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This paper examines the optimal order decision in a supply chain when it faces uncertain demand and uncertain consumer returns.
We build consumer returns model with decision-makers’ risk preference under mean-variance objective framework and discuss
supply chain coordination problem under wholesale-price-only policy and the manufacturer’s buyback policy, respectively. We
find that, with wholesale price policy, the supply chain cannot be coordinated whether the supply chain agents are risk-neutral or
risk-averse. However, with buyback policy, the supply chain can be coordinated and the profit of the supply chain can be arbitrarily
allocated between the manufacturer and the retailer. Through numerical examples, we illustrate the impact of stochastic consumer
returns and the supply chain agents’ risk attitude on the optimal order decision.

1. Introduction

Consumer returns policy has become an important pro-
motion device in a market, which reassures consumers to
purchase the goods. This policy can improve the market
demand; meanwhile, it also has increased retailers’ or manu-
facturers’ processing cost and has caused their serious profits
loss. Recent estimates in the consumer electronics industry
suggest that the returns rate of electronic devices ranges from
11% to 20%, for a total cost of $14 billion every year in the
United States alone [1]. Anderson et al. [2] show that product
returns affect the accurate estimation of consumer demand
and should not be ignored.

In general, the management of any company who accepts
consumer-returned products often finds that they have to
deal with two major uncertainties: the uncertainty with the
market demand for the product and the uncertainty with
the quantity of the returned product. This is because these
uncertainty factors seriously affect the retailer’s ordering
decision and make the reallocation of profits between the
manufacturer and the retailer in a supply chain. Therefore, it
is important to take effective measures to coordinate the two
sides. Buyback contract, which has also been called “return
policy,” is an agreement between the downstream retailer and
the upstreammanufacturer and is used to mitigate the risk of

overstocking to some extent, so that it could coordinate the
supply chain under demand uncertainty.

Our research is motivated by various industry practices,
such as fashion, books, and toys. At the selling season,
the retailer commits to accept the returned products from
consumers. At the end of the selling season, themanufacturer
chooses whether to buy back the unsold units together with
consumer returns from the retailer. The objective of our
paper is to investigate the retailer’s order decision when
both the consumer demand and consumer returns are uncer-
tain. Specially, we introduce the following questions: how
do stochastic consumer returns and decision-makers’ risk
attitude affect the optimal order decisions? Can wholesale-
price-only policy coordinate the supply chainwith risk-averse
agents? How about buyback policy?

To address these questions, we construct a newsvendor
model under stochastic consumer returns. We further exam-
ine the optimal order quantity in integrated and decentralized
supply chain, when the decision-makers have the risk-averse
behavior under a mean-variance objective function. And we
find in what conditions the supply chain can be coordinated
with wholesale price policy and buyback policy, respectively.
Finally, we investigate the impact of stochastic consumer
returns and risk preference on the optimal decisions.
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The remainder of this paper is organized as follows.
In the next section, we review the related literatures. We
build a newsvendor model with stochastic demand and
stochastic consumer returns in Section 3. Section 4 examines
the optimal order quantity decision in the integrated supply
chain. Then, we further analyze the optimal order quantity
decisions in the decentralized case with wholesale price
policy in Section 5, and with buyback policy in Section 6,
respectively. Numerical examples are given in Section 7.
Section 8 provides concluding remarks and describes future
research.

2. Related Literature

There are two streams of literature related to our paper. The
first one is on coordination of the supply chainwith consumer
returns, and the second is mean-variance analysis in supply
chain management. Then, we show how we position our
research at the intersection of these two streams of literature.

2.1. Supply Chain Coordination with Consumer Returns. Sup-
ply chain contracts are a good way to coordinate the rela-
tionship between supply chain members. For example, it
can make the optimal decisions (price, order quantity, or
sale effort level, etc.) in decentralized supply chain be con-
ducted the same as that in centralized case, and then supply
chain members can also gain more profits. Lariviere [3]
and Cachon [4] provide a detailed review of supply chain
contracts and point out that wholesale-price-only policy
cannot coordinate a supply chain. The common contracts
include quantity flexibility contracts, revenue sharing con-
tracts, quantity discounts, sales rebate contracts, and buyback
contracts. These contracts are applied in the extensive back-
ground of supply chain management. Weng [5] develops a
generalized newsvendor model to analyze the coordinated
order quantity and finds that quantity discount policy can
coordinate the supply chain. In the existing literature, it has
been demonstrated that buyback contract can coordinate
the supply chain under demand uncertainty. Zhou and Li
[6] analyze the impact of first ordering and twice ordering
strategies on the order quantity and the supply chain expected
profit. They show that the supply chain can be coordinated
if the manufacturer chooses to raise the return price, and
the total profit of supply chain system will approach or even
reach the optimal value. Ding and Chen [7] consider the
case where an assembler who also acts as a retailer faced two
complementary suppliers. The return policies between each
supplier and the assembler react on each other and happen
to fully coordinate the whole system in equilibrium. He et al.
[8] consider a situation where the stochastic market demand
is dependent on the retail price and sales effort. They show
that coordination is achieved by using a properly designed
returns policy with a sales rebate and penalty contract. Then,
He and Zhao [9] investigate coordination in multiechelon
supply chain under supply and demand uncertainty. They
show that a returns policy used by the manufacturer and the
retailer, combined with the wholesale price contract used by
the raw-material supplier and themanufacturer, can perfectly

coordinate the supply chain. In addition, they investigate the
impact of the supplier’s risk attitude on the decisions, as well
as the impact of spot market price for raw material on the
performance of the entire supply chain.

