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Newone-parameter and two-parameter distributions are introduced in this paper.The failure rate of the one-parameter distribution
is unimodal (upside-down bathtub), while the failure rate of the two-parameter distribution can be decreasing, increasing,
unimodal, increasing-decreasing-increasing, or decreasing-increasing-decreasing, depending on the values of its two parameters.
The two-parameter distribution is derived from the one-parameter distribution by using a power transformation. We discuss some
properties of these two distributions, such as the behavior of the failure rate function, the probability density function, themoments,
skewness, and kurtosis, and limiting distributions of order statistics. Maximum likelihood estimation for the two-parameter model
using complete samples is investigated. Different algorithms for generating random samples from the two new models are given.
Applications to real data are discussed and compared with the fit attained by some one- and two-parameter distributions. Finally, a
simulation study is carried out to investigate themean square error of themaximum likelihood estimators, the coverage probability,
and the width of the confidence intervals of the unknown parameters.

1. Introduction

Lindley [1] proposed a one-parameter distribution, now
known as the Lindley distribution, with the following proba-
bility density function (pdf):

𝑓 (𝑡) =
𝛽2

𝛽 + 1
(1 + 𝑡) 𝑒

−𝛽𝑡, 𝑡 > 0, 𝛽 > 0. (1)

The failure rate function of the Lindley distribution is always
increasing. The properties of the Lindley distribution are
studied in detail by Ghitany et al. [2]. There are situations
in which the Lindley distribution may not be suitable from
a theoretical or applied point of view, Ghitany et al. [3]. For
this reason, Ghitany et al. [3] used a power transformation,
𝑋 = 𝑇1/𝛼, to introduce the power Lindley distribution which
is a more flexible distribution. The pdf of PL(𝛼, 𝛽) is

𝑓 (𝑥) =
𝛼𝛽2

𝛽 + 1
(1 + 𝑥𝛼) 𝑒−𝛽𝑥

𝛼

, 𝑥 > 0, 𝛼, 𝛽 > 0. (2)

Ghitany et al. [3] showed that the hazard function of PL(𝛼, 𝛽)
can be increasing, decreasing, and decreasing-increasing-
decreasing depending on the values of the parameters. They
also discussed some of the statistical properties of the distri-
bution and used themaximum likelihoodmethod to estimate
its two unknown parameters and applied it to a real data set.
In spite of the flexibility of the PL(𝛼, 𝛽) to fit some real data
sets, it fails to fit some other data sets.

The main aim of this paper is to introduce two new
distributions. The first is a one-parameter distribution which
is similar to the Lindley distribution and the second is
the power transformation of the one-parameter distribu-
tion. We refer to these two distributions as 𝑁(𝛽) and
TN(𝛼, 𝛽) respectively. The hazard function of 𝑁(𝛽) is only
unimodal, while the hazard function of TN(𝛼, 𝛽) can be
decreasing, increasing, unimodal, decreasing-increasing-
decreasing, or increasing-decreasing-increasing depending
on the values of its two parameters. The variety of shapes of
the hazard function of the TN(𝛼, 𝛽) enables it to be a good
model to fit different data sets.
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The rest of the paper is organized as follows. Section 2
introduces the new one-parameter distribution and some
of its characteristics are discussed in Section 3. Section 4
presents the transformation of the new distribution,
TN(𝛼, 𝛽). Different characteristics of TN(𝛼, 𝛽), such as
the hazard function, quantiles, random sample generation,
moments, and order statistics distributions, are discussed
in Section 5. Section 6 discusses the maximum likelihood
estimate of the two parameters of TN(𝛼, 𝛽). Applications
of the two models are presented in Section 6. Monte Carlo
Simulation study is carried out in Section 7 to examine
the accuracy of the maximum likelihood estimators of the
TN(𝛼, 𝛽) parameters as well as the coverage probability and
average width of the confidence intervals for the parameters.
Finally, Section 8 concludes this paper.

2. The New Distribution

Consider the random variable 𝑇 whose pdf is given by

𝑓 (𝑡) =
𝛽

1 + 𝛽
[𝛽 + (1 + 2𝛽𝑡) 𝑒−𝛽𝑡] 𝑒−𝛽𝑡, 𝑡 ≥ 0, 𝛽 > 0. (3)

The survival function (sf) of 𝑇 is given by

𝑆 (𝑡) =
1

1 + 𝛽
[𝛽 + (1 + 𝛽𝑡) 𝑒−𝛽𝑡] 𝑒−𝛽𝑡, 𝑡 ≥ 0, 𝛽 > 0, (4)

while its hazard rate function is given by

ℎ (𝑡) =
𝛽 [𝛽 + (1 + 2𝛽𝑥) 𝑒−𝛽𝑡]

𝛽 + (1 + 𝛽𝑡) 𝑒−𝛽𝑡
, 𝑡 ≥ 0, 𝛽 > 0. (5)

For simplicity, from now on, we refer to this distribution as
𝑁(𝛽).

Interpretation. There are two different interpretations
of 𝑁(𝛽) as follows.

(1) The pdf 𝑓(𝑡) is a mixture density of two mixture
components. One follows Exp(𝛽) and the other is
the lifetime of a two independent component series
system with Exp(𝛽) and 𝐺(2, 𝛽) and mixture weights
𝑎
1
= 𝛽/(1 + 𝛽) and 𝑎

2
= 1/(1 + 𝛽), respec-

tively. This means that 𝑁(𝛽) can be expressed in
terms of Exp(𝛽) and 𝐺(2, 𝛽) as 𝑁(𝛽) = 𝑎

1
Exp(𝛽) +

𝑎
2
min{Exp(𝛽), 𝐺(2, 𝛽)}.

