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Using a new fixed point theorem of generalized concave operators, we present in this paper criteria which guarantee the existence
and uniqueness of positive solutions to nonlinear two-point boundary value problems for second-order impulsive differential
equations with concave or convex nonlinearities.

1. Introduction

In this paper, we study the existence and uniqueness of
positive solutions to the following two-point boundary value
problems for second-order impulsive differential equations:

−𝑥


(𝑡) = 𝑓(𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥|

𝑡=𝑡𝑘
= 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥


|

𝑡=𝑡𝑘
= 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥


(0) , 𝑥 (1) = 𝑥


(1) ,

(1)

where 𝑓 ∈ 𝐶[𝐽 × R,R], 𝐽 = [0, 1], 0 < 𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ < 𝑡

𝑚
< 1,Δ𝑥|

𝑡=𝑡𝑘
= 𝑥(𝑡

+

𝑘
)−𝑥(𝑡

−

𝑘
),Δ𝑥|

𝑡=𝑡𝑘
= 𝑥


(𝑡

+

𝑘
)−𝑥


(𝑡

−

𝑘
),

𝑥


(𝑡

+

𝑘
), 𝑥(𝑡−

𝑘
), 𝑥(𝑡+
𝑘
), 𝑥(𝑡−
𝑘
) denote the right limit (left limit) of

𝑥


(𝑡) and 𝑥(𝑡) at 𝑡 = 𝑡

𝑘
, respectively. 𝐼

𝑘
, 𝐼

𝑘
∈ 𝐶[R,R], 𝑘 =

1, 2, . . . , 𝑚.
Impulsive differential equations have been studied exten-

sively in recent years. Such equations arise in many applica-
tions such as spacecraft control, impact mechanics, chemical
engineering, and inspection process in operations research.
It is now recognized that the theory of impulsive differen-
tial equations is a natural framework for a mathematical
modelling of many natural phenomena.There have appeared

numerous papers on impulsive differential equations during
the last ten years. Many of them are on boundary value
problems, see [1–18], and it is interesting to note that some
of them are about comparatively new applications like eco-
logical competition, respiratory dynamics, and vaccination
strategies, see [12, 19–25].

Second-order impulsive differential equations have been
studied by many authors with much of the attention given
to positive solutions. For a small sample of such work, we
refer the reader to works by Feng and Xie [6], Hu et al. [8],
Jankowski [10, 11], E. K. Lee and Y.-H. Lee [12], Lin and
Jiang [13], Liu et al. [14], Agarwal and O’Regan [26], Wang
et al. [27], Zhang [28], and Chu et al. [29]. The results of
these papers are based on the Schauder fixed point theorem,
Leggett-Williams theorem, fixed point index theorems in
cones, Krasnoselski fixed point theorem, the method of
upper-lower solutions, fixed point theorems in cones, and so
on. But, in most of the existing works, in order to establish
the existence of positive solutions, a key condition is the
existence of upper-lower solutions. However, as we know, it
is difficult to verify the existence of upper-lower solutions
for concrete impulsive differential equations. In addition, few
papers can be found in the literature on the existence and
uniqueness of positive solutions for second-order impulsive
differential equations. In this paper, wewill study the problem
(1) with concave or convex nonlinearities and not suppose
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the existence of upper-lower solutions and compactness
condition. Different from the previously mentioned works,
in this paper we will use a new fixed point theorem of
generalized concave operators to show the existence and
uniqueness of positive solutions for the problem (1).

For convenience, we list the following assumptions on the
functions 𝑓(𝑡, 𝑥), 𝐼

𝑘
(𝑥), and 𝐼

𝑘
(𝑥):

(𝐻

1
) 𝑓(𝑡, 0) ≤ 0, 𝑓(𝑡, 1/2) < 0, 𝑡 ∈ [0, 1], and 𝑓(𝑡, 𝑥) is
decreasing in 𝑥 ∈ [0,∞) for each 𝑡 ∈ [0, 1],

(𝐻

2
) 𝐼

𝑘
(0) ≤ 0, 𝐼

𝑘
(0) ≥ 0, and 𝐼

𝑘
(𝑥) is decreasing, and 𝐼

𝑘
(𝑥)

is increasing in 𝑥 ∈ [0,∞), 𝑘 = 1, 2, . . . , 𝑚,
(𝐻

3
) for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1], and 𝑥 ≥ 0, there exist
𝛼

1
(𝜆), 𝛼

2
(𝜆), 𝛼

3
(𝜆) ∈ (𝜆, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≤ 𝛼

1
(𝜆) 𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≤ 𝛼

2
(𝜆) 𝐼

𝑘
(𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≥ 𝛼

3
(𝜆) 𝐼

𝑘
(𝑥) ,

𝑘 = 1, 2, . . . , 𝑚,

(2)

(𝐻

4
) ∑

𝑚

𝑘=1
[−2𝐼

𝑘
(3/2) + (1 + 𝑡

𝑘
)𝐼

𝑘
(3/2)] > 0,

(𝐻

1
)


𝑓(𝑡, 3/2) < 0, 𝑡 ∈ [0, 1], and 𝑓(𝑡, 𝑥) is increasing in
𝑥 ∈ [0,∞) for each 𝑡 ∈ [0, 1] and 𝑓(𝑡, 𝑥) ≤ 0 for
[0, 1] × [0,∞),

