𝑗
) . (48)

Thus, we have a contradiction to (35). So sup
𝑦∈𝑌

𝜙(𝑥, 𝑦) ⩾

].

Theorem 11 (strong duality). Let Problem (SIP) satisfy Condi-
tions 1 and 2; let 𝑥∗ be an optimal solution of Problem (SIP). If
the hypothesis of Theorem 10 holds for all (DI)-feasible points
(𝑤, 𝑞,𝑚, 𝜆, 𝜇, ], 𝑦, 𝑧), then there exists (𝑞∗, 𝑚∗, 𝜆∗, 𝑦∗, 𝑧∗) ∈

𝐾(𝑥∗), (𝑥∗, 𝜇∗, ]∗) ∈ 𝐻
1
(𝑞∗, 𝑚∗, 𝜆∗, 𝑦∗, 𝑧∗) such that (𝑥∗, 𝑞∗,

𝑚∗, 𝜆∗, 𝜇∗, ]∗, 𝑦∗, 𝑧∗) is a (DI)-optimal solution, and the two
problems (P) and (DI) have the same optimal values.

Proof. By Theorem 7, there exists ]∗ = 𝜙(𝑥∗, 𝑦∗
𝑖
) (𝑖 = 1, . . . ,

𝑞∗), satisfying the requirements specified in the theorem,
such that (𝑥∗, 𝑞∗, 𝑚∗, 𝜆∗, 𝜇∗, ]∗, 𝑦∗, 𝑧∗) is a (DI)-feasible
solution; then the optimality of this feasible solution for (DI)
follows fromTheorem 10.

Theorem 12 (strict converse duality). Let 𝑥
0
and (𝑤, 𝑞,𝑚, 𝜆,

𝜇, ], 𝑦, 𝑧) be optimal solutions of (SIP) and (DI), respectively.
Suppose that 𝜙(⋅, 𝑦

𝑖
) are strictly (Φ, 𝜌

𝜙

𝑖
)-invex at 𝑤 for each 𝑖 ∈

𝑄 and 𝜓(⋅, 𝑧
𝑗
) are (Φ, 𝜌

𝜓

𝑖
)-invex at 𝑤 for each 𝑗 ∈ 𝑀. If

𝑞

∑
𝑖=1

𝜆
𝑖
𝜌
𝜙

𝑖
(𝑥
0
, 𝑤) +

𝑚

∑
𝑗=1

𝜇
𝑗
𝜌
𝜓

𝑗
(𝑥
0
, 𝑤) ≥ 0, (49)

then 𝑥
0
= 𝑤; that is, 𝑤 is a (SIP)-optimal solution, and

sup
𝑦∈𝑌

𝜙 (𝑥
0
, 𝑦) = ]. (50)

Proof. Suppose to the contrary that𝑥
0

̸= 𝑤. By the generalized
invexity assumptions of 𝜙(⋅, 𝑦

𝑖
) and 𝜓(⋅, 𝑧

𝑗
), we have

𝜙 (𝑥
0
, 𝑦
𝑖
) − 𝜙 (𝑤, 𝑦

𝑖
) > Φ (𝑥

0
, 𝑤, (𝜉

𝑖
, 𝜌
𝜙

𝑖
(𝑥
0
, 𝑤))) ,

∀𝜉
𝑖
∈ 𝜕
𝑥
𝜙 (𝑤, 𝑦

𝑖
) ,

𝜓 (𝑥
0
, 𝑧
𝑗
) − 𝜓 (𝑤, 𝑧

𝑗
) ≥ Φ (𝑥

0
, 𝑤, (𝜁

𝑗
, 𝜌
𝜓

𝑗
(𝑥
0
, 𝑤))) ,

∀𝜁
𝑗
∈ 𝜕
𝑥
𝜓 (𝑤, 𝑧

𝑗
) .