Considering consumer returns policy, Ferguson et al.
[10] propose a target rebate contract to coordinate false
failure returns. As an extension, Huang et al. [11] design
a quantity discount contract to resolve the profit conflict
arising in a reverse supply chain, where the returns quantities
are assumed to follow by geometric distribution, Poisson
distribution and normal distribution, respectively. Xiao et al.
[12] investigate supply chain coordination with consumer
returns behavior and buyback policy. They demonstrate that
when the retail price and partial refund amount are treated
exogenously, the supply chain can be coordinated through a
buyback contract and a markdown money contract, respec-
tively. Chen and Bell [13] examine how consumer returns
influence the retailer’s ordering decision, the manufacturer’s
wholesale price decision, and the profits of the manufacturer
and the retailer, in a single-period newsvendor model. Com-
paring two buyback policies in the presence of consumer
returns, they conclude that one can only maximize the
manufacturer’s expected profit and a second can coordinate
the supply chain. Rocio and Ana [14] model and analyze both
wholesale-price contract and buy-back contract between
a manufacturer and a retailer facing stochastic demand and
consumer returns.Their numerical analysis shows that better
coordination of the supply chain can be achieved when the
players acting in a decentralized fashion do not consider
any information about consumer returns. However, all of
them only consider that the amount of consumer returns is
a fixed proportional to the sales quantity, not in a random
condition. In view of consumer’s behavior, Hu and Li [15]
investigate a supply chain modeling framework with demand
uncertainty and customers’ valuation uncertainty and discuss
four scenarios for each party in the supply chain that may
offer or not offer return policy. Then, they characterize each
party’s optimal decisions in all scenarios and show that the
supplier’s best choice is to offer buyback policy and the
retailer’s optimal response is to set refund price to be the same
as supplier’s buyback price.

On uncertain demand and returns, Wei et al. [16] use
a robust optimization approach to deal with an inventory
control model for the return and remanufacturing processes
with consideration of the uncertainty of the demand and
returns. Shi et al. [17] study the production planning problem
for amultiproduct closed loop system,where the demands for
all the products are uncertain, and their returns are uncer-
tain and price sensitive. According to the above literature,
they cannot mention the decision-makers’ risk preference
behavior.

2.2. Mean-Variance Analysis in Supply Chain Management.
According to Markowitz [18], mean-variance (MV) analysis
is a fundamental and influential theory for risk management
in portfolio investment. Recently, MV analysis method has
been applied in many sides of supply chain management.
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Using MV analysis methods in a single-echelon supply
chain, Chen and Federgruen [19] examine various basic
inventory models. They model a quadratic utility function
for inventory manager and construct an efficient frontier for
the noninferior solution points. Choi et al. [20] study the
newsvendor problem with decision-makers having different
risk attitudes under the MV framework. They also discuss
the case with stockout cost and the safety-first objective.
Wu et al. [21] study the risk-averse newsvendor model with
stockout cost. They find with stockout cost that the risk-
averse newsvendor does not necessarily order less than the
risk-neutral newsvendor. When mass customization (MC)
companies are considered to be risk-averse, Liu et al. [22]
study the optimal policy with three-dimensional decisions
on pricing, consumer return, and level of modularity. Choi
[23] analytically examines the optimal return service charge
policy. He reveals how the MC service provider’s level of risk
aversion affects the optimal return service charge policy and
derives the conditions underwhich it is optimal to offer a zero
return service charge.

On supply chain coordination under the MV framework,
H.-S. Lau and A. H.-L. Lau [24] examine a two-echelon
supply chain with risk-averse agents under a returns policy.
Through numerical analysis, they investigate the degree of
risk aversion on supply chain coordination. Similarly, Tsay
[25] studies how risk sensitivity influences both sides of
the supplier-retailer relationship under different scenarios of
strategic power in the presence of returns policy. Mart́ınez-
de-Albéniz and Simchi-Levi [26] study the trade-offs faced by
amanufacturerwhich signs a portfolio of long-term contracts
with its supplier. Choi et al. [27] investigate the issues of
channel coordination in a supply chain when the individual
supply chain decision-makers take MV objectives. They
propose an MV formulation to capture the risk preference
of each individual supply chain agent and find that channel
coordination depends on how big the net difference between
the risk preferences of the supply chain coordinator and the
retailer is. Xu et al. [28] investigate the issue of channel
coordination in a fashion supply chain with risk-averse
retailer and price-dependent demand. Based on the above
literature, we investigate supply chain coordination when
consumer demand and returns are uncertain, where supply
chain agents have risk-averse behavior.

The main contributions of our paper are summarized
as follows. First, we investigate the optimal order decision
under demand and consumer returns uncertainty.Most prior
literature only investigates order decision under demand
uncertainty. Second, we further to integrate the supply
chain agents’ risk preference behavior into our model. Most
prior literature only examines the risk-neutral case. Third,
based on the first and second point, we discuss the supply
chain coordination under wholesale-price-only and buyback
policy, respectively. We find buyback policy is superior to
wholesale price policy, and it can perfectly coordinate the
supply chain. To the best of our knowledge, this paper is
the first in the existing literature that studies the newsvendor
problem with decision-makers’ risk attitude under stochastic
demand and stochastic consumer returns.

3. Model Assumptions and Notations

We consider a supply chain consisting of two agents, an
upstream manufacturer and a downstream newsvendor
retailer, who faces demanduncertainty. In a single sale period,
the manufacturer sets the wholesale price 𝑤 and chooses
whether to buy back the surplus products from the retailer,
and then the retailer decides the order quantity𝑄.The retailer
sells the products to the market at exogenous retail price 𝑝

and accepts consumer returns. The purchasing cost of the
product is 𝑐.

We assume the market demand 𝑋 is stochastic, where
its cumulative distribution function 𝐹(⋅) is continuous and
invertible and its density distribution function 𝑓(⋅) is non-
negative.