(𝐻

2
)


𝐼

𝑘
(𝑥) ≤ 0, 𝐼

𝑘
(𝑥) ≥ 0 for [0,∞), and 𝐼

𝑘
(𝑥) is

increasing, and 𝐼
𝑘
(𝑥) is decreasing in 𝑥 ∈ [0,∞),

𝑘 = 1, 2, . . . , 𝑚,
(𝐻

3
)

 for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1], and 𝑥 ≥ 0, there exist
𝛽

1
(𝜆), 𝛽

2
(𝜆), 𝛽

3
(𝜆) ∈ (0, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≥ 𝜆

−𝛽1(𝜆)
𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≥ 𝜆

−𝛽2(𝜆)
𝐼

𝑘
(𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≤ 𝜆

−𝛽3(𝜆)
𝐼

𝑘
(𝑥) ,

𝑘 = 1, 2, . . . , 𝑚,

(3)

(𝐻

4
)


∑

𝑚

𝑘=1
[−2𝐼

𝑘
(1/2) + (1 + 𝑡

𝑘
)𝐼

𝑘
(1/2)] > 0.

2. Preliminaries

In this section, we state some definitions, notations, and
known results. For convenience of readers, we suggest that
one refers to [30] and references therein for details.

Suppose that 𝐸 is a real Banach space which is partially
ordered by a cone𝑃 ⊂ 𝐸.That is, 𝑥 ≤ 𝑦 if and only if𝑦−𝑥 ∈ 𝑃.
By 𝜃we denote the zero element of 𝐸. Recall that a nonempty
closed convex set 𝑃 ⊂ 𝐸 is called a cone if it satisfies (i) 𝑥 ∈
𝑃, 𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝑃, (ii) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃.

Moreover,𝑃 is called normal if there exists a constant𝑁 >

0 such that, for all 𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖.
In this case 𝑁 is called the normality constant of 𝑃. We say
that an operator 𝐴 : 𝐸 → 𝐸 is increasing (decreasing) if
𝑥 ≤ 𝑦 implies 𝐴𝑥 ≤ 𝐴𝑦 (𝐴𝑥 ≥ 𝐴𝑦).

For all 𝑥, 𝑦 ∈ 𝐸, the notation 𝑥 ∼ 𝑦means that there exist
𝜆 > 0 and 𝜇 > 0 such that 𝜆𝑥 ≤ 𝑦 ≤ 𝜇𝑥. Clearly, ∼ is an
equivalence relation. Given ℎ > 𝜃 (i.e., ℎ ≥ 𝜃 and ℎ ̸= 𝜃), we
denote by 𝑃

ℎ
the set 𝑃

ℎ
= {𝑥 ∈ 𝐸 | 𝑥 ∼ ℎ}. Clearly, 𝑃

ℎ
⊂ 𝑃 is

convex and 𝜆𝑃
ℎ
= 𝑃

ℎ
for all 𝜆 > 0.

We now present a fixed point theorem of generalized
concave operators which will be used in the latter proof. See
[30] for further information.

Theorem 1 (from [30, Lemma 2.1, andTheorem 2.1]). Let ℎ >
𝜃, and let 𝑃 be a normal cone. Assume that (𝐷

1
) 𝐴 : 𝑃 → 𝑃

is increasing and 𝐴ℎ ∈ 𝑃
ℎ
; (𝐷
2
) for any 𝑥 ∈ 𝑃 and 𝑡 ∈ (0, 1),

there exists 𝛼(𝑡) ∈ (𝑡, 1) with respect to 𝑡 such that 𝐴(𝑡𝑥) ≥
𝛼(𝑡)𝐴𝑥. Then (i) there are 𝑢

0
, V
0
∈ 𝑃

ℎ
and 𝑟 ∈ (0, 1) such that

𝑟V
0
≤ 𝑢

0
< V
0
, 𝑢

0
≤ 𝐴𝑢

0
≤ 𝐴V
0
≤ V
0
; (ii) operator equation

𝑥 = 𝐴𝑥 has a unique solution in 𝑃
ℎ
.

Remark 2. An operator 𝐴 is said to be generalized concave if
𝐴 satisfies condition (𝐷

2
).

In what follows, for the sake of convenience, let
PC[𝐽,R] = {𝑥 | 𝑥 : 𝐽 → R, 𝑥(𝑡) be continuous at 𝑡 ̸= 𝑡

𝑘
and

left continuous at 𝑡 = 𝑡
𝑘
, 𝑥(𝑡+
𝑘
) exists, 𝑘 = 1, 2, . . . , 𝑚}, and let

PC1[𝐽,R] = {𝑥 ∈ PC[𝐽,R] | 𝑥(𝑡) be continuous at 𝑡 ̸= 𝑡

𝑘

and left continuous at 𝑡 = 𝑡
𝑘
, 𝑥(𝑡+
𝑘
) exists, 𝑘 = 1, 2, . . . , 𝑚}.

