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Simulating large amounts of water in real time is often achieved using heightfield methods. Allowing the water to interact with
rigid bodies is essential for applications such as games, but traditional heightfield interaction methods concentrate on water-to-
body effects by letting water flow through the bodies. We instead take an approach where the bodies block water. Our earlier
method is improved in several ways, taking steps toward a single method to create both water-to-body and body-to-water effects.
The new method is also visually compared to a traditional method by Thürey et al. A drawback of our method is that it has some
grid aliasing artifacts that appear especially when the method is used for floating bodies. However, our method is demonstrated to
work together with theThürey method, which allows us to get the best of both worlds to simulate both floating and blocking bodies
in a single scene. The method runs in real time for large areas of water even with a very limited GPU budget.

1. Introduction

Water is a common and important element in nature. It is also
frequently encountered in games and other 3D virtual envi-
ronments. A lot of attention has been devoted to rendering
water realistically, but interaction with it is typically limited
in games. Bodies of water are often simply modeled as static
planes with possibly some procedural waves that have no
effect on gameplay and therefore no interactivity. Interaction
is sometimes possible with small amounts of particle-based
liquids, but they are alsomore commonly used only for visual
effect.

Interactive systems are at the heart of gaming. Off-the-
shelf rigid body physics solvers have revolutionized 3D
environments in part because they provide so many nat-
ural interaction possibilities. Similar interaction with large
amounts of water is currently not possible in the real-time
3D realm. A more versatile interaction of rigid body physics
and large-scale bodies of water could enrich virtual worlds
tremendously and even enable completely new game genres.
In the 2D domain, this has already been achieved by games
such asWhere’sMyWater [1] and Sprinkle [2] using particles.
Some first steps have also been taken in 3D by the pioneering
game From Dust [3].

Performance is one of the main reasons why large-scale
water areas are still static in most game worlds. Large-scale
fully 3Dwater is still out of reach, but the continuing increases
in the available parallel GPU computing power are making
some simpler methods fast enough for consideration.

Both Lagrangian (particle-based) fluid solvers, such as
smoothed particle hydrodynamics (SPH) [4], and fully 3D
Eulerian (grid-based) solvers have been extended to handle
interaction with solids in very advanced and realistic ways,
with current research focusing more on the pathological
cases. In the particle-based fluids, even the real-time results
are very impressive for small amounts of fluids [5]. Sadly,
neither of these approaches are fast enough for real-time
modeling of large bodies of water, such as rivers and lakes [6].

Heighfield-based methods simplify the situation by giv-
ing water a single depth value at each 2D coordinate point.
This allows them to be much faster than particles or fully 3D
methods for large water areas, but a lot of surface detail is lost
[7]. From a gaming perspective, an even bigger problem is
that interaction with rigid bodies is currently very limited in
the heightfield context.

To make interaction possible, water needs to affect the
bodies via buoyancy and drag. On the other hand, the bodies
also need to affect the water, because they block the flow
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Figure 1: A car crossing a river with floating logs. The car, imple-
mented with our method, blocks water and causes huge waves. The
logs are floating bodies implemented with the method of [11] that
have a limited effect on the water.

of water, causing waves, and may even make a river take a
completely different route.

None of the previous heightfield-based methods solve
both interaction directions in a satisfactory way. The tradi-
tional solution in real-time methods is to let the water be
mostly unaffected by the object, that is, allowing water and
bodies to overlap (e.g., [8–14]). In these methods, buoyancy
and drag are easy to apply based on the submerged part of the
object. Some surface waves may then be generated to create
an illusion of the objects affecting thewater.However, in these
models, water flows through the bodies.

In real world, the objects would naturally push down
the water surface. Unfortunately, this breaks the heighfield
assumption as soon as water should flow on top of the body.
This can be worked around with some limiting assumptions
on the blocker shapes or a multilayer model. However, there
is hardly any research in this direction, and the few previous
methods either have had to let most of the water pass through
the bodies [11] or have not been able to include water-to-
body effects [15]. The latter method also has problems with
rendering.

In this paper, we improve and generalize the method of
[15]. This enhances the effect of water on the objects, solves
the rendering issues, takes steps toward more general blocker
geometry, and replaces some ad hoc solutions by a more
physically based approach. The approach and its remaining
problems are also analyzed in much more detail than in [15].