Meanwhile, the retailer accepts consumer returns with
full refund 𝑝. We assume that the consumer return rate 𝛼 is
a stochastic variable and can be expressed as 𝛼 = 𝛼

0
+ 𝜀
𝑅
,

which includes the deterministic part 𝛼
0
and the stochastic

part 𝜀
𝑅
with the mean 0 and variance 𝜎

2

𝑅
. 𝜀
𝑅
reflects the

degree of uncertainty on the amount of return, and it is also
called return uncertainty. At the end of selling season, the
manufacturer buys back the retailer’s any unsold product and
consumer returnswith return price 𝑏.The salvage value of any
unsold product and consumer returns is 𝑠. We assume 𝑏 > 𝑠,
and 𝑠 ≤ 𝑐 < 𝑝. Herein, we ignore the shortage cost.

The sales quantity is min(𝑄,𝑋), and the expected sales
quantity is
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𝑄
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2
[1 − 𝐹 (𝑄)]
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2
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(1)

The variance of the sales quantity is

Var [min (𝑄,𝑋)]

= (𝑄
2
− 2∫

𝑄
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𝑥𝐹 (𝑥) 𝑑𝑥) − (𝑄 − ∫

𝑄
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(2)

To explain more clearly, we give the following notations.

𝑄
∗

𝑐,𝑝
, 𝑄∗
𝑐,𝐴

, 𝑄∗
𝑐,𝑆
: the optimal order quantity in the

integrated supply chain with risk preference, risk
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averse, and risk seeking, respectively. In this paper,
risk preference only includes risk averse and risk
seeking and does not mention risk neutral.

𝑄
∗

𝑅,𝑝
, 𝑄∗
𝑅,𝐴

, 𝑄∗
𝑅,𝑆
: under wholesale price policy, the

optimal order quantity in the decentralized supply
chain with risk preference, risk averse, and risk
seeking, respectively.

𝑄
𝑏∗

𝑅,𝑝
, 𝑄𝑏∗
𝑅,𝐴

, 𝑄𝑏∗
𝑅,𝑆
: under the manufacturer’s buyback

policy, the optimal order quantity in the decentralized
supply chain with risk preference, risk averse, and risk
seeking, respectively.

4. The Integrated Supply Chain

The purpose of this paper is to coordinate the supply chain
and maximize the entire supply chain’s profit. We start our
analysis with the integrated supply chain. In the integrated
supply chain, the whole supply chain belongs to one com-
pany; for example, the manufacturer owns his own retailer
(i.e., company store).

In this paper, we consider the decision-makers’ risk
preference behavior. For risk-neutral decision-makers, their
aim is to decide the optimal order quantity to maximize the
expected profits of the entire supply chain. For risk-averse
decision-makers, their objective is to maximize the payoff of
the entire supply chain under a mean-variance framework.

The profit of the entire supply chain is Π(𝑄), which is
expressed as

Π (𝑄) = (1 − 𝛼) (𝑝 − 𝑠)min (𝑄,𝑋) − (𝑐 − 𝑠)𝑄. (3)

To guarantee Π(𝑄) > 0, we require (1 − 𝛼) (𝑝 − 𝑠) > 𝑐 − 𝑠.
The expected profit of the entire supply chain is

𝐸 [Π (𝑄)] = 𝐸 [(1 − 𝛼) (𝑝 − 𝑠)min (𝑄,𝑋)] − (𝑐 − 𝑠) 𝑄
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0
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(4)
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2
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0
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0
) (𝑝 − 𝑠) − (𝑐 − 𝑠)]

− (1 − 𝛼
0
) (𝑝 − 𝑠) 𝐹 (𝑄) = 0,

(5)

we can obtain the optimal order quantity with risk-neutral
decision-maker

𝑄
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[
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Further, the variance of the total supply chain’s profit is
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Since 𝜕𝐸[min(𝑄,𝑋)]
2
/𝜕𝑄 = 2𝑄 − 2𝑄𝐹(𝑄) =

2𝑄(1 − 𝐹(𝑄)) > 0 and 𝜕Var[min(𝑄,𝑋)]/𝜕𝑄 = 2[1 −

𝐹(𝑄)] ∫

𝑄

0
𝐹(𝑥)𝑑𝑥 > 0, we can obtain 𝜕Var[Π(𝑄)]/𝜕𝑄 > 0.

This suggests that the variance of the total supply chain’s profit
increases in the order quantity𝑄. In addition, we find that the
variance of the profit rises in the variance of the consumer
returns 𝜎2

𝑅
, which reflects that the greater return uncertainty

causes the greater fluctuation of the supply chain’s profit.
Under themean-variance framework, the payoff function

of the entire supply chain is

𝑈 (𝑄) = 𝐸 [Π (𝑄)] − 𝑘Var [Π (𝑄)] , (8)

where the parameter 𝑘 reflects the risk attitude of the total
supply chain.

Taking (4) and (7) into (8), we have Lemma 1 as follows.

Lemma 1. For the utility function 𝑈(𝑄) with the risk-
preference agents in the integrated supply chain, the optimal
order quantity 𝑄

∗

𝑐,𝑝
satisfies the reaction function as follows:

[(1 − 𝛼
0
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0
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∗

𝑐,𝑝
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2
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∫

𝑄
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0
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2

𝑅
𝑄
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(9)

where 𝑄
∗

𝑐,𝑝
∈ {𝑄

∗

𝑐,𝐴
, 𝑄
∗

𝑐,𝑆
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∗
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,∞).