Evidently, PC[𝐽,R] is a Banach space with the norm ‖𝑥‖PC =

sup{|𝑥(𝑡)| : 𝑡 ∈ 𝐽}, and PC1[𝐽,R] is a Banach space with the
norm ‖𝑥‖PC1 = sup{‖𝑥‖PC, ‖𝑥


‖PC}. Let 𝐽


= 𝐽\{𝑡

1
, 𝑡

2
, . . . , 𝑡

𝑚
}.

Definition 3. A function 𝑥 ∈ PC1[𝐽,R]⋂𝐶2[𝐽,R] is called a
solution of the problem (1) if it satisfies problem (1).

Lemma 4. 𝑥 ∈ PC1[𝐽,R]⋂𝐶2[𝐽,R] is a solution of the
problem (1) if and only if 𝑥 ∈ PC1[𝐽,R] is the solution of the
following integral equation:

𝑥 (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) ,

(4)

where

𝐺 (𝑡, 𝑠) = {

𝑠 (1 + 𝑡) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑡 (1 + 𝑠) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(5)

Proof. First suppose that 𝑥 ∈ PC1[𝐽,R]⋂𝐶2[𝐽,R] is a
solution of the problem (1). It is easy to see by integration of
(1) that

𝑥



(𝑡) = 𝑥



(0) − ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

[𝑥


(𝑡

+

𝑘
) − 𝑥


(𝑡

𝑘
)]

= 𝑥



(0) − ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(6)
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Integrate again, we can get

𝑥 (𝑡) = 𝑥 (0) + 𝑥



(0) 𝑡 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) (𝑡 − 𝑡

𝑘
) + ∑

0<𝑡𝑘<𝑡

[𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

𝑘
)]

= 𝑥 (0) + 𝑥



(0) 𝑡 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) (𝑡 − 𝑡

𝑘
) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(7)

Letting 𝑡 = 1 in (6) and (7), we find

𝑥



(1) = 𝑥



(0) − ∫

1

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) ,

𝑥 (1) = 𝑥 (0) + 𝑥



(0) − ∫

1

0

(1 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) (1 − 𝑡

𝑘
) +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(8)

From the boundary conditions 𝑥(0) = 𝑥


(0), and 𝑥(1) =

𝑥


(1), we have

𝑥 (1) = 𝑥 (0) − ∫

1

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) ,

𝑥 (1) = 2𝑥 (0) − ∫

1

0

(1 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) (1 − 𝑡

𝑘
) +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(9)

Then we obtain

𝑥 (0) = − ∫

1

0

𝑠𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

−

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) (1 − 𝑡

𝑘
) −

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(10)

Substituting (10) into (7), we have

𝑥 (𝑡) = − (1 + 𝑡) ∫

1

0

𝑠𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))

= − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(11)

Thus, the proof of sufficient is complete.

Conversely, if 𝑥 is a solution of (4).Then we can easily get
Δ𝑥|

𝑡=𝑡𝑘
= 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
) = 𝐼

𝑘
(𝑥(𝑡

𝑘
)). Direct differentiation of

(4) implies that, for 𝑡 ̸= 𝑡

𝑘
,

𝑥



(𝑡) = − ∫

𝑡

0

(1 + 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − 𝑡 (1 + 𝑡) 𝑓 (𝑡, 𝑥 (𝑡))

− ∫

1

𝑡

𝑠𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑡 (1 + 𝑡) 𝑓 (𝑡, 𝑥 (𝑡))

−

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) +

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(12)

Further

𝑥



(𝑡) = −𝑓 (𝑡, 𝑥 (𝑡)) ,

Δ𝑥








𝑡=𝑡𝑘

= 𝑥


(𝑡

+

𝑘
) − 𝑥


(𝑡

−

𝑘
) = 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(13)

So 𝑥 ∈ 𝐶

2
[𝐽


,R] and it is easy to verify that 𝑥(0) =

𝑥


(0), 𝑥(1) = 𝑥


(1), and the lemma is proved.

Define an operator 𝐴 : PC[𝐽,R] → PC[𝐽,R] by

𝐴𝑥 (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(14)

Lemma 5. 𝑥 ∈ PC1[𝐽,R]⋂𝐶2[𝐽,R] is a solution of problem
(1) if and only if 𝑥 ∈ PC1[𝐽,R] is a fixed point of the operator
𝐴.

3. Existence and Uniqueness of Positive
Solutions for Problem (1)

In this section, we apply Theorem 1 to study the problem (1),
and we obtain a new result on the existence and uniqueness
of positive solutions.Themethod used in this paper is new to
the literature and so is the existence and uniqueness result to
the second-order impulsive differential equations.This is also
the main motivation for the study of (1) in the present work.

Set ̃𝑃 = {𝑢 ∈ PC[𝐽,R] | 𝑢(𝑡) ≥ 0, 𝑡 ∈ 𝐽}, the standard
cone. It is clear that ̃𝑃 is a normal cone in PC[𝐽,R] and the
normality constant is 1. Our main result is summarized in the
following theorem.

Theorem 6. Assume that (H
1
)–(H
4
) hold. Then

(i) there exist 𝑢
0
, V
0
∈

̃

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))



4 Discrete Dynamics in Nature and Society

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(15)

(ii) the nonlinear impulsive problem (1) has a unique
positive solution 𝑥∗ in ̃

𝑃

ℎ
⋂ PC1[𝐽,R], where ℎ(𝑡) =

(1/2)(𝑡

2
+ 𝑡 + 1), 𝑡 ∈ [0, 1].