(2) The random variable 𝑇 can be described as a mix-
ture of three components: Exp(𝛽), Exp(2𝛽), and
a 𝐺(2, 2𝛽) with mixture weights 𝑏

1
= 𝛽/(1 +

𝛽), 𝑏
2
= 1/2(1 + 𝛽) and 𝑏

3
= 1/2(1 + 𝛽), respec-

tively. This means that 𝑁(𝛽) can be expressed in
terms of Exp(𝛽), Exp(2𝛽) and 𝐺(2, 2𝛽) as 𝑁(𝛽) =
𝑏
1
Exp(𝛽) + 𝑏

2
Exp(2𝛽) + 𝑏

3
𝐺(2, 2𝛽).

Some characteristics of 𝑁(𝛽) are derived in the next section.

3. Characteristics of𝑁(𝛽)

In this section, algorithms are described to obtain quan-
tiles of 𝑁(𝛽) and to generate samples from 𝑁(𝛽). Also,

the moment generating function and the moments of this
distribution are derived.

3.1. Quantiles. The 100𝑞th quantile, 𝑞 ∈ (0, 1), can be derived
as follows.

(1) Let 𝑞 ∈ (0, 1);

(2) Solve the following equation numerically in 𝑢 ∈
(0, 1) :

[𝛽 + (1 − ln 𝑢) 𝑢] 𝑢 − (1 + 𝛽) (1 − 𝑞) = 0. (6)

(3) The 100𝑞th quantile is 𝑡
𝑞
= − ln 𝑢/𝛽.

3.2. Random Sample Generation. We provide below
three equivalent algorithms to generate a random variate
from 𝑁(𝛽).

Algorithm 1. (1) Generate 𝑢 ∼ 𝑈(0, 1).
(2) Solve numerically the following equation in V ∈

(0, 1): [𝛽 + (1 − ln V)V]V − (1 + 𝛽)𝑢 = 0.
(3) Set 𝑇 = − ln V/𝛽.

Algorithm 2. (1) Generate I from the set {1, 2} such
that 𝑃(𝐼 = 𝑗) = 𝑎

𝑗
, 𝑗 = 1, 2.

(a) If 𝐼 = 1, set 𝑦
1
= − ln 𝑢/𝛽, where 𝑢 ∼ 𝑈(0, 1).

(b) If 𝐼 = 2, set 𝑦
2
= min{− ln 𝑢

1
/𝛽, − ln 𝑢

2
𝑢
3
/𝛽},

where 𝑢
1
, 𝑢
2
, 𝑢
3
∼ 𝑈(0, 1).

(2) Set 𝑇 = 𝑦
𝐼
.

Algorithm 3. (1) Generate I from the set {1, 2, 3} such
that 𝑃(𝐼 = 𝑗) = 𝑏

𝑗
, 𝑗 = 1, 2, 3.

(a) If 𝐼 = 1, set 𝑦
1
= − ln 𝑢/𝛽, where 𝑢 ∼ 𝑈(0, 1).

(b) If 𝐼 = 2, set 𝑦
2
= − ln 𝑢/2𝛽, where 𝑢 ∼ 𝑈(0, 1).

(c) If 𝐼 = 3, set 𝑦
3
= − ln 𝑢

1
𝑢
2
/2𝛽, where 𝑢

1
, 𝑢
2
∼

𝑈(0, 1).

(2) Set 𝑇 = 𝑦
𝐼
.

3.3. The Moments and the Moment Generating Function. The
moment generating function (mgf) of 𝑁(𝛽) may be written
as

𝑀(𝑡) =
𝛽

1 + 𝛽
[
𝛽

𝛽 − 𝑡
+
4𝛽 − 𝑡

(2𝛽 − 𝑡)
2
] , 𝑡 < 𝛽. (7)

Differentiating the above expression 𝑘 times with respect to 𝑡
and setting 𝑡 to zero, we get 𝑘th moments, 𝜇

𝑘
, as

𝜇
𝑘
= 𝐸 (𝑇𝑘) =

𝛽

1 + 𝛽
[1 +

𝛽

2𝛽
(1 +

𝑘 + 1

2𝛽
)
1

2𝑘
]
𝑘!

𝛽𝑘
, 𝑘 ≥ 1.

(8)
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Figure 1: Skewness and kurtosis of𝑁(𝛽) as functions 𝛽.

Based on the first four ordinarymoments, themeasures of
skewness (sk) and kurtosis (𝜅) of𝑁(𝛽) can be obtained using

sk =
𝜇
3
− 3𝜇
1
𝜇
2
+ 2𝜇3
1

[𝜇
2
− 𝜇2
1
]
3/2

, (9)

𝜅 =
𝜇
4
− 4𝜇
1
𝜇
3
+ 6𝜇2
1
𝜇
2
− 3𝜇4
1

[𝜇
2
− 𝜇2
1
]
2

. (10)

Plots of the skewness and kurtosis of the distribution as
a function of 𝛽 are plotted in Figure 1. From the plots, sk
and 𝜅 are unimodal functions of 𝛽. The skewness is always
positive and the kurtosis is larger than 3; therefore, 𝑁(𝛽) is
positively skewed and leptokurtic.

4. Power Transformation of
the New Distribution

To get a more flexible distribution, we consider an extension
of the new distribution 𝑁(𝛽) with the pdf (3) by using the
power transformation𝑋 = 𝑇1/𝛼, 𝛼 > 0. The pdf of𝑋 is given
by

𝑓 (𝑥) =
𝛼𝛽𝑥𝛼−1

1 + 𝛽
[𝛽 + (1 + 2𝛽𝑥𝛼) 𝑒−𝛽𝑥

𝛼

] 𝑒−𝛽𝑥
𝛼

,

𝑥 ≥ 0, 𝛼, 𝛽 > 0.

(11)

The density of 𝑋 is plotted in Figure 2 for three choices of 𝛼
when 𝛽 = 1.0, which shows that the density is symmetric
when 𝛼 = 3.535, left skewed when 𝛼 < 3.535, and
right skewed when 𝛼 > 3.535. This implies that the power

parameter 𝛼 characterizes the shape of the density function.
More investigation of the density will be discussed, in the
next section, based on the skewness and kurtosis measures.
From now on, we will use TN(𝛼, 𝛽) to refer to the power
transformation of the new distribution𝑁(𝛽).

