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Immediate treatment with an automated external defibrillator (AED) increases out-of-hospital cardiac arrest (OHCA) patient
survival potential. While considerable attention has been given to determining optimal public AED locations, spatial and temporal
factors such as time of day and distance from emergency medical services (EMSs) are understudied. Here we describe a
geocomputational genetic algorithm with a new stirring operator (GANSO) that considers spatial and temporal cardiac arrest
occurrence factors when assessing the feasibility of using Taipei 7-Eleven stores as installation locations for AEDs. Our model is
based on twoAED conveyancemodes, walking/running and driving, involving service distances of 100 and 300meters, respectively.
Our results suggest different AED allocation strategies involving convenience stores in urban settings. In commercial areas, such
installations can compensate for temporal gaps in EMS locations when responding to nighttime OHCA incidents. In residential
areas, store installations can compensate for long distances from fire stations, where AEDs are currently held in Taipei.

1. Introduction

The American Heart Association defines out-of-hospital
cardiac arrest (OHCA) as the cessation of mechanical cardiac
activity outside of a medical care setting as confirmed
by the absence of circulation [1, 2]. Survival is strongly
correlated with time between OHCA occurrence and first
defibrillation, with 4 minutes or less considered as optimum
for survival [3, 4]. Survival potential declines by 7–10% for
each minute that treatment is delayed [5]. For 80% of OHCA
patients whose events occur at home and 60% whose events
occur in the presence of another individual [6], survival
is heavily dependent on the dispatch point of the nearest
ambulance or emergency medical service (EMS) team [7, 8].
Accordingly, EMS timeliness is a top priority for emergency
medicine researchers [9]. While cardiopulmonary resuscita-
tion (CPR) performed while waiting for other forms of treat-
ment increases OHCA survival by approximately 8% [10],

CPR requires voluntary participation in a 2-3 hour training
session. The installation of automated external defibrillators
(AEDs) in public locations is therefore considered the most
effective means of reducing the time from OHCA onset to
first defibrillation [11–13]. Early defibrillation programs in
Taipei began in June of 2000 [14], with the immediate goal of
making AEDs available in public locations such as airports,
fire stations, university campuses, and shopping malls.

Despitetheresearchattentiongiventospatial analytical met-
hods and patterns in the design of medical services [15, 16],
few efforts have been made to thoroughly study the spatial
and temporal aspects of OHCA incidents and EMS availabil-
ity when determining optimal locations for AED installations
[12, 17, 18]. In terms of temporal variation, lower cardiac
arrest rates at night are likely due to less human activity in
public areas, reducing the probability ofOHCAdiscovery and
increasing treatment delays. In light of evidence indicating
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Figure 1: Geographic distribution of 1,625 OHCA cases, 677 7-Eleven stores, and 44 fire stations in Taipei in 2010. Each green dot denotes
one OHCA case, each purple dot one 7-Eleven store, and each red icon one fire station.

variance in temporal OHCA frequency [19], defibrillator
installation planners must identify areas with higher rates
of cardiac arrest to increase the potential for bystanders to
provide emergency treatment prior to the arrival of trained
emergency personnel. In terms of spatial variation, optimal
AED installation location can compensate for geographic
obstacles to deliver timely EMS treatment [7]. Defibrillators
have been installed in many cities at fixed locations such as
parks, shopping malls, bus stops, and airports [17]. Despite
the easy identification of AEDs installed at fixed locations,
much higher concentrations are found in high-activity areas,
leaving low-activity areas underserved. Fixed AED locations
must therefore be supplemented by mobile AEDs in police
cars and other emergency vehicles [20].However, since public
safety personnel are often occupied by other emergencies,
fixed location for AEDs is the favored approach.