Remark 7. It is easy to see that 1/2 ≤ ℎ(𝑡) ≤ 3/2, 𝑡 ∈ [0, 1].

Proof of Theorem 6. Firstly, we show that 𝐴 :

̃

𝑃 →

̃

𝑃 is
increasing, generalized concave. For any 𝑥 ∈ ̃𝑃,

𝐴𝑥 (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))

= − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

− (1 + 𝑡) [ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))

= − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(16)

From (𝐻
1
) and (𝐻

2
), we know that𝑓(𝑡, 𝑥(𝑠)) ≤ 0, 𝐼

𝑘
(𝑥(𝑡

𝑘
)) ≤

0, and 𝐼
𝑘
(𝑥(𝑡

𝑘
)) ≥ 0. So we have 𝐴𝑥(𝑡) ≥ 0 for 𝑥 ∈ ̃

𝑃. By
Lemma 4,𝐴 : ̃𝑃 →

̃

𝑃. It follows from (𝐻
1
) and (𝐻

2
) that𝐴 :

̃

𝑃 →

̃

𝑃 is increasing. Nowwe prove that𝐴 : ̃𝑃 →

̃

𝑃 is gener-
alized concave. Set 𝛼(𝑡) = min{𝛼

1
(𝑡), 𝛼

2
(𝑡), 𝛼

3
(𝑡)}, 𝑡 ∈ (0, 1).

Then 𝛼(𝑡) ∈ (𝑡, 1). For any 𝑥 ∈ ̃𝑃 and 𝜆 ∈ (0, 1), from (𝐻

3
)we

have

𝐴 (𝜆𝑥) (𝑡) = −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜆𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
)) + (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))

≥ 𝛼

1
(𝜆) [−∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠] + 𝛼

2
(𝜆)

× [−𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) − (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ 𝛼

3
(𝜆) [ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

≥ 𝛼 (𝜆){ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))}

= 𝛼 (𝜆)𝐴𝑥 (𝑡) .

(17)

That is, 𝐴(𝜆𝑥) ≥ 𝛼(𝜆)𝐴𝑥, 𝑥 ∈ ̃𝑃, 𝜆 ∈ (0, 1).
Secondly, we prove that 𝐴ℎ ∈ ̃𝑃

ℎ
. Set

𝑟

1
= min
𝑡∈[0,1]

[−𝑓(𝑡,

1

2

)] , 𝑟

2
= max
𝑡∈[0,1]

[−𝑓(𝑡,

3

2

)] . (18)

Then from (𝐻

1
), we have 𝑟

2
≥ 𝑟

1
> 0. Further, from

(𝐻

1
), (𝐻

2
), and (𝐻

4
),

𝐴ℎ (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ℎ (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(ℎ (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))
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≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠,

1

2

) 𝑑𝑠

≥ 𝑟

1
∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 = 𝑟

1
ℎ (𝑡) ,

𝐴ℎ (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ℎ (𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(ℎ (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))

≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠,

3

2

) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+

𝑚

∑

𝑘=1

(1 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
)) + 2

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))

≤ 𝑟

2
ℎ (𝑡) + 2(−

𝑚

∑

𝑘=1

𝐼

𝑘
(

3

2

)) +

𝑚

∑

𝑘=1

(1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)

= 𝑟

2
ℎ (𝑡) +

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

3

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)]

≤ 𝑟

2
ℎ(𝑡)+2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

3

2

)+(1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)] ⋅ ℎ(𝑡)

= (𝑟

2
+ 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

3

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)])ℎ (𝑡) .

(19)

Hence,

𝑟

1
ℎ ≤ 𝐴ℎ ≤ (𝑟

2
+ 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

3

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)])ℎ.

(20)

That is, 𝐴ℎ ∈ ̃𝑃
ℎ
. Finally, an application of Theorem 1 implies

that (i) there are 𝑢
0
, V
0
∈

̃

𝑃

ℎ
such that 𝑢

0
≤ 𝐴𝑢

0
, 𝐴V
0
≤ V
0
,

(ii) operator equation 𝑥 = 𝐴𝑥 has a unique solution in ̃𝑃
ℎ
.

That is,

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(21)

and the problem (1) has a unique positive solution 𝑥∗ in
̃

𝑃

ℎ
. Moreover, from Lemmas 4 and 5 we know that 𝑥∗ ∈

PC1[𝐽,R]. Evidently, 𝑥∗ is a positive solution of the problem
(1).

Theorem 8. Assume that (H
1
)–(H
4
) hold. Then

(i) there exist 𝑢
0
, V
0
∈

̃

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(22)

where

𝑢

0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(23)
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(ii) the nonlinear impulsive problem (1) has a unique
positive solution 𝑥∗ in ̃

𝑃

ℎ
⋂ PC1[𝐽,R], where ℎ(𝑡) =

(1/2)(𝑡

2
+ 𝑡 + 1), 𝑡 ∈ [0, 1].

Proof. From the proof of Theorem 6, for any 𝑥 ∈ ̃𝑃,

𝐴𝑥 (𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) + (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
)) .