Interpretation. There are two different interpretations of 𝑌 as
follows.

(1) The pdf 𝑓(𝑥) is a mixture density of two mixture
components. One component follows 𝑊(𝛼, 𝛽) and
the other is the lifetime of a two independent compo-
nent series system with𝑊(𝛼, 2𝛽) and PG(𝛼, 2, 𝛽) and
mixture weights 𝑎

1
= 𝛽/(1 + 𝛽) and 𝑎

2
= 1/(1 + 𝛽),

respectively.

(2) The random variable 𝑋 can be described as a mix-
ture of three components: 𝑊(𝛼, 𝛽), 𝑊(𝛼, 2𝛽), and a
PG(𝛼, 2, 2𝛽)withmixture weights 𝑏

1
= 𝛽/(1+𝛽), 𝑏

2
=

1/2(1 + 𝛽), and 𝑏
3
= 1/2(1 + 𝛽), respectively.

Straightforward calculations yield the the survival function of
TN(𝛼, 𝛽) as

𝑆 (𝑥) =
1

1 + 𝛽
[𝛽 + (1 + 𝛽𝑥𝛼) 𝑒−𝛽𝑥

𝛼

] 𝑒−𝛽𝑥
𝛼

,

𝑥 ≥ 0, 𝛼, 𝛽 > 0.

(12)

We derive some characteristics of TN(𝛼, 𝛽) in the next
section.
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Figure 2: The TN(𝛼, 𝛽) density function for some values of 𝛼 when
𝛽 = 1.

5. Characteristics of TN(𝛼, 𝛽)
5.1. The Hazard Function. The hazard rate function of
TN(𝛼, 𝛽) is

ℎ (𝑥) =
𝛼𝛽𝑥𝛼−1 [𝛽 + (1 + 2𝛽𝑥𝛼) 𝑒−𝛽𝑥

𝛼

]

𝛽 + (1 + 𝛽𝑥𝛼) 𝑒−𝛽𝑥
𝛼

, 𝑥 ≥ 0, 𝛼, 𝛽 > 0.

(13)

For𝛼 = 1, the hazard function is unimodal. Its limiting values
at zero and infinity are 𝛽, and it reaches a maximum value of

(1 + 2𝑊
−1
(𝑒−1/𝛽)) 𝛽

1 +𝑊
−1
(𝑒−1/𝛽)

, (14)

at

1

𝛽
(1 +𝑊

−1
(
𝑒−1

𝛽
)) , (15)

where𝑊
−1
(⋅) denotes the Lambert𝑊 function which is the

inverse of the function 𝑥𝑒𝑥.
For 𝛼 ̸= 1, the shape of the hazard function is difficult to

ascertain analytically.The shape was determined numerically
by examining the derivative of the hazard out to the 99.99th
percentile of the distribution, and the results are shown in
Figure 3. For 𝛼 < 1, the hazard is decreasing except for
a small region with 𝛼 close to 1 and 𝛽 < 0.5 where the
hazard is initially decreasing, then increasing, and finally
decreasing (DID). For 𝛼 > 1, the hazard is strictly increasing
for large 𝛽 (𝛽 > 2.6 in the figure). For smaller 𝛽 with 𝛼
close to 1, the hazard can be unimodal (for very small 𝛽) or
initially increasing, then decreasing, and finally increasing
(IDI) (for slightly larger 𝛽). Figure 4 shows the hazard for
five choices of 𝛼 and 𝛽 which demonstrate the five possible
shapes.
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Figure 3: Shapes of the hazard function of TN(𝛼, 𝛽).

5.2. Quantiles and Random Sample Generations. The 100𝑞th
quantile of TN(𝛼, 𝛽), 𝑥

𝑞
, can be derived from that of𝑁(𝛽), 𝑡

𝑞
,

as follows:

𝑥
𝑞
= 𝑡1/𝛼
𝑞
. (16)

Figure 5 depicts the three quartiles𝑄
1
,𝑄
2
, and𝑄

3
, which can

be obtained from the 𝑞th quantile by setting 𝑞 = 0.25, 0.50,
and 0.75, respectively. From Figure 5, the Interquartile range
(IQR = 𝑄

3
− 𝑄
1
) decreases dramatically when 𝛼 increases.

The following algorithm generates a random variate from
TN(𝛼, 𝛽).

Algorithm 4. (1) Generate 𝑇 from 𝑁(𝛽), using one of the
Algorithms 1–3;

(2) Set𝑋 = 𝑇1/𝛼.

5.3. The Moments and Shape Measures. Let 𝑋 follow
TN(𝛼, 𝛽). After some algebra, the 𝑘th ordinary moment of𝑋
is derived as

𝜇
𝑘
= 𝐸 (𝑋𝑘)

= 𝑏
1

Γ (𝑘/𝛼 + 1)

𝛽𝑘/𝛼
+ 𝑏
1

Γ (𝑘/𝛼 + 1)

(2𝛽)
𝑘/𝛼

+ 𝑏
3

Γ (𝑘/𝛼 + 2)

(2𝛽)
𝑘/𝛼

=
𝑘Γ (𝑘/𝛼) [2𝛼 (1 + 2𝑘/𝛼𝛽) + 𝑘]

2𝛼2 (1 + 𝛽) (2𝛽)
𝑘/𝛼

.

(17)
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Therefore, the mean and variance of𝑋 are

𝜇 =
Γ (1/𝛼) [2𝛼 (1 + 21/𝛼𝛽) + 1]

2𝛼2 (1 + 𝛽) (2𝛽)
1/𝛼

,

𝜎2 = (8𝛼2 (1 + 𝛽) Γ (
2

𝛼
) [𝛼 (1 + 22/𝛼𝛽) + 1] − Γ2 (

1

𝛼
)

×[2𝛼 (1 + 21/𝛼𝛽) + 1]
2

)

× (4𝛼4(1 + 𝛽)
2

(2𝛽)
2/𝛼

)
−1

.