In this paper, we describe a geocomputational genetic
algorithm with a new stirring operator (GANSO) that con-
siders spatial and temporal cardiac arrest occurrence factors
when assessing the feasibility of using Taipei 7-Eleven stores
as installation locations for AEDs. Taipei has the highest
density of 24-hour convenience stores in the world, nearly
2,000 serving the needs of over two million residents. The
country’s public health officials are examining the feasibility
of installing AEDs in many of these stores to compensate
for the shortage of EMSs in locations away from urban
centers and in commercial neighborhoods with less activ-
ity during nighttime hours. Given the prohibitive cost of

installing an AED in every 7-Eleven store, an appropriate
subset of locations providing the greatest coverage must be
identified [21, 22]. This task requires consideration of spatial
and temporal factors including OHCA onset time, location,
frequency, distance between potential AED locations, and
distance to EMS facilities (usually fire stations). It can
be formulated as either a location-allocation optimization
problem [21, 22] or a weighted set-covering problem (i.e., a
nondeterministic polynomial time complete [NP-complete]
problem) [23]. Computational complexity can be reduced by
using a weighted set-covering genetic algorithm (GA) (in
location-allocation optimization problems involving EMSs
[24, 25], GAs offer high utility value in scenarios involving
geographic information systems (GISs) [26]—for example,
when comparing response times for evaluating EMS and
ambulance allocation [27]; GAs have also been used to
maximize coverage for fire stations, post offices, and banks
[22]; GA performance and convergence are closely associated
with appropriate methods for encoding candidate solutions,
objective functions, selection and reproduction operators,
parameter settings, and specific success criteria [25, 28]) to
obtain a set of approximation solutions [29, 30].

2. Materials and Methods

Three categories of data were used in this study: OHCA
information, 7-Eleven locations, and fire station locations.
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OHCA data are from the Emergency Medical Service Reg-
istry System of the Taipei City Government. Filter criteria for
the OHCA cases include nontrauma events between January
and December of 2010 involving patients over 18 years of age
who were treated by emergency medical services personnel.
The registry system was established by the Taipei City
Department of Health. Data were compiled by the City’s Fire
Department and Taipei area hospitals. OHCA data include
time and date of onset, location, ambulance/EMS vehicle
response time, and type of cardiovascular life support used
(advanced, basic, or a combination). Convenience store and
fire station data were collected from the 7-Eleven Chain Store
Corporation and Taipei City Fire Department. Geographic
distributions of OHCA patients, convenience stores, and fire
stations are shown in Figure 1.

Our proposed framework consists of two stages: (a)
determining the spatial and temporal weights of OHCA
incidents and covering sets for individual convenience stores
and (b) using GANSO with first-stage findings to solve AED
location-allocation optimization problems entailing spatial
and temporal variation. We will describe two scenarios for
determining AED conveyance from convenience stores to
cardiac arrest victims, with service distance set at either
100 or 300 meters. At 100 meters, the primary conveyance
mode is running at an average speed of 80–100 meters per
minute. This allows for defibrillation within the four-minute
time span considered optimal for saving the lives of OHCA
victims. When the service distance is set at 300 meters, a
vehicle moving at an average speed of 320–400 meters per
minute is required to stay below the four-minute target.

2.1. Temporally and Spatially Weighted Models. We assumed
a total of 𝑀 OHCA patients (labeled 1 to 𝑀), 𝑁 7-Eleven
stores (labeled 1 to 𝑁), and 𝐿 fire stations (labeled 1 to 𝐿) in
Taipei in 2010. Each OHCA patient is denoted as an object
variable 𝑜

𝑖
(𝑖 ∈ {1, 2, . . . ,𝑀}) belonging to a patient set

𝑂 = {𝑜
1
, 𝑜
2
, . . . , 𝑜

𝑀
} consisting of all 𝑀 OHCA patients.