Unfortunately, the problem of spatial aliasing from the
grid that has plagued the Eulerian 3D fluid-body interaction
methods is also present in our method. These problems
are mostly negligible for heavy objects but become clearly
visible if the method is used to handle floating bodies. As
an alternative solution for applications where the aliasing is
found to be too disturbing, we propose combining the two
interaction approaches. Objects are classified as floaters or
blockers. This allows both body-to-water and water-to-body
effects in a single scene, as in Figure 1.

All presented methods run faster than real-time on rela-
tively large terrains using our GPU-parallel implementation.

The rest of the paper is structured as follows. Section 2
introduces some related work. Our simulation method,
including body-to-water effects, is described in detail in
Section 3. Section 4 discusses the problems of adding water-
to-body effects in it and suggests a combined method.
Section 5 evaluates the results and Section 6 concludes.

2. Related Work

Fluid simulation has a long tradition in engineering. How-
ever, most methods from this literature strive for realism, for
example, bridge building, and are much too slow for games.
In computer graphics, water simulation started to become
popular in the 1990s with, for example, the work of Foster
andMetaxas [16], but themain application has been in special
effects for movies, with processing times for single frames
often measured in minutes. We concentrate on methods that
are suitable for real-time purposes. For a good introduction
on the more realistic approaches, see Bridson’s book [7] for
the Eulerian approach and the recent review of the SPH
literature for the Lagrangian perspective [17].

2.1. Fluid Simulation Methods. Lagrangian (particle-based)
methods, such as SPH, are currently popular in the research
community [17]. Because the particles are fully 3D, 𝑂(𝑛3)
particles are needed to reach a given spatial resolution, which
is not yet fast enough for modeling rivers, lakes, and other
large-scale features in real time [18]. On the other hand, only
the areas containing water need to be simulated, and thus
performance is limited by the amount of water, not the total
area or volume. Creating a renderable surface also takes a
long time compared to heighfield methods [18]. Despite this,
particles have been successfully used in 3D game engines for
small-scale effects such as leaky pipes [19] and in 2D games
even on mobile platforms [1, 2]. Particle-based fluid solvers
also have the advantage of having many sophisticated and
robust methods for solid-fluid interaction [5, 20–22], though
most of them are not designed for real-time applications.

Eulerian methods track the fluid quantities in a fixed
grid. While fully 3D methods are mostly too slow for games,
there are also faster approaches. Tall cells only model a
thin layer near the water surface in 3D, and the underlying
noninteresting part is treated as a single, tall cell [23, 24].This
approach yields very high-quality results even in real time but
is not yet fast enough for general usage in games, because
they have multiple other systems requiring computational
resources [6].

The Lattice Boltzmann method has also been used to
simulate water [25]. To our knowledge, it is not fast enough
for the task of simulating large-scale water in real time due
to small time steps. The Lagrangian and Eulerian approaches
can also be combined. For example, in movie effect pro-
duction, FLIP is currently a very popular method, which
combines aspects of bothmethods [26]. As a fully 3Dmethod,
it is also too slow for most real-time games.

In open seas without a need for dynamic flow over rough
and partly dry terrain, wave particles [12] and FFT-based
methods [27] can be used [18]. They can provide relatively
realistic-looking results and interaction with rigid bodies, for
example, ship wakes [10].

The most relevant methods for our discussion are based
on heighfields. Only allowing a single height value for the
water surface removes many interesting surface effects, such
as breaking waves and splashes, but has the great advantage
of making the simulation𝑂(𝑛2) for a given spatial resolution.
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Furthermore, these methods have no need for an expensive
linear system solver unlike the Eulerian simulations. Thus
heighfield methods allow for the simulation to cover vast
areas in real time. Many of the missing surface phenomena
can be created using fast procedural methods and only
near the viewer, because they are mostly aesthetical and not
essential for gameplay.

The pipe method is a very simple and fast water simu-
lation method [8, 28]. It has been extended for multilayer
situations [29] and used for purposes such as erosion sim-
ulation [30, 31]. Many GPU implementations have also been
presented, demonstrating its speed on modern hardware [6,
30, 32].

Shallow water equations provide a more physically based
approach to heightfield water simulation [7].They are slightly
more complicated than the pipe method but still fast enough
for games.They have also been extended in various ways and
implemented on the GPU [11, 13, 33]. However, there is some
evidence that the visual difference to the pipe method is quite
small when modeling large-scale water bodies in a gaming
context [34].

2.2. Interaction with Solids. Simulating the interaction of
fluids and solids has been the focus of much research in
the fully 3D fluid simulation literature. Lagrangian methods
typically model the solids also as particles and are able to
produce impressive results even in real time [5]. However, our
Eulerian method does not have much in common with these
methods.