Proof. From the analysis as before, both 𝐸[Π(𝑄)] and
Var[Π(𝑄)] increase if 𝑄 ∈ [0, 𝑄

∗

𝑐,𝑁
]. (i) The agents are

risk-averse, that is, 𝑘 > 0. When 𝑄 → 0
+, we have

𝜕𝑈(𝑄)/𝜕𝑄 = (1 − 𝛼
0
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𝑄
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0. Therefore, the solutions of 𝜕𝑈(𝑄)/𝜕𝑄 = 0 exist in
[0, 𝑄
∗

𝑐,𝑁
]. (ii) The agents are risk-seeking, that is, 𝑘 < 0.
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When 𝑄 = 𝑄
∗

𝑐,𝑁
, we have 𝜕𝑈(𝑄)/𝜕𝑄 = −2𝑘(𝑝 − 𝑠)

2
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)
2
∫

𝑄
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0
𝐹(𝑥)𝑑𝑥 + 𝜎

2

𝑅
𝑄
∗

𝑐,𝑁
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+∞, we have 𝜕𝑈(𝑄)/𝜕𝑄 = −(𝑐 − 𝑠) < 0. Therefore, the
solutions of 𝜕𝑈(𝑄)/𝜕𝑄 = 0 exist in [𝑄

∗

𝑐,𝑁
,∞).

From Lemma 1, we show that the decision-makers with
the different risk preference have different order decisions.
When the decision-makers are risk-averse, they decide the
less order quantity than that with risk-neutral. Meanwhile,
when the decision-makers are risk-seeking, they decide the
more order quantity than that with risk-neutral.

In this paper, we mainly consider both the manufacturer
and the retailer are risk-averse. According to Gan et al. [29],
when the supply chain can achieve the Pareto optimal status,
the relationship of 𝑘, 𝑘

𝑚
, and 𝑘

𝑟
should satisfy 𝑘 = 𝑘

𝑟
𝑘
𝑚
/(𝑘
𝑟
+

𝑘
𝑚
), where 𝑘

𝑚
denotes the manufacturer’s risk attitude and

𝑘
𝑟
denotes the retailer’s risk attitude. 𝑘

𝑚
> 0 denotes that

the manufacturer is risk-averse, and 𝑘
𝑚

< 0 denotes that the
manufacturer is risk-seeking. 𝑘

𝑟
> 0 denotes that the retailer

is risk-averse, and 𝑘
𝑟

< 0 denotes that the retailer is risk-
seeking.

5. The Decentralized Supply Chain with
Wholesale Price Policy

In the section, we consider the decentralized decision
case under the manufacturer’s wholesale price policy. The
sequence of this game is conducted as follows. The manu-
facturer as a leader firstly sets the wholesale price 𝑤, and
then the retailer decides the order quantity 𝑄. After the
manufacturer knows the retailer’s order decision, he resets
𝑤 to coordinate the optimal order decisions. For risk-neutral
decision-makers, their aim is tomaximize their own expected
profits. For risk-averse decision-makers, their objective is to
maximize their own payoffs.

The retailer’s profit is Π
𝑅
(𝑄), which can be written as

Π
𝑅 (

𝑄) = (1 − 𝛼) 𝑝min (𝑄,𝑋)

+ 𝑠 [𝑄 −min (𝑄,𝑋) + 𝛼min (𝑄,𝑋)] − 𝑤𝑄

= (1 − 𝛼) (𝑝 − 𝑠)min (𝑄,𝑋) − (𝑤 − 𝑠)𝑄.

(10)

To guarantee Π
𝑅
(𝑄) > 0, we require (1 − 𝛼)(𝑝 − 𝑠) > (𝑤 − 𝑠).

The retailer’s expected profit is

𝐸 [Π
𝑅
(𝑄)] = (1 − 𝛼

0
) (𝑝 − 𝑠) 𝐸min (𝑄,𝑋) − (𝑤 − 𝑠)𝑄.

(11)

Since 𝜕
2
𝐸[Π
𝑅
(𝑄)]/𝜕𝑄

2
= −(1 − 𝛼

0
)(𝑝 − 𝑠)𝑓(𝑄) < 0, so

solving

𝜕𝐸 [Π
𝑅 (

𝑄)]

𝜕𝑄

= [(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑤 − 𝑠)]

− (1 − 𝛼
0
) (𝑝 − 𝑠) 𝐹 (𝑄) = 0,

(12)

we obtain that the retailer’s optimal order quantity is

𝑄
∗

𝑅,𝑁
= 𝐹
−1

[

(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑤 − 𝑠)

(1 − 𝛼
0
) (𝑝 − 𝑠)

] . (13)

Comparing 𝑄
∗

𝑅,𝑁
with 𝑄

∗

𝑐,𝑁
, we conclude that with

wholesale-price-only policy, the supply chain with the risk-
neutral newsvendor retailer cannot be coordinated.

The variance of the retailer’s profit is

Var [Π
𝑅
(𝑄)] = (𝑝 − 𝑠)

2
{(1 − 𝛼

0
)
2 Var [min (𝑄,𝑋)]

+𝜎
2

𝑅
𝐸[min (𝑄,𝑋)]

2
} .

(14)

Similar to the result of Section 4, the variance of
the retailer’s profit increases in 𝑄. Furthermore, we have
Var[Π(𝑄)] ≥ Var[Π

𝑅
(𝑄)].

Under the mean-variance framework, the retailer’s payoff
function is

𝑈
𝑅
(𝑄) = 𝐸 [Π

𝑅
(𝑄)] − 𝑘

𝑟
Var [Π

𝑅
(𝑄)]

= (1 − 𝛼
0
) (𝑝 − 𝑠) 𝐸 [min (𝑄,𝑋)] − (𝑤 − 𝑠)𝑄

− 𝑘
𝑟
(𝑝 − 𝑠)

2

× {(1 − 𝛼
0
)
2 Var [min (𝑄,𝑋)]

+𝜎
2

𝑅
𝐸 [min2 (𝑄,𝑋)]} .

(15)

With wholesale-price-only policy, the manufacturer’s
payoff function is

Π
𝑀

(𝑄) = (𝑤 − 𝑐)𝑄. (16)

According to Lemma 1, we summarize Lemma 2 as fol-
lows.