Each 7-Eleven store is denoted as an object variable 𝑐
𝑗
(𝑗 ∈

{1, 2, . . . , 𝑁}) belonging to a store set 𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑁
}

consisting of all𝑁 7-Eleven stores. Subscript 𝑗 on store object
𝑐 is also used to denote the serial number of 7-Eleven stores
(i.e., 𝑐

𝑗
.𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑜 = 𝑗). Each fire station is denoted by an

object variable 𝑓
𝑘
(𝑘 ∈ {1, 2, . . . , 𝐿}) belonging to a set 𝐹 =

{𝑓
1
, 𝑓
2
, . . . , 𝑓

𝐿,
} consisting of all 𝐿 fire stations.

Each OHCA patient object 𝑜
𝑖
had three major member

attributes (sometimes referred to as “properties”): event time,
event date, and loc.The event time attribute denotes the onset
time of an OHCA event using the format hh:mm:ss (24-
hour clock—00:00:00 to 23:59:59), event date denotes the
onset date of an OHCA event using the format yyyy.mm.dd.,
and loc denotes the onset location of an OHCA event
using an (𝑥, 𝑦) GPS geographic position format. Next, we
developed two weighting schemes to capture spatial and
temporal variation for AED location selection: (a) occurrence
frequency and time of cardiac arrest in a given location for
temporal variation and (b) distance between EMS facility
and convenience store for spatial variation. We assumed that
convenience store AEDs compensate for lost time when they
are located far from the closest EMS facilities.

For the TWM parameters, time of cardiac arrest event
was categorized in terms of month and time period. An
attempt wasmade to determine themonthly temporal weight
weight(𝑜

𝑖
, 𝑚𝑜𝑛) of each OHCA patient. We considered sit-

uations in which the OHCA event onset month equaled a
mon parameter value (i.e., 𝑚𝑜𝑛𝑡ℎ(𝑜

𝑖
.𝑒V𝑒𝑛𝑡 𝑑𝑎𝑡𝑒) = 𝑚𝑜𝑛),

with a function weight(𝑜
𝑖
, 𝑚𝑜𝑛) return of 1.0 (nighttime) or

0.5 (daytime) according to subfunction weight(𝑜
𝑖
), depend-

ing on what time of day the event occurred. Otherwise,
the weight(𝑜

𝑖
, 𝑚𝑜𝑛) function returns an interpolated value

indicating the sum of the weighted OHCA, standardized in
terms of inverse distance weighting:

weight (𝑜
𝑖
, 𝑚𝑜𝑛)

=

{{{

{{{

{

weight (𝑜
𝑖
) 𝑚𝑜𝑛𝑡ℎ (𝑜

𝑖
.𝑒V𝑒𝑛𝑡 𝑑𝑎𝑡𝑒) = 𝑚𝑜𝑛

∑

𝑚𝑜𝑛𝑡ℎ(𝑜𝑗.𝑒V𝑒𝑛𝑡 𝑑𝑎𝑡𝑒)=𝑚𝑜𝑛

weight (𝑜
𝑗
) × distance weight (𝑜

𝑖
, 𝑜
𝑗
)

∑
𝑘 ̸= 𝑖∧𝑚𝑜𝑛𝑡ℎ(𝑜𝑘.𝑒V𝑒𝑛𝑡 𝑑𝑎𝑡𝑒)=𝑚𝑜𝑛 distance weight (𝑜

𝑖
, 𝑜
𝑘
)

otherwise,

(1)

where

weight (𝑜
𝑖
) =

{{{{

{{{{

{

0.5 if time period (𝑜
𝑖
.𝑒V𝑒𝑛𝑡 𝑡𝑖𝑚𝑒)

= "daytime"
1.0 if time period (𝑜

𝑖
.𝑒V𝑒𝑛𝑡 𝑡𝑖𝑚𝑒)

= "nighttime",

distance weight (𝑜
𝑖
, 𝑜
𝑗
) =

1

distance(𝑜
𝑖
.𝑙𝑜𝑐, 𝑜
𝑗
.𝑙𝑜𝑐)
2
.