In the Eulerian context, Foster andMetaxas voxelized the
boundary conditions to the simulation grid [16]. Rigid bodies
were later handled by Takahashi et al. [35] by rasterizing the
rigid body velocities to the grid and setting these as velocity
border conditions to the fluid. Many methods run the fluid
and rigid body solvers alternatingly, but the quality can be
improved by solving both problems simultaneously, as in
[36].

The approach of rasterizing border conditions to the grid
has problems with boundaries that are not aligned to the grid
[37]. A large body of research has addressed these problems
since then. A common approach based on the immersed
boundary method [38] is to average solid properties in each
cell (or dual cell) of the grid and use these as weights in the
solver [37, 39]. Some authors also started to model the solids
directly in a Lagrangian framework instead of rasterizing
them to the grid [36]. A different approach, mostly unsuited
for real-time applications, is to give up the grid regularity
either completely or at least near the solids [23, 40].

The fully 3D methods have lately been applied to real-
time situations, but only on rather small grids. Many of the
methods can just as well be applied on the 2D grids, which
would be large enough for many games, but this requires
the solids to also reside in a 2D domain. In a heightfield
situation, the water and the rigid bodies still reside in a three-
dimensional domain, but the fluid simulation grid is two-
dimensional. Most methods, such as that of Batty et al. [37],
are based on modifying the pressure projection step, which
does not even exist in heightfield simulations. Because of
these reasons, the sophisticated 3D fluid-body interaction

methods cannot be directly applied when the underlying
simulation is based on heightfields. Thus the heightfield
methods have traditionally taken a completely different, and
much simpler, approach to the problem.

The heightfield water-body interaction research has
mostly concentrated on handling floating objects [8–10, 14].
In these methods, the bodies are superimposed on the
water, which makes buoyancy and drag almost trivial to
calculate. The effect of the bodies on the water is handled
by, for example, slightly pushing down the surface at the
bodies, which creates believable waves and ripples for floating
objects. The problem of cell aliasing is also present in these
methods, and the iWave method solves it similarly to, for
example, [37] by estimating an opacity value for the blocker
coverage in each cell [10]. Some researchers even calculate
interaction per mesh triangle, subdividing the triangles if
necessary [12, 13].

However, the previously mentioned heightfield methods
are unvariably only interested in the interaction of the solids
with the water surface, completely ignoring the body of
the water. Approaching water waves are passed through the
bodies almost unaffected, which makes sense for small and
floating objects that only move up and down with the waves.
On the other hand, large or heavy bodies are not handled
in a sensible way. This problem is most evident if a body is
lying on dry ground and a wave meets it (see Figure 8(a),
or the video in the Supplementary Material available online
at http://dx.doi.org/10.1155/2014/580154), or when one tries
to build a dam out of some heavy bodies. A method that
is also able to handle submerged objects was introduced in
[11]. It is still mostly interested in surface effects and does not
block flow. A method that allows large bodies to block flow
by forcing water to flow above, below, or around the body was
introduced in [15] but had several shortcomings that we try
to address here.

3. Simulation Method

This section describes our simulation method, which is a
variant of the classic pipe method of [8] with a layer structure
similar to that introduced in [29].This work is a continuation
to [15].

We use a top-down approach, first introducing the gen-
eral structure of our model in Sections 3.1 and 3.2. A detailed
description of each phase follows in Sections 3.3–3.6. Finally,
we discuss the parameters and stability in Section 3.7.

3.1. Model Structure. Water behavior is simulated on a
uniform 2D grid on the 𝑥𝑦-plane. The distance between
neighboring cell centers in both directions is ℓ. The model
consists of cell-sized columns of terrain, water, blocker, and
air stacked on top of each other. A column 𝑖 occupies the
vertical interval (𝑧𝑖

−
, 𝑧
𝑖

+
). The depth 𝑑

𝑖
of a column is the

vertical length of the interval it occupies. A column with
zero depth is considered not to exist. Blocker columns are
nonpenetrable to water and are used to represent the moving
rigid bodies, which are rasterized to the grid resolution.