(18)

Figure 6 depicts the mean and variance of TN(𝛼, 𝛽) as
functions of 𝛼 when 𝛽 = 1 which shows that the mean
decreases dramatically in 𝛼 and takes its minimum of 0.8298
at 𝛼 = 1.61 then it increases steadily to take its maximum of
0.9687, while the variance is decreasing.

Based on the first four ordinary moments, the measures
of skewness (sk) and kurtosis (𝜅) of TN(𝛼, 𝛽) can be obtained
by substituting (17) into (9) and (10), respectively. Plots of the
skewness and kurtosis of TN(𝛼, 𝛽) distribution as functions
of 𝛼, when 𝛽 = 1.0, are given in Figure 7. From these plots,
(1) the skewness is positive when 𝛼 < 3.535 and negative
when 𝛼 > 3.535 and the kurtosis is (i) equal to 3 when either
𝛼 = 2.4977 or 𝛼 = 4.9151 which means that the distribution
is mesokurtic; (ii) greater than 3 when either 𝛼 < 2.4977 or
𝛼 > 4.9151 which means that the distribution is leptokurtic;
(iii) smaller than 3 when 2.4977 < 𝛼 < 4.9151 which means
that the distribution is platykurtic. This analysis shows how
the power parameter 𝛼 improves 𝑁(𝛽), because the power
transformationmodel can be used for datawith awide variety
of distributional shapes.

5.4. Order Statistics. Consider 𝑛 independent and identi-
cal components whose lifetimes, say 𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
, fol-

low TN(𝛼, 𝛽). The following theorem gives the limit-
ing distributions of the lifetime of the series system
𝑋
1:𝑛
= min{𝑋

1
, . . . , 𝑋

𝑛
} and of the parallel system 𝑋

𝑛:𝑛
=

max{𝑋
1
, . . . , 𝑋

𝑛
} consisting of these 𝑛 components.

Theorem 5. The limiting distributions of𝑋
1:𝑛

and𝑋
𝑛:𝑛

are

lim
𝑛→∞

𝑃{
𝑋
1:𝑛
− 𝑎
𝑛

𝑏
𝑛

≤ 𝑥} = 1 − 𝑒−𝑥
𝛼

, 𝑥 > 0, (19)

lim
𝑛→∞

𝑃{
𝑋
𝑛:𝑛
− 𝑐
𝑛

𝑑
𝑛

≤ 𝑥} = exp {− exp (−𝑥)} ,

𝑥 ∈ (−∞,∞) ,

(20)

where 𝑎
𝑛
= 0, 𝑏
𝑛
= 𝐹−1(1/𝑛), 𝑐

𝑛
= 𝐹−1(1 − 1/𝑛), 𝑑

𝑛
= 1/𝑛𝑓(𝑐

𝑛
)

and 𝐹(𝑥) = 1 − 𝑆(𝑥) is the cdf of 𝑋.

Proof. Using L’Hospital rule,

lim
𝑡→0+

𝐹 (𝑡𝑥)

𝐹 (𝑡)
= lim
𝑡→0+

𝑥𝑓 (𝑡𝑥)

𝑓 (𝑡)

= lim
𝑡→0+

𝑥𝛼 [𝛽 + (1 + 2𝛽(𝑡𝑥)𝛼) 𝑒−𝛽(𝑡𝑥)
𝛼

] 𝑒−𝛽(𝑡𝑥)
𝛼

[𝛽 + (1 + 2𝛽𝑡𝛼) 𝑒−𝛽𝑡
𝛼

] 𝑒−𝛽𝑡
𝛼

= 𝑥𝛼.

(21)

Therefore, (19) follows by Theorem 8.3.6(ii) of Arnold et al.
[4].

For the power transformation, we have

lim
𝑥→∞

𝑑

𝑑𝑥

1

ℎ (𝑥)

= lim
𝑥→∞

−
(𝛼 − 1) (𝛽 + (1 + 𝛽𝑥𝛼) 𝑒−𝛽𝑥

𝛼

)

𝛼𝛽𝑥𝛼 (𝛽 + (1 + 2 𝛽𝑥𝛼) 𝑒−𝛽𝑥
𝛼

)

+ lim
𝑥→∞

𝛽𝑥𝛼

1 + 2𝛽𝑥𝛼 + 𝛽𝑒𝛽𝑥
𝛼

+ lim
𝑥→∞

𝛽 (2𝛽𝑥𝛼 − 1) + (𝛽𝑥𝛼 (1 + 2𝛽𝑥𝛼) − 1) 𝑒−𝛽𝑥
𝛼

[𝛽 + (1 + 2𝛽𝑥𝛼) 𝑒−𝛽𝑥
𝛼

]
2

𝑒𝛽𝑥
𝛼

= 0.

(22)

Therefore, (20) follows by Theorem 8.3.3 of Arnold et al. [4].

The following Theorem gives the limiting distribution of
the 𝑖th order statistic of the 𝑛 lifetimes𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
.

Theorem 6. The limiting distributions of𝑋
𝑖:𝑛
, 1 ≤ 𝑖 ≤ 𝑛 are

lim
𝑛→∞

𝑃{
𝑋
𝑖:𝑛
− 𝑎
𝑛

𝑏
𝑛

≤ 𝑥} = 1 −
𝑖−1

∑
𝑗=0

𝑥𝑗𝛼

𝑗!
𝑒−𝑥
𝛼

, 𝑥 > 0, (23)

where 𝑎
𝑛
= 0, 𝑏
𝑛
= 𝐹−1(1/𝑛).

Proof. It follows fromTheorem 5 and (8.4.2) of Arnold et al.
[4].

Theorem 5means that (𝑋
1:𝑛
−𝑎
𝑛
)/𝑏
𝑛
and (𝑋

𝑛:𝑛
−𝑐
𝑛
)/𝑑
𝑛
fol-

low asymptotically𝑊(1, 𝛼) and Ext(0, 1), respectively, while
Theorem 6 means that (𝑋

𝑖:𝑛
− 𝑎
𝑛
)/𝑏
𝑛
follows asymptotically

PG(𝛼, 𝑖, 1).

6. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is one of the most
common methods for estimating the parameters of a sta-
tistical model. Assume that 𝑛 independent and identical
items, whose lifetimes follow TN(𝛼, 𝛽), are put on a life
test simultaneously. Let 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
be the failure times of
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the items and let x = (𝑥
1
, . . . , 𝑥

𝑛
).The likelihood function for

(𝛼, 𝛽) is

𝐿 (𝛼, 𝛽; x) = 𝛼𝑛𝛽𝑛

(1 + 𝛽)
𝑛
(
𝑛

∏
𝑖=1

𝑥
𝑖
)

𝛼−1

𝑒−𝛽∑
𝑛

𝑖=1
𝑥
𝛼

𝑖

×
𝑛

∏
𝑖=1

[𝛽 + (1 + 2𝛽𝑥𝛼
𝑖
) 𝑒−𝛽𝑥

𝛼

𝑖 ] .

(24)

The log-likelihood function is

L (𝛼, 𝛽; x) = 𝑛 ln𝛼 + 𝑛 ln𝛽 − 𝑛 ln (1 + 𝛽)

+ (𝛼 − 1)
𝑛

∑
𝑖=1

ln𝑥
𝑖
− 𝛽
𝑛

∑
𝑖=1

𝑥𝛼
𝑖
+
𝑛

∑
𝑖=1

ln𝐴
𝑖
(𝛼, 𝛽) ,

(25)

where

𝐴
𝑖
(𝛼, 𝛽) = 𝛽 + (1 + 2𝛽𝑥𝛼

𝑖
) 𝑒−𝛽𝑥

𝛼

𝑖 , 𝑖 = 1, . . . , 𝑛. (26)

Thefirst partial derivatives of L, with respect to 𝛼 and 𝛽, are

L
𝛼
=
𝑛

𝛼
+
𝑛

∑
𝑖=1

ln𝑥
𝑖
− 𝛽
𝑛

∑
𝑖=1

𝑥𝛼
𝑖
ln𝑥
𝑖
+
𝑛

∑
𝑖=1

𝐴
𝑖,𝛼
(𝛼, 𝛽)

𝐴
𝑖
(𝛼, 𝛽)

,

L
𝛽
=

𝑛

𝛽 (1 + 𝛽)
−
𝑛

∑
𝑖=1

𝑥𝛼
𝑖
+
𝑛

∑
𝑖=1

𝐴
𝑖,𝛽
(𝛼, 𝛽)

𝐴
𝑖
(𝛼, 𝛽)

,

(27)

where

𝐴
𝑖,𝛼
(𝛼, 𝛽) =

𝜕𝐴
𝑖
(𝛼, 𝛽)

𝜕𝛼
= 𝛽𝑥𝛼
𝑖
(1 − 2𝛽𝑥𝛼

𝑖
) ln𝑥
𝑖
𝑒−𝛽𝑥

𝛼

𝑖 ,

𝐴
𝑖,𝛽
(𝛼, 𝛽) =

𝜕𝐴
𝑖
(𝛼, 𝛽)

𝜕𝛽
= 1 + (1 − 2𝛽𝑥𝛼

𝑖
) 𝑥𝛼
𝑖
𝑒−𝛽𝑥

𝛼

𝑖 .

(28)

The second partial derivatives ofL are

L
𝛼,𝛼
= −
𝑛

𝛼2
− 𝛽
𝑛

∑
𝑖=1

𝑥𝛼
𝑖
(ln𝑥
𝑖
)
2

+
𝑛

∑
𝑖=1

𝐴
𝑖
(𝛼, 𝛽)𝐴

𝑖,𝛼
2 (𝛼, 𝛽) − [𝐴

𝑖,𝛼
(𝛼, 𝛽)]

2

[𝐴
𝑖
(𝛼, 𝛽)]

2
,

L
𝛼,𝛽
= −
𝑛

∑
𝑖=1

𝑥𝛼
𝑖
ln𝑥
𝑖

+
𝑛

∑
𝑖=1

𝐴
𝑖
(𝛼, 𝛽)𝐴

𝑖,𝛼𝛽
(𝛼, 𝛽) − 𝐴

𝑖,𝛼
(𝛼, 𝛽)𝐴

𝑖,𝛽
(𝛼, 𝛽)

[𝐴
𝑖
(𝛼, 𝛽)]

2
,

L
𝛽,𝛽
= −
𝑛

𝛽2
+

𝑛

(1 + 𝛽)
2

+
𝑛

∑
𝑖=1

𝐴
𝑖
(𝛼, 𝛽)𝐴

𝑖,𝛽
2 (𝛼, 𝛽) − [𝐴

𝑖,𝛽
(𝛼, 𝛽)]

2

[𝐴
𝑖
(𝛼, 𝛽)]

2
,

(29)
where
𝐴
𝑖,𝛼
2 (𝛼, 𝛽) = 𝛽𝑥𝛼

𝑖
(ln𝑥
𝑖
)
2

𝑒−𝛽𝑥
𝛼

𝑖 (1 − 5𝛽𝑥𝛼
𝑖
+ 2𝛽2𝑥2𝛼

𝑖
) ,

𝐴
𝑖,𝛼𝛽
(𝛼, 𝛽) = 𝑥𝛼

𝑖
(ln𝑥
𝑖
) 𝑒−𝛽𝑥

𝛼

𝑖 (1 − 5𝛽𝑥𝛼
𝑖
+ 2𝛽2𝑥2𝛼

𝑖
) ,

𝐴
𝑖,𝛽
2 (𝛼, 𝛽) = −𝑥2𝛼

𝑖
𝑒−𝛽𝑥

𝛼

𝑖 (3 − 2𝛽𝑥𝛼
𝑖
) .