(24)

From (𝐻

1
)

 and (𝐻
2
)

, we know that𝐴𝑥(𝑡) ≥ 0, 𝑡 ∈ [0, 1]. By
Lemma 4, 𝐴 : ̃𝑃 →

̃

𝑃. It follows from (𝐻

1
)

 and (𝐻
2
)

 that
𝐴 :

̃

𝑃 →

̃

𝑃 is decreasing. Set 𝛽(𝑡) = max{𝛽
1
(𝑡), 𝛽

2
(𝑡), 𝛽

3
(𝑡)},

𝑡 ∈ (0, 1). Then 𝛽(𝑡) ∈ (0, 1). For any 𝑥 ∈ ̃

𝑃 and 𝜆 ∈ (0, 1),
from (𝐻

3
)

 we have

𝐴 (𝜆𝑥) (𝑡) = −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜆𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
)) + (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝜆𝑥 (𝑡

𝑘
))

≤ 𝜆

−𝛽1(𝜆)
[−∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠] + 𝜆

−𝛽2(𝜆)

× [−𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
)) − (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ 𝜆

−𝛽3(𝜆)
[ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

≤ 𝜆

−𝛽(𝜆)
{ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− [𝑡 ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡) ∑

𝑡≤𝑡𝑘<1

𝐼

𝑘
(𝑥 (𝑡

𝑘
))]

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑥 (𝑡

𝑘
))}

= 𝜆

−𝛽(𝜆)
𝐴𝑥 (𝑡) .

(25)

That is, 𝐴(𝜆𝑥) ≤ 𝜆−𝛽(𝜆)𝐴𝑥, 𝑥 ∈ ̃

𝑃, 𝜆 ∈ (0, 1). Further, for
𝜆 ∈ (0, 1) and 𝑥 ∈ ̃𝑃,

𝐴𝑥 = 𝐴(𝜆 ⋅

1

𝜆

𝑥) ≤ 𝜆

−𝛽(𝜆)
𝐴(

1

𝜆

𝑥) . (26)

So we obtain 𝐴((1/𝜆)𝑥) ≥ 𝜆

𝛽(𝜆)
𝐴𝑥, 𝑥 ∈

̃

𝑃, 𝜆 ∈ (0, 1).
Consequently, 𝐴2 : ̃𝑃 →

̃

𝑃 is increasing, and, for 𝑥 ∈ ̃𝑃, 𝜆 ∈
(0, 1),

𝐴

2

(𝜆𝑥) = 𝐴 (𝐴 (𝜆𝑥)) ≥ 𝐴 (𝜆

−𝛽(𝜆)
𝐴𝑥) = 𝐴(

1

𝜆

𝛽(𝜆)
𝐴𝑥)

≥ (𝜆

𝛽(𝜆)
)

𝛽(𝜆
𝛽(𝜆)
)

𝐴

2
𝑥 ≥ 𝜆

𝛽(𝜆)
𝐴

2
𝑥.

(27)

Let 𝛼(𝑡) = 𝑡

𝛽(𝑡)
, 𝑡 ∈ (0, 1). Then 𝛼(𝑡) ∈ (𝑡, 1) and

𝐴

2
(𝜆𝑥) ≥ 𝛼(𝜆)𝐴

2
𝑥, 𝑥 ∈

̃

𝑃, 𝜆 ∈ (0, 1). So the operator
𝐴

2
:

̃

𝑃 →

̃

𝑃 is generalized concave. Next we prove that
𝐴

2
ℎ ∈

̃

𝑃

ℎ
. Set

𝑟

1
= min
𝑡∈[0,1]

[−𝑓(𝑡,

3

2

)] , 𝑟

2
= max
𝑡∈[0,1]

[−𝑓(𝑡,

1

2

)] . (28)

Then from (𝐻

1
)

, we have 𝑟
2
≥ 𝑟

1
> 0. Further, from

(𝐻

1
)


, (𝐻

2
)

, and (𝐻
4
)

,

𝐴ℎ (𝑡) = −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ℎ (𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
)) + (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))

≥ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠,

3

2

) 𝑑𝑠 ≥ 𝑟

1
∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 = 𝑟

1
ℎ (𝑡) ,

𝐴ℎ (𝑡) = −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ℎ (𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))

≤ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠,

1

2

) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(ℎ (𝑡

𝑘
))

+

𝑚

∑

𝑘=1

(1 − 𝑡

𝑘
) 𝐼

𝑘
(ℎ (𝑡

𝑘
)) + 2

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(ℎ (𝑡

𝑘
))
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≤ 𝑟

2
ℎ (𝑡) + 2(−

𝑚

∑

𝑘=1

𝐼

𝑘
(

1

2

)) +

𝑚

∑

𝑘=1

(1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

)

= 𝑟

2
ℎ (𝑡) +

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

1

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

)]

≤ 𝑟

2
ℎ(𝑡) + 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

1

2

)+(1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

)] ⋅ ℎ(𝑡)

= (𝑟

2
+ 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

1

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

)])ℎ (𝑡) .

(29)

Hence,

𝑟

1
ℎ ≤ 𝐴ℎ ≤ (𝑟

2
+ 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

1

2

) + (1 + 𝑡

𝑘
) 𝐼k (

1

2

)])ℎ.