The model is generalizable to allow any number of water
and blocker columns stacked on top of each other, but in
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Figure 2: A side view of the model structure. Cells 𝐴 and 𝐵 have
a blocker column with water and air also below the blocker. Cell 𝐶
is free and thus has only a single water column. Intervals that are
used for flow calculation are marked with red arrows.The top of the
interval is the average of the two water surfaces. The blockers are
taken into account; for example, the bottom flow between 𝐵 and 𝐶
is partly blocked.

practice we have found it enough to have a single terrain and
a single blocker column plus up to two water columns (one
above the blocker, one below), with an implicit air column
above each water column. A more general structure would
greatly increase the memory bandwidth requirements. The
bottom column is always a heightfield terrain that occupies
the interval (−∞, 𝑏(𝑥, 𝑦)). Instead of storing the top and
bottom coordinates of water columns, a single height (in
meters) is stored for each. When needed, the coordinates can
be calculated based on the terrain and body locations. The
water surface ℎ(𝑥, 𝑦) is a heightfield that is constructed by
finding the top of the topmost nonempty water column at
each cell.

The blocker columns represent the rigid bodies and are
found using the rasterization hardware as will be described
in Section 3.3. A cell is free, if there is no blocker column.
Free cells only have a single water column and a single air
column. The water columns are combined by removing the
air columnbetween them.Awater column is free if there is no
body above it. Figure 2 illustrates the structure of our model.

Water is allowed to flow between neighboring cells in the
grid. The four von Neumann neighbors are used, but speed
could be traded for quality by using theMoore neighborhood.
If both cells have a blocker, we assume the blockers come from
the same body.This is reasonable, because it is extremely rare
that different bodies are located in neighboring cells but are
not overlapping. Overlapping bodies would be treated as one
anyway, because we only have a single blocker column.

The previous assumption allows us to only store two flows
for each pair of neighboring cells: “upper” and “lower.” If
both cells are free, upper contains the flow, while lower is
0. If exactly one of the cells is free, the two stored flows are
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Figure 3: A side view explaining surface, effective surface, and
pressure. Surface, the top of the topmost water column, is pushed
down by the body. Effective surface is an estimate of where the
surface would be without the body and is calculated by adding the
external pressure to the surface (see Section 3.6).These two surfaces
only differ in cells where the surface is pushed down by a body.

free ↔ top and free ↔ bottom. If neither of the cells is free,
upper contains the flow between the top layers and lower
between the bottom layers.

We define𝑁(𝑖) as the set of neighbors of water column 𝑖.
The flow between columns 𝑖 and 𝑗 is𝑓

𝑖𝑗
= −𝑓
𝑗𝑖
(naturally only

one value is stored). If 𝑓
𝑖𝑗
≥ 0, it is called outflow from cell 𝑖

and inflow otherwise.
The external pressure 𝑝𝑖ext at the top of each water column

𝑖 is also included in the model. External pressure is the result
of a rigid body over the column and is zero for free water
columns. Air pressure is ignored as negligible. The pressure
𝑝(𝑧) inside a water column is assumed to behave according
to the basic hydrostatic equation, 𝑝(𝑧) = 𝑝(𝑧

+
) + 𝜌𝑔(𝑧

+
− 𝑧),

where 𝑝(𝑧
+
) is the pressure at the top of the column, 𝜌 is

water density, and 𝑔 is acceleration by gravity. We always
give pressure as 𝑝/𝜌𝑔, that is, depth (in meters) of a water
column that would cause the pressure. The pressure caused
by a rigid body above a water column ismodeled as explained
in Section 3.6.

Since in this method water pushes the surface down,
buoyancy and other forces affecting the bodies cannot be
calculated directly in the usual way. Due to the finite grid size,
rendering the surface directly would also cause disturbing
dents near the objects as illustrated in Figure 3. To solve
these problems, an effective surface 𝑠(𝑥, 𝑦) is constructed
to approximate where the surface would be if there were
no blockers. The effective surface is another heightfield with
value equal to the actual surface plus the external pressure at
the surface (in meters). Figure 3 illustrates the concept.

3.2. Algorithm Phases. The following phases are executed to
advance the simulation for a single time step of Δ𝑡:

(1) rigid body update (by an external physics engine),
(2) blocker update (apply effects of the moved bodies to

the water, Section 3.3),
(3) flow update (Section 3.4),
(4) depth update (Section 3.5),
(5) pressure estimation (Section 3.6).
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Each step is described in more detail below, but let us
first give an overview of the steps. Our method is based
on alternating rigid body and water update steps. The rigid
body update is a standard simulation step of an off-the-
shelf physics engine, Bullet [41] with buoyancy, and other
fluid forces applied to the bodies. After that, the water
overlapping with the moved bodies is removed, as described
in Section 3.3.