(30)

The information matrix is

F (𝛼, 𝛽) = − [
L
𝛼,𝛼

L
𝛼,𝛽

L
𝛼,𝛽

L
𝛽,𝛽

] . (31)

The MLE of 𝛼 and 𝛽, say 𝛼̂ and 𝛽, are the solution of the
system of nonlinear equations obtained by setting L

𝛼
=

0 and L
𝛽
= 0 such that the F(𝛼̂, 𝛽) is positive definite.

This system has no analytic solution, so numerical methods,
such as the Newton-Raphsonmethod, Burden and Faires [5],
should be used.

Large-Sample Intervals. The MLE of the parameters 𝛼
and 𝛽 are asymptotically normally distributed with means
equal to the true values of 𝛼 and 𝛽 and variances given by
the inverse of the information matrix. In particular,

(
𝛼̂

𝛽
) ∼ 𝑁

2
((
𝛼
𝛽
) , F̂−1) , (32)

where F̂−1 is the inverse of F(𝛼̂, 𝛽), with main diagonal
elements F̂11 and F̂22 given by

F̂
11 =

F̂
22

F̂
11
F̂
22
− F̂2
12

, F̂
22 =

F̂
11

F̂
11
F̂
22
− F̂2
12

. (33)

Using (32), large-sample (1 − 𝜗)100% confidence intervals
for 𝛼 and 𝛽 are

𝛼̂ ± 𝑍
𝜗/2
√F̂11, 𝛽 ± 𝑍

𝜗/2
√F̂22, (34)

where 𝑍
𝜗/2

is the upper 100𝜗/2 quantile of the standard
normal distribution.
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7. Applications

In this section, we analyze four data sets to illustrate the
applicability of the two new distributions proposed in this
paper. The first data consists of 61 observed recidivism
failure times (in days) of individuals released directly from
correctional institutions to parole in theDistrict of Columbia,
Columbia, USA [6]. The second data set consists of 43
active repair times (in hours) for an airborne communication
transceiver [7]. The third data set consists of 57 times (in

thousands of operating hours) of unscheduled maintenance
actions for the number 4 diesel engine of the U.S.S. Grampus,
up to 16 thousand hours of operation [8]. The forth data
set consists of the tensile strength (measured in GPa) of 69
carbon fibers tested under tension at gauge lengths of 20mm
[9].

We will refer to these data sets as failure times, repair
times, maintenance actions, and tensile strength data, respec-
tively. For each data set, we fit the proposed two distributions
as well as Lindley and power Lindley distributions. For
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the sake of comparison, we apply goodness-of-fit tests to
verify which distribution better fits these data sets. We
consider the well-known Kolmogorov-Smirnov (K-S) statis-
tic, the Cramér-von Mises (C-M), and Anderson-Darling
(A-D) statistics [10]. Furthermore, we consider the Akaike
information criterion AIC = −2L̂ + 2𝑞, where L̂ is the log-
likelihood function at theMLE of the parameters and 𝑞 is the
number of model parameters. Table 1 shows the MLE of the
parameters of each model, the corresponding maximum log-
likelihood value, and the AIC for the four data sets. Table 2
presents the results of the goodness of fit tests for the four
data sets using each model.

For every data set, we plotted (1) the scaled total time on
test transform (TTT-transform) plot which gives qualitative
information about the hazard rate shape [11]; (2) the hazard
functions for the four fitted models; (3) the empirical and
fitted density and distribution functions. Figures 8, 9, 10, and
11 show the four plots for the four data sets 1–4, respectively.
The scaled TTT-transform plots show that the repair data

set has a unimodal hazard, while the rest of data sets have
increasing hazards.

The inverse of information matrix at the MLE using the
four data sets are listed below.

Failure times:

F̂
−1 = [

1.717231 × 10−3 −1.024661 × 10−5

−1.024661 × 10−5 5.019728 × 10−7
] . (35)

Active repair:

F̂
−1 = [

0.00901512 −0.00442645
−0.00442645 0.00430030

] . (36)

Maintenance actions:

F̂
−1 = [

0.046064730 −1.998013 × 10−3

−1.998013 × 10−3 9.07815 × 10−5
] . (37)

Tensile strength:

F̂
−1 = [

0.521162636 −3.846724 × 10−3

−3.846724 × 10−3 2.892066 × 10−5
] . (38)
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Figure 9: The TTT-transform, hazard, pdf, and cdf of the active repair times data.

Table 1: Parameter estimates, maximum log-likelihood, and AIC for the four data sets.

Data Model Parameter estimates L̂ AIC

Failure times

L(𝛽) 𝛽 = 9.403 × 10−3 −386.894 775.789
PL(𝛼, 𝛽) 𝛼̂ = 0.8778, 𝛽 = 0.0185 −385.958 775.916
N(𝛽) 𝛽 = 3.61354 × 10−3 −384.872 771.743
TN(𝛼, 𝛽) 𝛼̂ = 1.2551, 𝛽 = 8.442 × 10−4 −382.904 769.808

Repair times

L(𝛽) 𝛽 = 0.449891 −104.433 210.865
PL(𝛼, 𝛽) 𝛼̂ = 0.762291, 𝛽 = 0.652788 −99.974 203.947
N(𝛽) 𝛽 = 0.226013 −100.821 203.642
TN(𝛼, 𝛽) 𝛼̂ = 0.843574, 𝛽 = 0.295802 −99.572 203.144

Maintenance actions

L(𝛽) 𝛽 = 0.217325 −170.317 342.634
PL(𝛼, 𝛽) 𝛼̂ = 1.28229, 𝛽 = 0.117289 −167.089 338.178
N(𝛽) 𝛽 = 0.0936263 −174.636 351.271
TN(𝛼, 𝛽) 𝛼̂ = 1.69539, 𝛽 = 0.0172624 −165.584 335.167

Tensile strength

L(𝛽) 𝛽 = 0.6545 −119.190 240.381
PL(𝛼, 𝛽) 𝛼̂ = 3.8678, 𝛽 = 0.0497 −49.060 102.119
N(𝛽) 𝛽 = 0.3334 −124.618 251.235
TN(𝛼, 𝛽) 𝛼̂ = 4.8853, 𝛽 = 0.0067 −49.976 103.952
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Figure 10: The TTT-transform, hazard, pdf, and cdf of the maintenance actions data.