(2)

Three user-defined functions were used to determine the
monthly temporal weight of an OHCA patient: month (𝑑𝑎𝑡𝑒)
returns the month from a passed date parameter. The
time period (𝑡𝑖𝑚𝑒) returns one of two period strings from
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a passed time parameter—08:00 to 17:00 representing “day-
time” and all other values “nighttime.”The distance (𝑙𝑜𝑐

𝑖
, 𝑙𝑜𝑐
𝑗
)

returns a Euclidean distance between two passed position
parameters of a plane with Cartesian coordinates on a map.
The functions of time period (𝑡𝑖𝑚𝑒) and distance (𝑙𝑜𝑐

𝑖
, 𝑙𝑜𝑐
𝑗
)

are defined as follows:

time period (𝑡𝑖𝑚𝑒)

= {
"daytime" 08:00:00 ≤ 𝑡𝑖𝑚𝑒 ≤ 17:00:00
"nighttime" otherwise,

distance (𝑙𝑜𝑐
𝑖
, 𝑙𝑜𝑐
𝑗
)

= √(𝑙𝑜𝑐
𝑖
.𝑥 − 𝑙𝑜𝑐

𝑗
.𝑥)
2

+ (𝑙𝑜𝑐
𝑖
.𝑦 − 𝑙𝑜𝑐

𝑗
.𝑦)
2

.

(3)

Next, we computed an OHCA temporal weight by
combining 12 monthly weight values (weight (𝑜

𝑖
, 1), weight

(𝑜
𝑖
, 2), . . ., weight (𝑜

𝑖
, 12)). A coefficient of variation (COV),

defined as a ratio of themeanmean (𝑜
𝑖
) to standard deviation

sd (𝑜
𝑖
), served as the OHCA weight—that is,

temporal wieght (𝑜
𝑖
) =

mean (𝑜
𝑖
)

sd (𝑜
𝑖
)

(4)

with mean (𝑜
𝑖
) and sd (𝑜

𝑖
) computed as

mean (𝑜
𝑖
) =

∑
12

𝑚=1
weight (𝑜

𝑖
, 𝑚)

12
,

sd (𝑜
𝑖
) =
√
∑
12

𝑚=1
(weight(𝑜

𝑖
, 𝑚) −mean (𝑜

𝑖
))
2

12
.

(5)

In the SWM, a higher weight indicates a longer distance
to the nearest fire station. Spatial weight was assumed as the
minimumsquareManhattan distance to each fire station (𝑓

𝑘
):

spatial weight (𝑜
𝑖
)

= min
𝑘

Manhattan distance (𝑜
𝑖
.𝑙𝑜𝑐, 𝑓

𝑘
.𝑙𝑜𝑐)
2
.

(6)

Due to the grid-like characteristic of urban street net-
works, we used Manhattan distances to compute distances
from fire stations to OHCA victims expressed as

Manhattan distance (𝑙𝑜𝑐
𝑖
, 𝑙𝑜𝑐
𝑗
)

=
󵄨󵄨󵄨󵄨󵄨
𝑙𝑜𝑐
𝑖
.𝑥 − 𝑙𝑜𝑐

𝑗
.𝑥
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑙𝑜𝑐
𝑖
.𝑦 − 𝑙𝑜𝑐

𝑗
.𝑦
󵄨󵄨󵄨󵄨󵄨
.

(7)

2.2. Genetic Algorithm with a New Stirring Operator
(GANSO). We formulated the AED location-allocation
optimization problem as a choice within a limited 𝐾-sized
subset of convenience stores, using GANSO to determine
an optimum subset based on the temporal or spatial
characteristics of OHCA victims. As shown in Pseudocode 1,
our proposed GANSO (GANSO was implemented as
a Python program, which supports future simulation
experiments and possible extensions; all input/output data
from our application were managed and processed using
Quantum GIS (QGIS), an open source (general public
license) GIS; for source code and input data for OHCA
information, 7-Eleven locations, and fire station locations,
contact the corresponding author) consists of nine steps.