Lemma 2. For the utility function 𝑈
𝑅
(𝑄) with the risk-

preference agents in decentralized supply chain, the optimal
order quantity 𝑄

∗

𝑅,𝑝
satisfies the reaction function as follows:

[(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑤 − 𝑠)]

− (1 − 𝛼
0
) (𝑝 − 𝑠) 𝐹 (𝑄

∗

𝑅,𝑝
) − 2𝑘

𝑟
(𝑝 − 𝑠)

2
[1 − 𝐹 (𝑄

∗

𝑅,𝑝
)]

× {(1 − 𝛼
0
)
2
∫

𝑄
∗

𝑅,𝑝

0

𝐹 (𝑥) 𝑑𝑥 + 𝜎
2

𝑅
𝑄
∗

𝑅,𝑝
} = 0,

(17)

where 𝑄
∗

𝑅,𝑝
∈ {𝑄

∗

𝑅,𝐴
, 𝑄
∗

𝑅,𝑆
}, 𝑄∗
𝑅,𝐴

∈ [0, 𝑄
∗

𝑅,𝑁
] and 𝑄

∗

𝑅,𝑆
∈

[𝑄
∗

𝑅,𝑁
,∞).

After the manufacturer knows the retailer’s order quan-
tity, he will adjust the wholesale price 𝑤 to make 𝑄

∗

𝑅,𝐴
=

𝑄
∗

𝑐,𝐴
= 𝑄
0
. Then, one has

𝑤 = 𝑐 + 2 (𝑘 − 𝑘
𝑟
) (𝑝 − 𝑠)

2
[1 − 𝐹 (𝑄

0
)]

× {(1 − 𝛼
0
)
2
∫

𝑄
0

0

𝐹 (𝑥) 𝑑𝑥 + 𝜎
2

𝑅
𝑄
0
} .

(18)

In (18), the retailer and the manufacturer are risk-averse,
that is, 𝑘

𝑟
> 0 and 𝑘

𝑚
> 0, so 𝑘 = 𝑘

𝑚
𝑘
𝑟
/(𝑘
𝑚

+ 𝑘
𝑟
) < 𝑘
𝑟
. Then,

one yields 𝑤 < 𝑐, which conflicts with the precondition of
𝑤 > 𝑐. Therefore, one concludes Proposition 3 as follows.
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Proposition 3. The supply chain with risk-averse agents can-
not be coordinated by the wholesale price policy.

From Proposition 3, although the wholesale price policy
cannot coordinate the supply chain with risk-averse agents,
we find that the supply chain with risk preference might be
coordinated, only if 𝑘

𝑚
+ 𝑘
𝑟
< 0. Further, we derive that the

equivalent conditions of 𝑘
𝑚

+ 𝑘
𝑟
< 0 are as follows.

Case 1. 𝑘
𝑚

> 0, 𝑘
𝑟
< 0, and −𝑘

𝑟
> 𝑘
𝑚
; then 𝑘 > 0. However,

in this case, the optimal order quantities in the integrated case
and decentralized case belong to the different range, so the
supply chain cannot be coordinated.

Case 2. 𝑘
𝑚

< 0 and 𝑘
𝑟
< 0; then 𝑘 < 0.Thismeans when both

the manufacturer and the retailer are risk-seeking, the supply
chain can be coordinated.

Case 3. 𝑘
𝑚

< 0, 𝑘
𝑟
> 0, and−𝑘

𝑚
> 𝑘
𝑟
; then 𝑘 > 0.Thismeans

when themanufacturer is risk-seeking and the retailer is risk-
averse, the degree of the manufacturer’s risk seeking should
be greater than that of the retailer’s risk averse. In this case,
the supply chain can be coordinated.

Cases 2 and 3 summarize that the supply chain with
wholesale price policy can be coordinated only if the man-
ufacturer is risk-seeking.

In addition, taking (18) into the expressions of (11) and
(16), we have that the profit of the supply chain can be
allocated according to the following proportion:

Π
𝑅
(𝑄
0
) = Π (𝑄

0
) − 2𝑄

0
(𝑘 − 𝑘

𝑟
) (𝑝 − 𝑠)

2
[1 − 𝐹 (𝑄

0
)]

× {(1 − 𝛼
0
)
2
∫

𝑄
0

0

𝐹 (𝑥) 𝑑𝑥 + 𝜎
2

𝑅
𝑄
0
} ,

Π
𝑀

(𝑄
0
) = 2𝑄

0
(𝑘 − 𝑘

𝑟
) (𝑝 − 𝑠)

2
[1 − 𝐹 (𝑄

0
)]

× {(1 − 𝛼
0
)
2
∫

𝑄
0

0

𝐹 (𝑥) 𝑑𝑥 + 𝜎
2

𝑅
𝑄
0
} .

(19)

6. The Decentralized Supply Chain with
Buyback Policy

In this section, we consider that the manufacturer provides
buyback contract for the retailer. He buys back the retailer’s
unsold and returned products from consumers. The game
proceeds as follows. The manufacturer sets the wholesale
price𝑤 and buyback price 𝑏, and then the retailer decides the
order quantity𝑄. After the manufacturer knows the retailer’s
order decision, he resets 𝑤 and 𝑏 to coordinate the supply
chain to make the optimal order decisions.

Then, the retailer’s profit is Π𝑏
𝑅
(𝑄), which is expressed as

Π
𝑏

𝑅
(𝑄) = (1 − 𝛼) (𝑝 − 𝑏)min (𝑄,𝑋) − (𝑤 − 𝑏)𝑄. (20)

To guarantee Π
𝑏

𝑅
(𝑄) > 0, we require (1 − 𝛼)(𝑝 − 𝑏) >

(𝑤 − 𝑏).

The retailer’s expected profit is

𝐸 [Π
𝑏

𝑅
(𝑄)] = (1 − 𝛼

0
) (𝑝 − 𝑏) 𝐸min (𝑄,𝑋) − (𝑤 − 𝑏)𝑄.