(30)

We can choose a sufficiently small number 𝑟
0
∈ (0, 1) such

that

𝑟

0
≤ 𝑟

1
< 𝑟

2
+ 2

𝑚

∑

𝑘=1

[−2𝐼

𝑘
(

1

2

) + (1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

)]

≤

1

𝑟

0

.

(31)

Then we get 𝑟
0
ℎ ≤ 𝐴ℎ ≤ (1/𝑟

0
)ℎ. Further,

𝐴

2
ℎ = 𝐴 (𝐴ℎ) ≤ 𝐴 (𝑟

0
ℎ) ≤ 𝑟

0

−𝛽(𝑟0)
𝐴ℎ ≤

1

𝑟

0

1+𝛽(𝑟0)
ℎ,

𝐴

2
ℎ = 𝐴 (𝐴ℎ) ≥ 𝐴(

1

𝑟

0

ℎ) ≥ 𝑟

0

𝛽(𝑟0)
𝐴ℎ ≥ 𝑟

0

1+𝛽(𝑟0)
ℎ.

(32)

That is,𝐴2ℎ ∈ ̃𝑃
ℎ
. Finally, an application ofTheorem 1 implies

that (i) there are 𝑢
0
, V
0
∈

̃

𝑃

ℎ
such that 𝑢

0
≤ 𝐴

2
𝑢

0
, 𝐴

2V
0
≤ V
0
,

(ii) operator equation 𝑥 = 𝐴2𝑥 has a unique solution in ̃𝑃
ℎ
.

Let 𝑢
0
= 𝐴𝑢

0
, V
0
= 𝐴V
0
. Then, 𝑢

0
≤ 𝐴𝑢

0
, 𝐴V
0
≤ V
0
. That is,

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽.

(33)

Next we show that 𝑥∗ is the unique fixed point of 𝐴 in ̃𝑃
ℎ
. In

view of𝐴2(𝐴𝑥∗) = 𝐴(𝐴2𝑥∗) = 𝐴𝑥∗, and by the uniqueness of
solutions for the operator equation 𝑥 = 𝐴2𝑥, we have 𝐴𝑥∗ =
𝑥

∗. Suppose that 𝑦∗ is another fixed point of 𝐴 in ̃𝑃
ℎ
. Then

𝐴

2
𝑦

∗
= 𝐴(𝐴(𝑦

∗
)) = 𝐴𝑦

∗
= 𝑦

∗. Hence, by the uniqueness
of solutions for the operator equation 𝑥 = 𝐴

2
𝑥, we obtain

𝑥

∗
= 𝑦

∗. So the problem (1) has a unique positive solution
𝑥

∗ in ̃𝑃
ℎ
. Moreover, from Lemmas 4 and 5 we know that 𝑥∗ ∈

PC1[𝐽,R]. Evidently, 𝑥∗ is a positive solution of the problem
(1).

Remark 9. Here, we provide an alternative approach to
study the same type of problems under different conditions.
Our result can guarantee the existence of a unique positive
solution without supposing the existence of upper-lower
solutions. The method used in this paper is relatively new to
the literature and so is the existence and uniqueness result to
the impulsive differential equations.

In the following we consider two special cases of the
problem (1):

−𝑥



(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥|

𝑡=𝑡𝑘
= 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥



(0) , 𝑥 (1) = 𝑥



(1) ,

(34)

−𝑥



(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥








𝑡=𝑡𝑘

= 𝐼

𝑘
(𝑥 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥



(0) , 𝑥 (1) = 𝑥



(1) ,

(35)

where 𝑓 ∈ 𝐶[𝐽 × R,R], 𝐼
𝑘
, 𝐼
𝑘
∈ 𝐶[R,R], 𝑘 = 1, 2, . . . , 𝑚.

From Theorems 6 and 8, we have the following conclu-
sions.

Corollary 10. Assume that (𝐻
1
) holds and

(𝐺

1
) 𝐼

𝑘
(0) ≤ 0 and 𝐼

𝑘
(𝑥) is decreasing in 𝑥 ∈ [0,∞), 𝑘 =

1, 2, . . . , 𝑚 with
𝑚

∑

𝑘=1

𝐼

𝑘
(

3

2

) < 0, (36)

(𝐺

2
) for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1] and 𝑥 ≥ 0, there exist
𝛼

1
(𝜆), 𝛼

2
(𝜆) ∈ (𝜆, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≤ 𝛼

1
(𝜆) 𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≤ 𝛼

2
(𝜆) 𝐼

𝑘
(𝑥) , 𝑘 = 1, 2, . . . , 𝑚.

(37)

Then

(i) there exist 𝑢
0
, V
0
∈

̃

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,
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V
0
(𝑡) ≥ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(s)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(38)

(ii) the nonlinear impulsive problem (34) has a unique
positive solution 𝑥∗ in ̃𝑃

ℎ
, where ℎ(𝑡) = (1/2)(𝑡2+𝑡+1),

𝑡 ∈ [0, 1], and 𝐺(𝑡, 𝑠) is given as in Lemma 4.