In Step 2, population size 𝑛GA depends on both the
individual chromosome length and fitness function details.
For this project, a population size between 200 and 400 chro-
mosomes generated good solutions for the AED location-
allocation problem after testing trial runs of up to 1,000
chromosomes. The evolutionary process from Steps 4 to 10
represents an equilibrium between “exploring” the entire
search space (210𝐾) and “exploiting” the current best solution
to search for an optimal or near-optimal AED location-
allocation solution. Although crossover rate 𝜌 in Step 4b is
generally appliedwith a high probability (0.7 to 0.9), excessive
use of the crossover operation can disrupt the balance of this
equilibriumand create excessive diversity to cause the process
to drift from a fit structure. Inadequate diversity can also
result in premature convergence and a locally optimumrather
than globally fit structure. A balance between exploration
and exploitation increases the probability of achieving a
global optimum solution, but the 𝛾 mutation rate in Step
4c is normally set at a very low probability (e.g., 0.01). A
higher mutation rate reproduces an excessive number of
random populations, which can also impair the evolutionary
mechanism [26]. In GANSO, crossover rate 𝜌 and mutation
rate 𝛾 are set at 0.8 and 0.01, respectively, to achieve an
optimum outcome.

To evaluate the fitness score of each chromosome during
the GANSO evolution process, each𝐾-element chromosome
is transformed into a one-dimensional binary array 𝑋 of
length 𝑁 corresponding to index 𝑋[𝑗] (𝑗 ∈ {1, 2, . . . , 𝑁}) of
convenience store candidates (𝑋[𝑗] = 1 denoting the chosen
index, 0 otherwise) for use as a parameter for the following
location-allocation optimization problem fitness function:

fitness (𝑋) = maximize
𝑀

∑

𝑖=1

𝑊[𝑖, ] ∘ 𝑋

subject to
𝑁

∑

𝑗=1

𝑋[𝑗] = 𝐾,

transform (chromosome 𝑠) =

declare variable 𝑋 as an array [1 . . . 𝑁]

of binary integer
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Step 1. Reset all GA parameters and operators (i.e., selection, crossover, and mutation) to their
default settings.

Step 2. Randomly generate a population of chromosomes (candidates or potential solutions) of size
𝑛GA (defulat: 300), with each 𝑠 chromosome containing 𝐾 (default: 100) elements, and with
each element corresponding to the serial number (ranging from 1 to𝑁) of a specific
convenience store (Figure 2(a)).

Step 3. Assign each chromosome in the initial population a fitness score obtained by the objective
function.

Step 4. Repeat Steps 4a–4c until 𝑛GA offspring have been created.
Step 4a. Using a roulette wheel sampling mechanism in which selection probability is

proportional to the fitness score, randomly select two chromosomes from the
population to serveas parents. Note that any chromosome can be selected more
than once (i.e., in other iterations).

Step 4b. Using a two-point crossover process to exchange elements between
parent chromosomes, producing two new offspring with Probability 𝜌 (default: 0.8)
from each pair of parents (Figure 2(b)). If no crossover occurs, the two new offspring
Will be exact copies of their respective parents. To avoid repeats, rearrange parental
elements prior to this exchange so that the same elements are moved to the front of
each chromosome.

Step 4c. Mutate the two offspring for each element at probability 𝛾
(default: 0.01) and insert the resulting chromosomes into the new population.

Step 5. Replace the current population with the new one.
Step 6. Assign each chromosome in the current population a fitness

score obtained by the objective function.
Step 7. Maintain the best chromosome as the approximate global optimal solution for the AED

location-allocation problem and its associated fitness score for each generation in the current
population.

Step 8. Use the stirring operator to prevent premature convergence. Evolution should be sufficiently
stable so that the sum of the difference of best fitness scores over 𝑔 generations (default: 20)
falls below a tolerance value 𝜀 (default: 10−10). In the stirring operator, replace 𝜔 percent
(default: 20%) of the chromosomes in the current population with new and randomly
generated chromosomes to trigger searches for additional 𝑔 generations.