Table 2: Statistics K-S (𝑃 value), C-M, and A-D for the four data sets.

Data Model K-S (𝑃 value) C-M A-D

Failure times

L(𝛽) 0.099087 (0.55362) 0.1456121 0.907295
PL(𝛼, 𝛽) 0.094044 (0.61929) 0.1632937 1.013002
N(𝛽) 0.103937 (0.49274) 0.1175828 0.741661
TN(𝛼, 𝛽) 0.069538 (0.90959) 0.0847141 0.542494

Repair times

L(𝛽) 0.234632 (0.01449) 0.1810547 1.210262
PL(𝛼, 𝛽) 0.120462 (0.52160) 0.1330721 0.895534
N(𝛽) 0.174114 (0.13065) 0.1506954 0.993861
TN(𝛼, 𝛽) 0.114174 (0.58940) 0.1268951 0.840214

Maintenance actions

L(𝛽) 0.122002 (0.33663) 0.187688 1.305582
PL(𝛼, 𝛽) 0.119731 (0.35863) 0.178752 1.244465
N(𝛽) 0.146367 (0.15728) 0.186369 1.298771
TN(𝛼, 𝛽) 0.111731 (0.44316) 0.160603 1.120745

Tensile strength

L(𝛽) 0.386637 (1.17899 × 10−9) 0.0403019 0.3025705
PL(𝛼, 𝛽) 0.044275 (0.99840) 0.0181847 0.1619866
N(𝛽) 0.415150 (4.57128 × 10−11) 0.0432435 0.3221342
TN(𝛼, 𝛽) 0.056805 (0.96997) 0.0403920 0.3132999
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Figure 11: The TTT-transform, hazard, pdf, and cdf of the tensile strength data.

Table 3: The LRT and 𝑃 value for the four data sets.

Failure
times

Repair
times

Maintenance
actions

Tensile
strength

Λ 3.936 2.498 18.104 149.284
𝑃 value 0.0473 0.1140 2.0916 × 10−5 0

For the first three data sets, TN(𝛼, 𝛽) model has the
smallest value of the Kolmogorov-Smirnov (largest 𝑃 value),
the Cramér-von Mises, and Anderson-Darling goodness-of-
fit tests statistics which indicate that the best fit is provided
by the TN model for these data sets. For the forth data set,
the power Lindley model provides the best fit in the sense of
having the smallest test statistics. For all data sets, TN(𝛼, 𝛽)
is a better fit than 𝑁(𝛽). For the first two data sets, 𝑁(𝛽) is
a better fit than both 𝐿(𝛽) and PL(𝛼, 𝛽) while it is the worst

fit for the last two data sets. The AIC statistic is the lowest for
TN(𝛼, 𝛽) for all data sets except for tensile strength where it
is slightly higher.

Further, for testing 𝑁(𝛽) as a submodel of the TN(𝛼, 𝛽),
we use the likelihood ratio test statistic (LRT) to check if
the fit using the TN(𝛼, 𝛽) is statistically superior to a fit
using the 𝑁(𝛽) for each data set. The LRT for testing 𝐻

0
:

𝛼 = 1 against 𝐻
1
: 𝛼 ̸= 1 is Λ = 2(L̂

𝐻
1

− L̂
𝐻
0

), where
L̂
𝐻
1

and L̂
𝐻
0

are the maximum log-likelihood values
under 𝐻

1
and 𝐻

0
, respectively. Under 𝐻

0
, Λ 𝑑

󳨀→ 𝜒2
1
.

The LRT rejects 𝐻
0
if Λ > 𝜒2

1,𝛾
, where 𝜒2

1,𝛾
denotes the

upper 100𝛾% point of chi-square distribution with 1 degree
of freedom. Table 3 lists the values of the LRT and the
corresponding 𝑃 value for the four data sets. Based on the 𝑃
values, the 𝑁(𝛽) is not rejected against the TN(𝛼, 𝛽) to fit
the repair times data set, while it is rejected, at any level of
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Table 4: MSE, coverage probability, and average width.

𝛼 𝛽 𝑛 MSE
𝛼

MSE
𝛽

CP
𝛼

AW
𝛼

CP
𝛽

AW
𝛽

0.5 1

25 0.008889 0.0639280 0.9550 0.335546 0.9426 0.888835
50 0.003720 0.0250429 0.9553 0.229186 0.9541 0.608075
75 0.002295 0.0158072 0.9558 0.184697 0.9527 0.491875
100 0.001690 0.0120432 0.9547 0.159216 0.9528 0.425521

1.0 1.0

25 0.035209 0.0603732 0.9552 0.669487 0.9492 0.884671
50 0.015100 0.0259297 0.9530 0.458663 0.9504 0.60922
75 0.009433 0.0165418 0.9495 0.369965 0.9516 0.493743
100 0.006956 0.0121903 0.9517 0.318365 0.9498 0.425539

2.0 1.0

25 0.144086 0.0609798 0.9518 1.342590 0.9435 0.883723
50 0.061349 0.0260667 0.9472 0.916073 0.9458 0.608569
75 0.037822 0.0163597 0.9526 0.740067 0.9508 0.492714
100 0.028013 0.0119553 0.9492 0.638045 0.9510 0.424817

1.3 0.5

25 0.058995 0.0173859 0.9532 0.866467 0.9216 0.481574
50 0.024938 0.0081550 0.9535 0.594661 0.9348 0.339487
75 0.015840 0.0052273 0.9557 0.480683 0.9400 0.277333
100 0.011542 0.0037797 0.9551 0.414303 0.9451 0.239666

0.5 1.2

25 0.009273 0.0972282 0.9480 0.335704 0.9499 1.084880
50 0.003832 0.0381008 0.9485 0.229018 0.9494 0.733431
75 0.002355 0.0239632 0.9511 0.184765 0.9565 0.593873
100 0.001787 0.0173496 0.9485 0.159225 0.9531 0.510691