Somewhat analogously to the simplifying assumption of
hydrostatic pressure always used in the pipe method, we
also assume that the rigid bodies are static when solving
for water flow and depth. The solid interaction in flow and
depth update steps (Sections 3.4 and 3.5) can thus be seen
as generalizations of how terrain is typically handled in the
corresponding steps of the pipe method, only with several
layers and thus the possibility of water flowing both above
and under the blocking body. This departs from the more
physical approach of the 3D methods, where solid velocities
are taken into account, but we have found the results to be
quite acceptable.

The final step, pressure estimation (Section 3.6), is needed
for visualization and estimating buoyancy and drag.

The method is designed to be completely parallel on the
GPU with no random write access. Each phase uses double
buffering, only reading the previous state. This ensures that
the fast texture memory can be used.

For clarity, no time indices are used for the variables. All
formulas are given in an assignment form instead.

3.3. Blocker Update. The blockers are rigid bodies that have
possibly moved in phase 1 of the algorithm, which will affect
the water.

For each cell, the rasterization finds the bottom and top
height coordinate of any rigid bodies overlapping it at the
center.This is implemented by rasterizing the trianglemeshes
using an orthogonal view from above and below. The depth
buffer can then be employed to find the extremes, which
makes the process very fast even for complicated bodies. See
Figure 4 for a visualization of the concept.

In the rasterization step, multiple bodies located on top
of each other are combined to a single blocker column.
Bodies completely above water are ignored. Otherwise, water
between an object even high above thewater and a submerged
object would be removed.

The next step is to ensure that the bodies and water do
not overlap. The blocker columns before and after the time
step are handled as being completely unrelated. Note that the
vertical extent in a cell blocked by the same body can change
radically even during a single time step as the bodymoves and
rotates.

In each cell, the procedure is implemented as follows.The
possible blocker column that existed before the time step is
first removed. Water is added so that the surface is moved
to where the effective surface was. Then the possible new
blocker column is added, removing any overlapping water.
The addition divides the water column to (possibly empty)
parts below and above the blocker. The external pressure
in the column below the body also needs to be updated

Rigid body

z+

z−

z

Cell centerlines x

Figure 4: A side view of rasterizing the rigid bodies to the
simulation grid. In each cell, the vertical overlap (𝑧

−
, 𝑧
+
) of the body

and the cell centerline is found. This particular body overlaps 4 cell
centers to varying vertical extents.

so that the effective surface is not changed (see pressure
approximation in Section 3.6).

During the whole process, the depth of artificially added
and removed water is kept track of. Their difference could
be either positive (water was added) or negative (water was
removed). To conserve volume, the same amount needs to be
removed from or added to the vicinity. This is achieved by
averaging the amount of missing or extra water with the four
neighbors on each time step. Whenever a free cell has a value
indicating missing or extra water, a portion 0 < 𝛼 ≤ 1 of the
difference is added or removed. This is what mostly causes
waves around a body dropped into water. Our approach is
very similar to that used in [11].

An example of this phase can be found in Figure 5. For
more details, see [15], which has a similar implementation.

3.4. Flow Update. In addition to removing water from inside
the bodies, it is also essential to prevent any flow from
entering the bodies. To achieve this, we let the cross section
of the pipes connecting columns to vary, similarly to [29], but
taking blocker geometry into account.

The flow between two water columns 𝑖 and 𝑗 that are
neighbors goes through an interface that is represented by
the red arrows in Figure 2. The bottom of the interface 𝑧𝑖𝑗

−
=

max(𝑧𝑖
−
, 𝑧
𝑗

−
). For the top, we first interpolate the surface

height at the interface by taking the average of the tops of
the water columns (dashed lines in the figure). We also find
the bottom 𝑧

𝑏

−
of the lowest blocker above the interacting

water columns, which sometimes limits the interface (e.g.,
lower flow between cells 𝐵 and 𝐶 in Figure 2). Putting these
together, the top of the interface is 𝑧𝑖𝑗

+
= min((𝑧𝑖

+
+𝑧
𝑗

+
)/2, 𝑧
𝑏

−
).

The cross section of the interface is 𝑐
𝑖𝑗
= ℓ ⋅ (𝑧

𝑖𝑗

+
− 𝑧
𝑖𝑗

−
).