Step 9. If the sum of the difference of best fitness scores in
Additional 𝑔 generations ≤ 𝜀 then Stop the evolution process and
return the AED location-allocation solution with the best fitness score

else
Go to Step 4.

end if

Pseudocode 1

for each index in range (1,𝑁) do loop

𝑋 [𝑖𝑛𝑑𝑒𝑥] ←󳨀 0

for each 𝑖𝑛𝑑𝑒𝑥 in range (1, 𝐾) do loop

𝑠𝑜𝑡𝑟𝑒 𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑜 ←󳨀 Integer (𝑠 [𝑖𝑛𝑑𝑒𝑥𝑠])

𝑋 [𝑠𝑡𝑜𝑟𝑒 𝑠𝑒𝑟𝑖𝑎𝑙 𝑛𝑜] ←󳨀 1

return 𝑋,
(8)

where𝑊 denotes an𝑀-row by𝑁-column weighting matrix
determined by the temporal or spatial characteristics of all
OHCA patients in question and𝑊[𝑖, ] refers to the 𝑖th row of
the constant weighting matrix 𝑊, with 𝑊[𝑖, 𝑗] representing

the weight of the 𝑖th OHCA patient covered by the 𝑗th 7-
Eleven store.The ∘ operator is defined as the maximum value
among chosen elements:

𝑊
𝑖
∘ 𝑋 = max

𝑗

(𝑊 [𝑖, 𝑗] ⋅ 𝑋 [𝑗]) . (9)

The covering set consists of all 7-Eleven stores in Taipei:
for each store, the coverable object is one OHCA incident.
Coverable OHCAs are assumed for each 𝑐

𝑗
cutoff by a

constant distance threshold as follows:

𝑜
𝑖
∈ 𝑐
𝑗
←→ Manhattan distance (𝑜

𝑖
.𝑙𝑜𝑐, 𝑐
𝑗
.𝑙𝑜𝑐)

≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

(10)
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Population

1st element 3rd element2nd element Kth elementChromosome number 1

3 65520 2

Each chromosome contains K elements.

3 65521 18

...
...

...
...

...

· · ·

· · ·

· · ·

10100011112

to the serial number of a specific convenience store in the range
1–N

Chromosome number nGA

Note: each element is a 10-bit binary integer and corresponding

Chromosome number 2

(a)

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·3 1 478 513 2Parent number 1 Parent number 1

6 2 310 1 527Parent number 2 Parent number 2

Parent number 2

Crossover parent number 1 with parent number 2

1 2 3 478 513

Parent number 1

1 2 6 310 527

1 12 23 3 478513

11 2 2 66 310 527

310 513Child number 1

478 527Child number 2

1

3

2

Crossover operator Step 1: alignment

Step 2: cuts made at two pointsStep 3: elements exchanges

Cutoff point number 1 Cutoff point number 2

(b)

Figure 2: (a) Chromosome-encoding scheme. (b) Proposed GANSO crossover operator flow.
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Figure 4: Spatial and temporal weight distributions of OHCA cases. (a) SWM, 100-meter coverage; (b) TWM, 100-meter coverage; (c) SWM,
300-meter coverage; and (d) TWM, 300-meter coverage. Red dots denote OHCA case weights.

Correspondingly, the 𝑊 constant weighting matrix is
defined as

𝑊[𝑖, 𝑗] =

{{{{{{{

{{{{{{{

{

model weight (𝑜
𝑖
) 𝑜
𝑖
∈ 𝑐
𝑗

←→ Manhattan distance
(𝑜
𝑖
.𝑙𝑜𝑐, 𝑐
𝑗
.𝑙𝑜𝑐)

≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 otherwise,
(11)

where

model weight (𝑜
𝑖
)

=

{{{{

{{{{

{

temporal weight (𝑜
𝑖
) if the adopted weighting

model is "TWM"
spatial weight (𝑜

𝑖
) if the adopted weighting

model is "SWM" ,
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

=

{{{{

{{{{

{

100 when the maximal service
distance was set at 100 meters

300 when the maximal service
distance was set at 300 meters.