(21)

Since 𝜕
2
𝐸[Π
𝑏

𝑅
(𝑄)]/𝜕𝑄

2
= −(1 − 𝛼

0
)(𝑝 − 𝑏)𝑓(𝑄) < 0, so

solving

𝜕𝐸 [Π
𝑏

𝑅
(𝑄)]

𝜕𝑄

= [(1 − 𝛼
0
) (𝑝 − 𝑏) − (𝑤 − 𝑏)]

− (1 − 𝛼
0
) (𝑝 − 𝑏) 𝐹 (𝑄) = 0,

(22)

we obtain that the retailer’s optimal order quantity is

𝑄
𝑏∗

𝑅,𝑁
= 𝐹
−1

[

(1 − 𝛼
0
) (𝑝 − 𝑏) − (𝑤 − 𝑏)

(1 − 𝛼
0
) (𝑝 − 𝑏)

] . (23)

Comparing (23) with (13), we derive Proposition 4 as
follows.

Proposition 4. When the retailer is risk-neutral, the supply
chain can be coordinated through the manufacturer’s buyback
policy (𝑤, 𝑏

∗

𝑁
), where 𝑏∗

𝑁
= 𝑤−(𝑝(𝑐−𝑠)/(𝑝−𝑠)). Furthermore,

the supply chain profit can be arbitrarily allocated.

Proof. See Appendix.

Further, the variance of the retailer’s profit is

Var [Π𝑏
𝑅
(𝑄)] = (𝑝 − 𝑏)

2
{(1 − 𝛼

0
)
2 Var [min (𝑄,𝑋)]

+ 𝜎
2

𝑅
𝐸[min (𝑄,𝑋)]

2
} .

(24)

Under the mean-variance framework, the retailer’s payoff
function becomes

𝑈
𝑏

𝑅
(𝑄) = 𝐸 [Π

𝑏

𝑅
(𝑄)] − 𝑘

𝑟
Var [Π𝑏

𝑅
(𝑄)]

= (1 − 𝛼
0
) (𝑝 − 𝑏) 𝐸 [min (𝑄,𝑋)] − (𝑤 − 𝑏)𝑄

− 𝑘
𝑟
(𝑝 − 𝑏)

2
{(1 − 𝛼

0
)
2 Var [min (𝑄,𝑋)]

+𝜎
2

𝑅
𝐸 [min2 (𝑄,𝑋)]} .

(25)

Similar to Lemma 1, we conclude Lemma 5 as follows.

Lemma 5. For the utility function 𝑈
𝑏

𝑅
(𝑄) with the risk-averse

agents in the decentralized supply chain with buyback policy,
the retailer’s optimal order quantity 𝑄

𝑏∗

𝑅,𝐴
satisfies the reaction

function as follows:

[(1 − 𝛼
0
) (𝑝 − 𝑏) − (𝑤 − 𝑏)] − (1 − 𝛼

0
) (𝑝 − 𝑏) 𝐹 (𝑄

𝑏∗

𝑅,𝐴
)

− 2𝑘
𝑟
(𝑝 − 𝑏)

2
[1 − 𝐹 (𝑄

𝑏∗

𝑅,𝐴
)]

× {(1 − 𝛼
0
)
2
∫

𝑄
𝑏∗

𝑅,𝐴

0

𝐹 (𝑥) 𝑑𝑥 + 𝜎
2

𝑅
𝑄
𝑏∗

𝑅,𝐴
} = 0,

(26)

where 𝑄𝑏∗
𝑅,𝐴

∈ [0, 𝑄
𝑏∗

𝑅,𝑁
].
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The expected profit of the manufacturer is

𝐸 [Π
𝑏

𝑀
(𝑄)] = (1 − 𝛼

0
) (𝑏 − 𝑠) 𝐸 [min (𝑄,𝑋)]

+ (𝑤 − 𝑐 − 𝑏 + 𝑠)𝑄.

(27)

The variance of the manufacturer’s profit is

Var [Π𝑏
𝑀

(𝑄)] = (𝑏 − 𝑠)
2
{(1 − 𝛼

0
)
2 Var [min (𝑄,𝑋)]

+ 𝜎
2

𝑅
𝐸 [min2 (𝑄,𝑋)]} .

(28)

Thus, the manufacturer’s payoff function becomes

𝑈
𝑏

𝑀
(𝑄) = 𝐸 [Π

𝑏

𝑀
(𝑄)] − 𝑘

𝑚
Var [Π𝑏

𝑀
(𝑄)]

= (1 − 𝛼
0
) (𝑏 − 𝑠) 𝐸 [min (𝑄,𝑋)] + (𝑤 − 𝑐 − 𝑏 + 𝑠)𝑄

− 𝑘
𝑚
(𝑏 − 𝑠)

2
{(1 − 𝛼

0
)
2 Var [min (𝑄,𝑋)]

+𝜎
2

𝑅
𝐸 [min2 (𝑄,𝑋)]} .

(29)

After the manufacturer knows the retailer’s order quan-
tity 𝑄

𝑏∗

𝑅,𝐴
, he chooses to reset 𝑤 and 𝑏 to make 𝑄

𝑏∗

𝑅,𝐴
=

𝑄
∗

𝑐,𝐴
= 𝑄
0
. Therefore, comparing (26) with (9), one obtains

Proposition 6 as follows.

Proposition 6. Under the manufacturer’s buyback policy, the
supply chain with risk-averse decision-makers can be coordi-
nated, where

𝑏 =

𝑘
𝑟
𝑝 + 𝑘
𝑚
𝑠

𝑘
𝑟
+ 𝑘
𝑚

,

𝑤 = 𝑏 +

𝑘
2

𝑚

(𝑘
𝑟
+ 𝑘
𝑚
)
2
(1 − 𝛼

0
) [1 − 𝐹 (𝑄

0
)] (𝑝 − 𝑠)

+

𝑘
𝑟
𝑘
𝑚

(𝑘
𝑟
+ 𝑘
𝑚
)
2
(𝑐 − 𝑠) .