Flow is caused by a pressure gradient. In column 𝑖, the
pressure relative to the bottom of the interface 𝑧𝑖𝑗

−
is 𝑝
𝑖
= 𝑧
𝑖

+
−

𝑧
𝑖𝑗

−
+𝑝
𝑖

ext, with 𝑝𝑗 calculated similarly.The pressure difference
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Figure 5: An example of the body update in a cell. During a time
step, a submerged body rises above the surface. This is handled by
first removing the old blocker. In this case, water needs to be added
(𝑎) to keep the surface unchanged (𝑏). The new blocker is then
added, removing any overlapping water (𝑐). In this case, the upper
water column becomes empty.

is Δ𝑝
𝑖𝑗
= 𝑝
𝑖
− 𝑝
𝑗
= 𝑧
𝑖

+
+ 𝑝
𝑖

ext − (𝑧
𝑗

+
+ 𝑝
𝑗

ext), analogously to the
original pipe method of [8].

The flow can now be updated using an explicit Euler step
as in the standard pipe method:

𝑓
𝑖𝑗
:= 𝜇𝑓
𝑖𝑗
+ Δ𝑡𝑐
𝑖𝑗

𝑔Δ𝑝
𝑖𝑗

ℓ
, (1)

where 𝜇 ≤ 1 is a friction coefficient.
Finally, the flow from each column is restricted to prevent

the depth frombecoming negative.This is done by calculating
a scaling factor 𝐾

𝑖
= min(1, 𝑑

𝑖
ℓ
2
/(Δ𝑡∑𝑓

𝑖
)), where ∑𝑓

𝑖
=

∑
𝑓∈𝑁(𝑖)

𝑓
𝑖𝑗
is the net outflow. Each outflow from 𝑖 is then

multiplied by 𝐾
𝑖
.

3.5. Depth Update. The depth of each column can now be
updated based on the flows. The flow through each interface
in a single time step is limited to the depth of the interval,
𝑑
𝑖𝑗
. This step is not physically based but takes care that

intervals that have become almost or completely blocked do
not let water through due to previously accumulated flow. It
is therefore a key element of making the bodies block flow.
For example, water cannot flow on top of a body before the
surface is high enough. This is roughly analogous to how
terrain is handled in the related methods (e.g., the reflective
boundary conditions caused by high terrain in [13]). After this
limiting, the update assignment is

𝑑
𝑖
:= 𝑑
𝑖
− Δ𝑡

∑𝑓
𝑖

ℓ2
. (2)

Finally, some water columns are under a blocker. If this
update would cause a water column to overfill so that it would
overlap the blocker above, onlywater equal to the free portion

is allowed to flow. Experimentally, we found out that stability
is greatly increased by also decreasing the incoming velocities
to such a cell, which can be thought of as a crude model of a
no-slip border condition with the blocker. If 𝑑overlap ≥ 0 is
the depth of the overlap and 𝑑total is the total incoming depth
(not net incoming depth) during a time step, we multiply all
inflows to the cell by (𝑑total − 𝑑overlap)/𝑑total. This approach
also removes the artifacts caused by the need to slow down
underflow in [15].

3.6. Approximating Pressure. The effective surface 𝑠
𝑖
= ℎ
𝑖
+

𝑝
𝑖

ext is needed for buoyancy and rendering but is not directly
available in places where a body pushes the surface down.
Figure 3 is referred to as an example throughout this section
to help understand the situation.

It would be possible to track the pressure under a body
using physical simulation and calculate the effective surface
that way. Instead, we use a simpler approach, and interpolate
the effective surface from around the bodies. The external
pressure is zero in the free columns, which allows the surface
to be used directly as the effective surface (cells 𝐴, 𝐵, and 𝐹
through 𝐼 in the example).These are the border conditions of
the interpolation.

In practice, the interpolation is achieved by applying a
blur filter on the effective surface of the previous time step
and storing the external pressure calculated from that. The
calculated values are only used in the nonfree columns. In
Figure 3, the results are applied to cells 𝐶–𝐸. As a few time
steps go by, the effective surface in these cells gradually rises
from the surface, approaching the dashed line in the figure.

However, this process is complicated by the bottomwater
columns (in 𝐹 and 𝐺). Their external pressure could be
calculated directly as the difference to the surface. Now
imagine the water level at 𝐹 changing slightly so that the
top water column in it dries up. This would suddenly push
the effective surface below the body, which would result
in visually disturbing flickering and unstable buoyancy. We
work around this by keeping track of the pressure also in the
bottom water column of such cells and letting the external
pressure be themaximum of the directly calculated value and
the iteratively solved value.