(12)

Figure 3 presents a summary of results from a single
TWM experiment using 100 meters as the service distance.
As shown, our proposed GANSO (Figure 3, red curve)
outperformed simple genetic algorithm (SGA) (blue curve).
The 𝑥-axis denotes the evolutionary generation number and
the 𝑦-axis the ratio of the fitness score (the sum of weights for
OHCA cases covered by 100 7-Eleven stores) to the total sum
of OHCA weights. Experiment results indicate that the new
stirring operator was effective in addressing evolution time
and performance issues. While GANSO performed poorly
during the first few generations, its overall performance was
satisfactory: by stirring the population, its best fitness values
gradually increased over 180–400 generations, yielding better
solutions for AED location selection.

3. Results and Discussion

At a service distance of 100 meters, 19.9% (323 cases) of the
1,625 cardiac arrest victims were within adequate coverage
zones of 38.7% (262) of the 677 7-Eleven stores operating in
Taipei.When the distance was increased to 300meters, 78.2%
(1,271 cases) were within the adequate coverage zones of 92%
(623) of those stores. Spatial and temporal weight distribution
patterns for the OHCA cases are shown in Figure 4; larger
red dots denote higher SWM and TWM weights. Note that
TWM-associated OHCA weights were concentrated in west
Taipei, which has a higher population density. In comparison,
OHCA weights associated with SWM cases were uniformly
distributed throughout the city.

Optimal solutions are summarized in Table 1. When the
number of stores was limited to 100 and the service distance

was fixed at either 100 or 300 meters, coverage was higher
for the TWM parameters—specifically, 180 OHCA patients
(55.7%) compared to 176 (54.5%) for the SWM parameters.
When the service distance was increased to 300 meters, 704
cases (55.4%) were covered by the TWM and 658 (51.8%) by
the SWMparameters. Overall, the TWM and SWM coverage
rates for 100 meters were higher than for 300 meters (55.7%
versus 55.4% and 54.5% versus 51.8%, resp.). Table 2 and
Figure 5 present a detailed comparison of optimal solutions
for different service ranges (from 100 to 500 meters in steps
of 50 meters) and weighting schemes (TWM and SWM)
when the number of stores earmarked for installing AEDs
was limited to between 100 and 200.

As shown in Figure 6(a), most of the TWM store loca-
tions were in high-density areas and most of the SWM
locations in lower-density areas, perhaps due to the TWM
preference for locations with higher nighttime OHCA fre-
quencies, as denoted by the large number of blue dots in
the densely populated southwest area of Taipei. The SWM
parameters indicated a preference for locations farther away
from fire stations, which explains why most of the green
dots are in outlying neighborhoods (see also Figure 6(a)
and Table 3(a)). The overlapping areas marked by black dots
indicate high-priority communities for AED installations in
convenience stores.

According to Figure 6(b), the TWM parameters favored
stores in commercial areas (blue dots), while the SWM
parameters favored stores in residential areas (green dots).
A higher OHCA incidence rate in commercial areas sug-
gests higher levels of human activity. Note that the SWM
parameters identified a larger number of AED installation
points due to the smaller number of fire stations in residential
areas and their greater distances from identified conve-
nience stores. Although the TWM parameters determined
more commercial locations, the SWM-selected locations
were more uniform in both high- and low-density areas
(Tables 3(b) and 4).
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Figure 6: Spatial distributions of (a) population density and (b) land-use type with locations of 7-Eleven stores selected based on SWM and
TWM parameters with a 100-meter service range. Data are from 2010 census. Each dot denotes one store. Blue dots indicate stores selected
according to TWM parameters and green dots according to SWM parameters. Black dots represent stores identified by both models.