(30)

Furthermore, the supply chain’s profit can be allocated accord-
ing to the following proportion:

𝐸 [Π
𝑏

𝑅
(𝑄
0
)]

=

𝑘
𝑚

𝑘
𝑚

+ 𝑘
𝑟

𝐸 [Π (𝑄
0
)] −

𝑘
2

𝑚

(𝑘
𝑚

+ 𝑘
𝑟
)
2

× [(1 − 𝛼
0
) (1 − 𝐹 (𝑄

0
)) (𝑝 − 𝑠) − (𝑐 − 𝑠)] 𝑄

0
,

𝐸 [Π
𝑏

𝑀
(𝑄
0
)]

=

𝑘
𝑟

𝑘
𝑚

+ 𝑘
𝑟

𝐸 [Π (𝑄
0
)] +

𝑘
2

𝑚

(𝑘
𝑚

+ 𝑘
𝑟
)
2

× [(1 − 𝛼
0
) (1 − 𝐹 (𝑄

0
)) (𝑝 − 𝑠) − (𝑐 − 𝑠)] 𝑄0

.

(31)

Proof. See Appendix.

Proposition 6 shows that the risk preference of the supply
chain agent impacts on the buyback price 𝑏 and the allocation
of supply chain’s profit. Buyback price 𝑏 decreases in 𝑘

𝑚
and

increases in 𝑘
𝑟
. This suggests that when the manufacturer has

more risk aversion, he would like to offer the lower buyback
price to less bear the risk of profit loss caused by unsold
products and consumer returns. Meanwhile, the retailer is
the more risk-averse, and the manufacturer would offer the
higher buyback price to incentivize the retailer to ordermore.
From (30), we also conclude that when the buyback price
is raised, the manufacturer will also improve the wholesale
price.

In addition, if 𝑘
𝑟

> 𝑘
𝑚
, (i.e., the retailer is more risk-

averse than the manufacturer) then the manufacturer will
take a greater proportion of the total supply chain’s profit.
Otherwise, if 𝑘

𝑚
> 𝑘
𝑟
, the retailer will take a greater propor-

tion of the total supply chain’s profit.

7. Numerical Examples

In Lemma 1, we cannot prove that the optimal order quantity
is unique and cannot give a closed-form solution of (9).
Therefore, in this section, we analyze the impacts of the
uncertain factors on the optimal order quantity through
numerical examples. To yield some obvious results, we
assume the market demand follows a uniform distribution in
[0, 𝐵], where 𝐵 > 0. Then, we have the following functions:

𝐹 (𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

1, 𝑥 ≥ 𝐵,

𝑥

𝐵

, 0 ≤ 𝑥 < 𝐵,

0, 𝑥 < 0,

𝑓 (𝑥) =

{
{

{
{

{

1

𝐵

, 0 ≤ 𝑥 < 𝐵,

0, otherwise,

∫

𝑄

0

𝐹 (𝑥) 𝑑𝑥 = ∫

𝑄

0

𝑥

𝐵

𝑑𝑥 =

𝑄
2

2𝐵

𝐸 [Π (𝑄)] = [(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑐 − 𝑠)] 𝑄

− (1 − 𝛼
0
) (𝑝 − 𝑠)

𝑄
2

2𝐵

,

Var [Π (𝑄)] = (𝑝 − 𝑠)
2
{(1 − 𝛼

0
)
2
(

𝑄
3

3𝐵

−

𝑄
4

4𝐵
2
)

+𝜎
2

𝑅
(𝑄
2
−

2𝑄
3

3𝐵

)} .

(32)

The optimal order quantity satisfies the following equa-
tion:

[(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑐 − 𝑠)] − (1 − 𝛼

0
) (𝑝 − 𝑠)

𝑄
∗

𝑐,𝐴

𝐵
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− 2𝑘(𝑝 − 𝑠)
2
[1 −

𝑄
∗

𝑐,𝐴

𝐵

]

× {(1 − 𝛼
0
)
2
𝑄
∗

𝑐,𝐴

2

2𝐵

+ 𝜎
2

𝑅
𝑄
∗

𝑐,𝐴
} = 0.

(a)

From (a), the optimal order quantity 𝑄
∗

𝑐,𝐴
can be solved.

In Figures 1–3, we illustrate the impact of uncertainty factors
(𝑘, 𝛼, and 𝜎

𝑅
) on the optimal order quantity.

(i) Let 𝑝 = 8, 𝑠 = 1, 𝑐 = 3, 𝛼 = 0.5, 𝐵 = 10, 𝜎
𝑅

= 1, and
𝑘 ∈ (0, 0.1]. Then, the impact of 𝑘 on𝑄

∗

𝑐,𝐴
is shown in

Figure 1.

Figure 1 shows that the optimal order quantities decrease
with the degree of the manufacturer’s risk averse increasing.
This suggests that the decision-maker in a supply chain
has the less order quantity when his risk aversion becomes
stronger to reduce the risk brought by overstock.

(ii) Let 𝑝 = 8, 𝑠 = 1, 𝑐 = 3, 𝐵 = 10, 𝜎
𝑅

= 1, and 𝑘 = 0.1.
Then the change of 𝑄∗

𝑐,𝐴
with 𝛼 is shown in Figure 2.

From Figure 2, we conclude that the optimal order
quantities are decreasing with consumer returns rate when
decision-makers are risk-averse.

(iii) Let 𝑝 = 8, 𝑠 = 1, 𝑐 = 3, 𝐵 = 10, 𝛼 = 0.5, and 𝑘 = 0.1.
The change of 𝑄∗

𝑐,𝐴
with 𝜎

𝑅
is shown in Figure 3.