Formally, let 𝑖 be a nonfree column and 𝐴 the cell it is
located in. The current external pressure 𝑝𝑖ext, stored in each
such column 𝑖, is updated during a time step:

𝑝
𝑖

ext := max((𝜅𝑠 (𝐴) + 1 − 𝜅

4
∑

𝐵∈𝑁(𝐴)

𝑠 (𝐵)) − 𝑧
𝑖

+
, ℎ (𝐴)) ,

(3)

where𝑁(𝐴) is the set of neighboring cells of𝐴 and 𝜅 controls
the spreading speed of pressure.

The maximum in (3) affects cells such as, for example, 𝐹,
where ℎ(𝐹) is the top of the topwater column.While the body
in 𝐹 is underwater, the external pressure keeps the effective
surface at ℎ(𝐹), but now, after𝐹 dries up, the external pressure
stays. As a result, the effective surface changes very smoothly,
which is essential to keep the visual appearance continuous
in time.
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(a) (b)

Figure 6: (a) Using the effective surface results in a flawless water-object border. (b) Dents and grid artifacts are visible when the surface
pushed down by the car is used.

For a visual comparison of the surface and the effective
surface, see Figure 6 and the accompanying video.

3.7. Parameters and Stability. As a variant of the pipemethod,
our solver also uses explicit time integration. This sets a
limit to the time steps that can be used before disturbing
instabilities are experienced.

The proposed method has a few parameters that affect
the stability and other properties of the simulation: 𝜇, Δ𝑡, ℓ,
𝛼, and 𝜅. The stability properties are hard to analyze exactly
due to the complexity of the blocking, but the idea of the
CFL condition Δ𝑡 ≤ ℓ/V [7] also carries over to our method:
to make the method stable, a short time step is needed
to compensate for large wave speeds (where wave speed is
measured in simulation cells per second).

A longer time step makes the simulation use less com-
putational resources. While the time step might affect the
simulation in some subtle ways, a previous user study did
not find any noticeable effect when varying the time step
inside a stable range in a similar simulation without the rigid
body interaction [34]. Therefore, after fixing the values of the
other parameters, the time step should be chosen as large as
possible without making the simulation unstable.

The friction parameter, 𝜇, describes how much of the old
flow is conserved between time steps and should therefore
be a function of the time step length. A smaller value makes
the water appear more viscous but also limits the velocities
accumulated during the simulation, therefore allowing longer
time steps. The simulation scale is controlled by ℓ. A smaller
ℓ (a finer grid resolution) needs to be compensated with a
smaller time step or smaller velocities.

A larger 𝛼 causes water displaced by themoving bodies to
be added back faster, causing bigger waves to emanate from a
blocking body in the water. This has the side effect of causing
spikes and large flow velocities if the value is too large. Finally,
a larger 𝜅makes the gaps near objects disappear faster but also
makes the effective surface look more twitchy, since it reacts
faster to blocker geometry changes.

Typical values for the parameters in our simulations are
𝜇 = .999, Δ𝑡 = 20ms, ℓ = 1m, .01 ≤ 𝛼 ≤ .1, and 𝜅 = .5. With
these values, the stability problems have been minimal.

4. Water-to-Body Effects

The method described thus far does not implement any
effects caused by the water to the bodies. These effects can
be divided into two classes: drag and buoyancy. By drag we
mean that water and object velocity tend to equalize. This is
especially important in the case of floating bodies, such as
logs, that need to follow the flow. Both of these effects are
easy to achieve if the water surface is allowed to go through
the floating object. In our model, the actual surface is pushed
down by the object, but the effective surface can be used in
its stead. Our approach here is fairly standard but is shortly
described for the sake of completeness.

For the drag calculation, we additionally need a velocity
V
𝐴

in each cell 𝐴. Exactly as in [30], the 𝑥 component
can be estimated by calculating the average flow in the 𝑥

direction divided by depth of the column in question and 𝑦
correspondingly. Only the top column is used since drag is
mostly relevant for floating bodies.

Drag is based on iterating through all cells overlapped by
the body. For each cell 𝐴, we first calculate 𝑢

𝐴
, which is the

the vertical extent of the body below the effective surface. We
also calculate the local velocity V𝑏

𝐴
of the rigid body in the

center of the cell at the middle of the underwater part. The
drag force 𝐹drag

𝐴
= (1/2)𝐶𝜌𝑢

𝐴
ℓ(V
𝐴
− V𝑏
𝐴
)
2, where 𝐶 is a drag

coefficient that can be set empirically according to the needs
of the application. In our scenes, 1 ≤ 𝐶 ≤ 15. The force is
applied at themiddle of the underwater part during each time
step.