Table 1: Comparison of results for different parameter settings when the number of 7-Eleven convenience stores is limited to 100.

Parameter Coverable OHCA cases Coverable OHCA weights
AED service range Weighting scheme

100 meters TWM 180 (55.73%) 56.23%
SWM 176 (54.49%) 71.63%

300 meters TWM 704 (55.39%) 53.88%
SWM 658 (51.77%) 66.25%

The tendencies of both models to select convenience
stores in densely populated areas based on spatial and
temporal considerations are consistent with those reported
by Malcom III et al. [18]. They are likely due to the positive
correlation between OHCA incidence rate and population
density—a link that also explains the greater likelihood of
identifying stores for AED installation in commercial areas
characterized by higher levels of human activity. Further,
optimal locations identified by the TWM parameters were
more likely to be located in commercial areas and those
identified by the SWM parameters in residential areas. These
results are consistent with those reported by Folke et al.
[31]. In addition to emphasizing the importance of temporal
variation, our results underscore the need for more AED

locations in commercial areas. Conversely, since residential
areas in Taipei tend to have less business activity and fewer
and more widely spaced fire stations, the SWM tendency to
identify stores in residential neighborhoodsmay be viewed as
compensating for lower EMS efficiency.

Whereas the SWM parameters gave higher priority to
locations far from fire stations, the TWM parameters pri-
oritized areas of greater human/commercial activity and
locations (more residential than commercial) with higher
nighttime OHCA incidence rates. This overlap also empha-
sizes the importance of installing AEDs in public locations to
compensate for shortcomings in EMS facility numbers and
locations. Regardless of the model used, the most efficient
AED installations in convenience stores or other public
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Table 3: Comparison of selected 7-Eleven stores at different population densities and for different neighborhood types.

TWM SWM TWM-SWM overlap
100 meters 300 meters 100 meters 300 meters 100 meters 300 meters

(a) Population density
Low 30 22 31 30 13 11
Middle 30 39 29 28 15 16
High 40 39 40 42 23 18

Total 100 100 100 100 51 45
(b) Neighborhood type

Commercial 31 29 27 22 14 11
Residential 47 54 53 62 25 28
Other 22 17 20 16 12 6

Total 100 100 100 100 51 45

Table 4: Average and standard deviation for distances from each 7-Eleven store to the nearest fire station (meters).

Weighting scheme and statistics: min, max, mean, SD AED service range
100 meters 300 meters

Mean SD Mean SD
TWM 4.68, 34.46, 9.56, 1.67 869 429 881 458
SWM 12.39, 39796162.90, 1198850.25, 1801599.73 1,230 344 1,303 432

locations must consider transport time to cardiac arrest vic-
tims. Determining the effects of heavy foot or vehicle traffic
is extremely difficult; therefore, AED installation decisions
must reflect OHCA incident frequencies and average traffic
volumes. Our findings suggest that shorter service distances
should be emphasized in areas where OHCA rates are higher
and that longer distances are appropriate in areas with low
traffic volumes.

4. Conclusion

In this paper, we presented a novel framework for solving
theNP-complete weighted set-covering problemof allocating
AEDs in a subset of 7-Eleven stores in Taipei. To develop
a GA with a new stirring operator, we modified a simple
GA by adding new chromosomes to a stable evolution
process to prevent premature convergence. Two spatially
and temporally weighted models (SWM and TWM) were
created to consider the spatial and temporal characteristics
of convenience stores and OHCA incidents in order to
validate the feasibility of using our proposedGANSO to solve
AED location-allocation optimization problems. Experiment
results indicate that the highest priority for installing AEDs
in Taipei communities should be given to convenience stores
located in high-density areas. In commercial areas, AEDs in
convenience stores can help compensate for temporal gaps in
EMSs for cardiac arrest victims in general and for nighttime
OHCA cases in particular. In residential areas, AEDs in
convenience stores can help compensate for spatial gaps in
terms of EMS delivery.
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