From Figure 3, we conclude that when the manufacturer
is risk-averse, the optimal order quantity decreases with the
variance of consumer return rate. This implies that the risk-
averse decision-maker chooses to have the less order in
order to hedge against risk of market fluctuation caused by
stochastic consumer returns.

8. Concluding Remarks

In this paper, we investigate a supply chain consisting of a
manufacturer and a retailer who faces demand uncertainty
and consumer returns uncertainty. We obtain the optimal
order quantity when the decision-makers are risk-neutral
and risk-averse, respectively. Comparing the optimal order
quantity in decentralized supply chain with that in integrated
case, we derive the conditions where the supply chain can
be coordinated under wholesale price contract and buyback
policy, respectively. Then, we demonstrate that the manufac-
turer’s buyback policy can coordinate the supply chain with
risk-neutral and risk-averse agents, and then the profits of the
supply chainmay be allocated between the manufacturer and
the retailer. Furthermore, the risk preference of the supply
chain agent impacts on buyback price and the allocation of
supply chain’s profit. The agent with a lower risk aversion
takes a higher proportion of the total supply chain’s profit
than the other one does. At last, through numerical examples,
we illustrate that more uncertainty factors which include
the degree of risk aversion, consumer returns rate, and its
variance lead to less order quantity.
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In this paper, we investigate how to coordinate a supply
chain in case of viewing the retail price as an exogenous
variable. Future work on supply chain coordination under
demand and consumer returns uncertainty will be interesting
through treating the retail price as a decision variable. In
addition, all kinds of uncertain environment are valuable for
us to explore, such as water resources management under
uncertainty in Fan et al. [30].

Appendix

Proof of Proposition 4. Let 𝑄∗
𝑐,𝑁

= 𝑄
𝑏∗

𝑅,𝑁
; that is,

𝐹
−1

[

(1 − 𝛼
0
) (𝑝 − 𝑠) − (𝑐 − 𝑠)

(1 − 𝛼
0
) (𝑝 − 𝑠)

]

= 𝐹
−1

[

(1 − 𝛼
0
) (𝑝 − 𝑏) − (𝑤 − 𝑏)

(1 − 𝛼
0
) (𝑝 − 𝑏)

] .

(A.1)

Then, we have

𝑏
∗

𝑁
=

𝑝 (𝑤 − 𝑐) + 𝑠 (𝑝 − 𝑤)

𝑝 − 𝑠

. (A.2)

Then, taking 𝑏
∗

𝑁
into the expressions of 𝐸[Π

𝑏

𝑅
(𝑄)] and

𝐸[Π
𝑏

𝑀
(𝑄)], we obtain that the optimal profit of the retailer

and the manufacturer is

𝐸 [Π
𝑏∗

𝑅
(𝑄
0
)] = (1 − 𝛼

0
) [(𝑝 − 𝑤) +

𝑝 (𝑐 − 𝑠)

𝑝 − 𝑠

]

× (𝑄
0
− ∫

𝑄
0

0

𝐹 (𝑥) 𝑑𝑥) −

𝑝 (𝑐 − 𝑠)

𝑝 − 𝑠

𝑄
0
;

𝐸 [Π
𝑏∗

𝑀
(𝑄
0
)] = (1 − 𝛼

0
) [𝑤 −

𝑝𝑐 − 𝑠
2

𝑝 − 𝑠

]

× (𝑄
0
− ∫

𝑄
0

0

𝐹 (𝑥) 𝑑𝑥) +

𝑠 (𝑐 − 𝑠)

𝑝 − 𝑠

𝑄
0
.

(A.3)

Compare𝐸[Π𝑏∗
𝑅
(𝑄
0
)] and𝐸[Π

𝑏∗

𝑀
(𝑄
0
)]with𝐸[Π(𝑄

0
)], and let

𝑤 = 𝛽 (𝑝 − 𝑠) +

𝑝𝑐 − 𝑠
2

𝑝 − 𝑠

, 𝑏 = 𝛽 (𝑝 − 𝑠) + 𝑠,

0 < 𝛽 < 1.

(A.4)

Then we have

Π
𝑏∗

𝑅
(𝑄
0
) = (1 − 𝛽)Π (𝑄

0
) − (

𝑠

𝑝 − 𝑠

+ 𝛽) (𝑐 − 𝑠)𝑄
0
,

Π
𝑏∗

𝑀
(𝑄
0
) = 𝛽Π (𝑄

0
) + (

𝑠

𝑝 − 𝑠

+ 𝛽) (𝑐 − 𝑠)𝑄
0
.

(A.5)

Therefore, the profit of the whole supply chain can
be arbitrarily allocated between the manufacturer and the
retailer.

Proof of Proposition 6. Comparing (7) with (3) and letting
𝑄
𝑏∗

𝑅,𝑝
= 𝑄
∗

𝑐,𝑝
= 𝑄
0
, we have

𝑤 = 𝑏 + (1 − 𝛼
0
) (𝑝 − 𝑏) [1 − 𝐹 (𝑄

0
)]
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𝑘
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(𝑝 − 𝑏)

2
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0
) (𝑝 − 𝑠) (1 − 𝐹 (𝑄

0
)) − (𝑐 − 𝑠)]

𝑘
𝑚
(𝑝 − 𝑠)

2
.

(A.6)
Further, we require
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2
]
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0
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That is, (𝑘
𝑚
𝑘
𝑟
/(𝑘
𝑚
+𝑘
𝑟
))(𝑝 − 𝑠)

2
−𝑘
𝑚
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2
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=

0.
Therefore, we have
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Taking the previous 𝑏 and 𝑤 into the expressions of
Π
𝑏

𝑅
(𝑄
0
) and Π

𝑏

𝑀
(𝑄
0
), we have under the manufacturer’s

buyback policy the profit of the supply chain that can be
allocated according to the following proportion:
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(A.9)
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