Corollary 11. Assume that (𝐻
1
)

 hold and

(𝐺

1
)


𝐼

𝑘
(𝑥) ≤ 0 for [0,∞) and 𝐼

𝑘
(𝑥) is increasing in 𝑥 ∈

[0,∞), 𝑘 = 1, 2, . . . , 𝑚 with
𝑚

∑

𝑘=1

𝐼

𝑘
(

1

2

) < 0, (39)

(𝐺

2
)

 for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1] and 𝑥 ≥ 0, there exist
𝛽

1
(𝜆), 𝛽

2
(𝜆) ∈ (0, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≥ 𝜆

−𝛽1(𝜆)
𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≥ 𝜆

−𝛽2(𝜆)
𝐼

𝑘
(𝑥) , 𝑘 = 1, 2, . . . , 𝑚.

(40)

Then
(i) there exist 𝑢

0
, V
0
∈

̃

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠 − (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ −∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
)) + ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(41)

where

𝑢

0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

− (1 + 𝑡)

𝑚

∑

𝑘=1

𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ ∑

0<𝑡𝑘<𝑡

𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(42)

(ii) the nonlinear impulsive problem (34) has a unique
positive solution 𝑥∗ in ̃𝑃

ℎ
, where ℎ(𝑡) = (1/2)(𝑡2+𝑡+1)

and 𝑡 ∈ [0, 1] and 𝐺(𝑡, 𝑠) is given as in Lemma 4.

Corollary 12. Assume that (𝐻
1
) holds and

(𝐺

3
) 𝐼

𝑘
(0) ≥ 0 and 𝐼

𝑘
(𝑥) is increasing in 𝑥 ∈ [0,∞), 𝑘 =

1, 2, . . . , 𝑚 with
𝑚

∑

𝑘=1

[(1 + 𝑡

𝑘
) 𝐼

𝑘
(

3

2

)] > 0, (43)

(𝐺

4
) for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1] and 𝑥 ≥ 0, there exist
𝛼

1
(𝜆), 𝛼

2
(𝜆) ∈ (𝜆, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≤ 𝛼

1
(𝜆) 𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≥ 𝛼

2
(𝜆) 𝐼

𝑘
(𝑥) , 𝑘 = 1, 2, . . . , 𝑚.

(44)

Then
(i) there exist 𝑢

0
, V
0
∈

̆

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼k (V0 (𝑡𝑘))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(45)

(ii) the nonlinear impulsive problem (35) has a unique
positive solution 𝑥∗ in ̆

𝑃

ℎ
⋂ PC1[𝐽,R], where ℎ(𝑡) =

(1/2)(𝑡

2
+ 𝑡 + 1), 𝑡 ∈ [0, 1], ̆

𝑃 = {𝑥 ∈ 𝐶[𝐽,R] |
𝑥(𝑡) ≥ 0, 𝑡 ∈ 𝐽}, and PC1[𝐽,R] = {𝑥 ∈ 𝐶[𝐽,R] | 𝑥(𝑡)
is continuous at 𝑡 ̸= 𝑡

𝑘
and left continuous at 𝑡 = 𝑡

𝑘
,

𝑥


(𝑡

+

𝑘
) exists, 𝑘 = 1, 2, . . . , 𝑚}.

Corollary 13. Assume that (𝐻
1
)

 hold and

(𝐺

3
)


𝐼

𝑘
(𝑥) ≥ 0 for [0,∞) and 𝐼

𝑘
(𝑥) is decreasing in 𝑥 ∈

[0,∞), 𝑘 = 1, 2, . . . , 𝑚 with
𝑚

∑

𝑘=1

(1 + 𝑡

𝑘
) 𝐼

𝑘
(

1

2

) > 0, (46)

(𝐺

4
)

 for any 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1], and 𝑥 ≥ 0, there exist
𝛽

1
(𝜆), 𝛽

2
(𝜆) ∈ (0, 1) such that

𝑓 (𝑡, 𝜆𝑥) ≥ 𝜆

−𝛽1(𝜆)
𝑓 (𝑡, 𝑥) ,

𝐼

𝑘
(𝜆𝑥) ≤ 𝜆

−𝛽2(𝜆)
𝐼

𝑘
(𝑥) , 𝑘 = 1, 2, . . . , 𝑚.

(47)
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Then

(i) there exist 𝑢
0
, V
0
∈

̆

𝑃

ℎ
such that

𝑢

0
(𝑡) ≤ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(48)

where

𝑢

0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(𝑢

0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(𝑢

0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

V
0
(𝑡) = − ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, V
0
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

(𝑡 − 𝑡

𝑘
) 𝐼

𝑘
(V
0
(𝑡

𝑘
))

+ (1 + 𝑡)

𝑚

∑

𝑘=1

𝑡

𝑘
𝐼

𝑘
(V
0
(𝑡

𝑘
)) , 𝑡 ∈ 𝐽,

(49)

(ii) the nonlinear impulsive problem (35) has a unique
positive solution 𝑥∗ in ̆

𝑃

ℎ
⋂ PC1[𝐽,R], where ℎ(𝑡) =

(1/2)(𝑡

2
+ 𝑡 + 1), 𝑡 ∈ [0, 1], ̆

𝑃 = {𝑥 ∈ 𝐶[𝐽,R] |
𝑥(𝑡) ≥ 0, 𝑡 ∈ 𝐽}, and PC1[𝐽,R] = {𝑥 ∈ 𝐶[𝐽,R] |
𝑥


(𝑡) is continuous at 𝑡 ̸= 𝑡

𝑘
and left continuous at 𝑡 =

𝑡

𝑘
, 𝑥


(𝑡

+

𝑘
) exists, 𝑘 = 1, 2, . . . , 𝑚}.