1.0 1.2

25 0.036640 0.0898864 0.9502 0.670473 0.9556 1.075180
50 0.015133 0.0380503 0.9525 0.457310 0.9526 0.735221
75 0.009416 0.0240831 0.9525 0.369850 0.9547 0.594754
100 0.007055 0.0174628 0.9486 0.318305 0.9523 0.510473

2.0 1.2

25 0.148128 0.0929780 0.9515 1.344300 0.9493 1.076180
50 0.061533 0.0386808 0.9522 0.916556 0.9522 0.734676
75 0.038607 0.0248240 0.9495 0.738584 0.9492 0.593036
100 0.028413 0.0172320 0.9474 0.636959 0.9541 0.509967

1.3 1.5

25 0.063330 0.1753970 0.9534 0.875085 0.9601 1.415120
50 0.025851 0.0651604 0.9519 0.596480 0.9537 0.945666
75 0.016517 0.0404539 0.9509 0.481512 0.9536 0.759421
100 0.011529 0.0292367 0.9548 0.414153 0.9552 0.652792

0.9 1.2

25 0.029932 0.0929842 0.9499 0.604276 0.9495 1.074170
50 0.012327 0.0389142 0.9501 0.411230 0.9509 0.734209
75 0.007675 0.0238699 0.9504 0.332339 0.9531 0.594194
100 0.005652 0.0174031 0.9531 0.286597 0.9505 0.510094

significance greater than or equal to 0.0473, to fit the other
three data sets.

8. Simulation Study

We used a simulation study to investigate the performance
of the accuracy of point and interval estimates of the two
parameters of TN(𝛼, 𝛽). The following steps are as follows:

(1) Specify the values of the parameters 𝛼 and 𝛽;

(2) Specify the sample size 𝑛;

(3) Use Algorithm 2 and the transformation to generate a
random sample with size 𝑛 from TN(𝛼, 𝛽).

(a) Calculate the MLE of the two parameters and
the inverse of the Fisher matrix;

(b) Calculate the squared deviation of the MLE
from the exact value of each parameter;

(c) Calculate a 95% CI for each parameter;

(4) Repeat steps 2-3, 𝑁 times;
(5) Calculate the mean squared error (MSE), the average

of the confidence interval widths, and the coverage
probability for each parameter. The MSE associated
with the MLE of the parameter 𝜗, MSE

𝜗
, is

MSE
𝜗
=
1

𝑁

𝑁

∑
𝑖=1

(𝜗
𝑖
− 𝜗)
2

, (39)
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where 𝜗
𝑖
is the MLE of 𝜗 using the 𝑖th sample, 𝑖 =

1, 2, . . . , 𝑁, and 𝜗 = 𝛼, 𝛽. Coverage probability is the
proportion of the 𝑁 simulated confidence intervals
which include the true parameter 𝜗.

The simulation study is used when 𝑁 = 10, 000, the sample
sizes are 25, 50, 75, and 100, and the parameter values (𝛼, 𝛽) =
(0.5, 1), (1, 1), (2, 1), (1.3, 0.5), (0.5, 1.2), (1, 1.2), (2, 1.2),
(1.3, 1.5), and (0.9, 1.2). Some of the selected values
of (𝛼, 𝛽) give decreasing, unimodal, increasing, and
increasing-decreasing-increasing hazard shapes, respectively,
as shown in Figure 3. Table 4 presents the MSE, coverage
probability (CP

𝜗
), and averagewidth (AW)of 95% confidence

intervals of each parameter. As it was expected, this table
shows that the MSEs of the estimates decrease as the sample
size increases, that the coverage probabilities are very close
to the nominal level of 95%, and that the average widths
decrease as the sample size increases.

9. Conclusion

In this paper, we have proposed new one-parameter and
two-parameter distributions, called the 𝑁(𝛽) and TN(𝛼, 𝛽),
respectively. The TN(𝛼, 𝛽) was obtained by using a power
transformation of the 𝑁(𝛽) distributed variable. The
TN(𝛼, 𝛽) provides more flexibility than the 𝑁(𝛽) in terms
of the shape of the density and hazard rate functions as
well as its skewness and kurtosis. We derived the maximum
likelihood estimates of the parameters and their variance-
covariance matrix. We proposed different algorithms to
generate samples from the two proposed distributions.
Applications of the two proposed distributions to real
data sets show better fits than Lindley and power Lindley
distributions. Finally, we examined the accuracy of the
maximum likelihood estimators of the TN(𝛼, 𝛽) parameters
as well as the coverage probability and average width of the
confidence intervals for the parameters using simulation.

Notation

pdf: Probability density function
cdf: Cumulative distribution function
mgf: Moment generating function
𝑈(0, 1): Uniform distribution on (0, 1)
Exp(𝛽): Exponential distribution with mean 1/𝛽
𝑊(], 𝛽): Weibull distribution with pdf

𝑓(𝑥) = ]𝛽𝑥]−1𝑒−𝛽𝑥
]

𝐺(], 𝛽): Gamma distribution with pdf
𝑓(𝑥) = (𝛽]/Γ(]))𝑥]−1𝑒−𝛽𝑥

PG(𝛼, ], 𝛽): Power gamma distribution with pdf
𝑓(𝑥) = (𝛼𝛽]/Γ(]))𝑥𝛼]−1𝑒−𝛽𝑥

𝛼

PL(𝛼, 𝛽): Power Lindley distribution with pdf
𝑓(𝑥) = (𝛼𝛽2/(1 + 𝛽))𝑥𝛼−1(1 + 𝑥𝛼)𝑒−𝛽𝑥

𝛼

Ext(𝛼, 𝛽): Extreme-value distribution with pdf
𝑓(𝑥) = (1/𝛽)𝑒−(𝑥−𝛼)/𝛽−exp{−(𝑥−𝛼)/𝛽}.
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