(51)

Therefore, we obtain from (51) and the convexity ofΦ that

𝑞

∑
𝑖=1

𝜆
𝑖
(𝜙 (𝑥
0
, 𝑦
𝑖
) − 𝜙 (𝑤, 𝑦

𝑖
)) +

𝑚

∑
𝑗=1

𝜇
𝑗
(𝜓 (𝑥

0
, 𝑧
𝑗
) − 𝜓 (𝑤, 𝑧

𝑗
))

> Φ(𝑥
0
, 𝑤, (

𝑞

∑
𝑖=1

𝜆
𝑖
𝜉
𝑖
+

𝑚

∑
𝑗=1

𝜇
𝑗
𝜁
𝑗
,

𝑞

∑
𝑖=1

𝜆
𝑖
𝜌
𝜙

𝑖
(𝑥
0
, 𝑤)

+

𝑚

∑
𝑗=1

𝜇
𝑗
𝜌
𝜓

𝑗
(𝑥
0
, 𝑤)))

(52)

holds for all 𝜉
𝑖

∈ 𝜕
𝑥
𝜙(𝑤, 𝑦

𝑖
) and 𝜁

𝑗
∈ 𝜕
𝑥
𝜓(𝑤, 𝑧

𝑗
). This,

together with (35), (49), and

Φ(𝑥
0
, 𝑤, (0, 𝑎)) ≥ 0 for 𝑎 > 0, (53)

follows that

𝑞

∑
𝑖=1

𝜆
𝑖
(𝜙 (𝑥
0
, 𝑦
𝑖
) − 𝜙 (𝑤, 𝑦

𝑖
))

+

𝑚

∑
𝑗=1

𝜇
𝑗
(𝜓 (𝑥

0
, 𝑧
𝑗
) − 𝜓 (𝑤, 𝑧

𝑗
)) > 0

(54)

while

𝑚

∑
𝑗=1

𝜇
𝑗
(𝜓 (𝑥

0
, 𝑧
𝑗
) − 𝜓 (𝑤, 𝑧

𝑗
)) ≤ 0. (55)

Thus

𝑞

∑
𝑖=1

𝜆
𝑖
(𝜙 (𝑥
0
, 𝑦
𝑖
) − 𝜙 (𝑤, 𝑦

𝑖
)) > 0. (56)

From the above inequality, we can conclude that there
exists 𝑖

0
∈ 𝑄, such that

𝜙 (𝑥
0
, 𝑦
𝑖
0

) − 𝜙 (𝑤, 𝑦
𝑖
0

) > 0 (57)

or

𝜙 (𝑥
0
, 𝑦
𝑖
0

) > 𝜙 (𝑤, 𝑦
𝑖
0

) . (58)

It follows that

sup
𝑦∈𝑌

𝜙 (𝑥
0
, 𝑦) ≥ 𝜙 (𝑥

0
, 𝑦
𝑖
0

) > 𝜙 (𝑤, 𝑦
𝑖
0

) > ]. (59)

On the other hand, we know fromTheorem 10 that

sup
𝑦∈𝑌

𝜙 (𝑥
0
, 𝑦) = ]. (60)

This contradicts to (59).
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5. Conclusions

In this paper, we have discussed a nonsmooth semi-infinite
minimax programming Problem (SIP).We have extended the
necessary optimality conditions for Problem (SIP) consid-
ered in [17] to the nonsmooth case; we have also extended
the sufficient optimality conditions and dual results of Prob-
lem (SIP) addressed by M. V. Ştefănescu and A. Ştefănescu
in [17] to the nonsmooth case under the Lipschitz (Φ, 𝜌)-
invexity assumptions as defined in [16].More exactly, we have
established the necessary optimality conditions theorems
for the Problem (SIP) when using Caratheodory’s theorem.
Under the Lipschitz (Φ, 𝜌)-invexity assumptions as defined
in [13], we have derived the sufficiency of the necessary
optimality conditions for Problem (SIP). In the end, we
have constructed a dual model (DI) and derived duality
results between Problems (SIP) and (DI).These results extend
several known results to a wider class of problems.
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