4. An Example

To illustrate how our main results can be used in practice we
present an example.

Example 1. Consider the following boundary value problem:

−𝑥



(𝑡) = −

√

𝑡𝑥 + 4, 𝑡 ∈ 𝐽, 𝑡 ̸=

1

2

,

Δ𝑥|

𝑡=1/2
= −𝑥

1/3
(

1

2

) ,

Δ𝑥








𝑡=1/2
= 𝑥

1/4
(

1

2

) ,

𝑥 (0) = 𝑥



(0) , 𝑥 (1) = 𝑥



(1) .

(50)

Conclusion. BVP (50) has a unique positive solution in ̃

𝑃

ℎ
,

where ℎ(𝑡) = (1/2)(𝑡2 + 𝑡 + 1), 𝑡 ∈ [0, 1].

Proof . BVP (50) can be regarded as a BVP of the form (1),
where 𝑡

1
= (1/2), 𝑓(𝑡, 𝑥) = −

√

𝑡𝑥 + 4, 𝐼
1
(𝑥) = −𝑥

1/3, and
𝐼

1
(𝑥) = 𝑥

1/4. It is not difficult to see that the conditions
(𝐻

1
), (𝐻

2
), and (𝐻

4
) hold. In addition, let 𝛼

1
(𝜆) = 𝜆

1/2,
𝛼

2
(𝜆) = 𝜆

1/3, and 𝛼
3
(𝜆) = 𝜆

1/4. Then, the condition (𝐻
3
)

of Theorem 6 holds. Hence, by Theorem 6, the conclusion
follows, and the proof is complete.

Remark 14. Example 1 implies that there is a large number
of functions that satisfy the conditions of Theorem 6. In
addition, the conditions of Theorem 6 are also easy to check.
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[18] I. Rachůnková and M. Tvrdý, “Non-ordered lower and upper
functions in second order impulsive periodic problems,”
Dynamics of Continuous, Discrete & Impulsive Systems A, vol.
12, no. 3-4, pp. 397–415, 2005.

[19] M. U. Akhmet, G. A. Bekmukhambetova, and Y. Serina-
gaoglu,The Dynamics of the Systemic Arterial Pressure Through
Impulsive Differential Equations, Institute for Mathematics and
its Applications, Middle East Technical University, Ankara,
Turkey, 2005.

[20] A. d’Onofrio, “On pulse vaccination strategy in the SIR epi-
demic model with vertical transmission,” Applied Mathematics
Letters, vol. 18, no. 7, pp. 729–732, 2005.

[21] S. Gao, L. Chen, J. J. Nieto, and A. Torres, “Analysis of a
delayed epidemic model with pulse vaccination and saturation
incidence,” Vaccine, vol. 24, no. 35-36, pp. 6037–6045, 2006.

[22] W.-T. Li and H.-F. Huo, “Global attractivity of positive periodic
solutions for an impulsive delay periodic model of respiratory

dynamics,” Journal of Computational and Applied Mathematics,
vol. 174, no. 2, pp. 227–238, 2005.

[23] S. Tang and L. Chen, “Density-dependent birth rate, birth
pulses and their population dynamic consequences,” Journal of
Mathematical Biology, vol. 44, no. 2, pp. 185–199, 2002.

[24] W. Zhang and M. Fan, “Periodicity in a generalized ecological
competition system governed by impulsive differential equa-
tions with delays,” Mathematical and Computer Modelling, vol.
39, no. 4-5, pp. 479–493, 2004.

[25] X. Zhang, Z. Shuai, and K. Wang, “Optimal impulsive harvest-
ing policy for single population,” Nonlinear Analysis: Theory,
Methods and Applications, vol. 4, no. 4, pp. 639–651, 2003.

[26] R. P. Agarwal and D. O’Regan, “A multiplicity result for second
order impulsive differential equations via the Leggett Williams
fixed point theorem,” Applied Mathematics and Computation,
vol. 161, no. 2, pp. 433–439, 2005.

[27] W. Wang, X. Fu, and X. Yang, “Positive solutions of periodic
boundary value problems for impulsive differential equations,”
Computers & Mathematics with Applications, vol. 58, no. 8, pp.
1623–1630, 2009.

[28] X. Zhang, “Existence of positive solution for second-order
nonlinear impulsive singular differential equations of mixed
type in Banach spaces,”Nonlinear Analysis:Theory,Methods and
Applications, vol. 70, no. 4, pp. 1620–1628, 2009.

[29] J. Chu, X. Lin, D. Jiang, D. O’Regan, and R. P. Agarwal, “Pos-
itive solutions for second-order superlinear repulsive singular
Neumann boundary value problems,” Positivity, vol. 12, no. 3,
pp. 555–569, 2008.

[30] C.-B. Zhai, C. Yang, and X.-Q. Zhang, “Positive solutions for
nonlinear operator equations and several classes of applica-
tions,”Mathematische Zeitschrift, vol. 266, no. 1, pp. 43–63, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