Buoyancy is equal to the weight of the water displaced by
the body, again applied in each cell overlapped by the body.
We reuse 𝑢

𝐴
from above and for each cell apply 𝐹buoyancy

𝐴
=

−𝜌𝑔ℓ
2
𝑢
𝐴
at the center of the cell.

One problem in this approach is that the drag and
buoyancy forces are calculated in only the grid locations,
using relatively long time steps, which often causes excess
rotation.This can be fixed by simply damping both the linear
and rotational velocities of the bodies using an empirically
determined coefficient based on the proportion of the body
that is underwater. This works relatively well in practice
but is not physically based. However, our implementation of
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Figure 7: Top view of an aliasing problem. A body (dark gray) is staying in a stable current. Arrows show the flow between cells. The blocker
slightly moves to occupy a new cell (light gray), causing the red flows to instantly become blocked. Cell 𝐴 now has much more inflow than
outflow, which causes a sharp peak in the surface before the flows settle down to a new equilibrium (on (b)). Similarly, the surface in 𝐵 will
suddenly drop. Both of these cause large waves to emanate from the area.

the method presented in [11] also needed to resort to similar
tricks.

4.1. Aliasing Problems. The suggested blocking method (and
that of [15]) is binary: each cell is either blocked or non-
blocked. As explained in the related work section, the
problem is a common theme in the Eulerian fluid simulation
literature. In our case, where the quality goal is much less
ambitious, this problem is usually negligible. However, a very
small change in the body position can cause relatively large
changes in the rasterized version, when a body suddenly
overlaps a cell center. This spatial aliasing can cause overly
large effects to the water that become noticeable if the body is
only moving slowly.

The blocking method is thus best suited for situations
where the bodies mainly move independently of the water. If
a body stops completely, the physics updates can be disabled
and the aliasing problem disappears. On the other hand,
applying even an otherwise insignificant buoyancy force to
a heavy object keeps the body alive, which causes small
vibrations in most rigid body solvers and makes the problem
visible. How disturbing one finds this phenomenon depends
on the scene and parameters.

Unfortunately, one of the worst cases is an object floating
along a strong current. When a cell is suddenly blocked,
the stable flow to the cell is denied, causing the source
cell to be quickly overfilled. This small movement causes a
comparatively large wave to emanate from that cell to the
surroundings. This looks unnatural, since there is almost no
relative movement between the body and the water, meaning
no waves should be created. The problem is illustrated in
Figure 7.

Several directions for a solution were examined in our
research process. Simply limiting the maximum velocity or
making the grid denser makes the effect smaller but does
not solve the problem without making the method too slow.
The best simple workaround we found is limiting the amount
the surface in any cell can change in a single time step to
some constant, but it onlymakes the problem somewhatmore
apparent.

A better solution could be based on the fractional cell
method, such as in [37] or [10]. However, they are not
trivially applicable, as trying to take the fully 3D nature of
the problem into account is problematic with our underlying
2D fluid solver and trying to address the full complexity of
the 3D situation would quickly become too slow. A strictly
2D solution such as in [10] also does not work as such in our
context, because our method completely relies on the vertical
intervals to block the flow. In reality, those intervals vary in
complex ways inside the cell, and a single opacity value is not
enough to describe them, which makes the problem difficult
to solve.

4.2. Combined Solution. Because a single solution that would
implement both water-to-body and body-to-water effects in
all kinds of scenes in a satisfactory way is not yet available,
we propose an alternative implementation that combines
the strengths of the two approaches. Bodies are categorized
according to their density to floaters and blockers. Floating
bodies are advected with the flow and do not really need to
block water. They can therefore be treated with the Thürey
et al. method [11]. On the other hand, bodies that are
denser than water do not float and can be treated with our
method without the previously mentioned aliasing problems
becoming an issue.

The Thürey et al. method only affects water in a single
phase that changes the depth of the topmost water column.
This can be implemented between steps 1 and 2 in ourmethod
without any adverse interaction with our method. Water-to-
body effects in our examples are implemented as suggested
above, using the drag and buoyancy forces, but also, for
example, the triangle subdivision scheme of [13] could be
used.

5. Results and Discussion

To evaluate and illustrate our results, we have created three
interactive test scenes. The first two demonstrate blocking
capabilities. In the first one, the user drops heavy cubes and
two types of cars on a smooth hill with a large water source on
top (Figures 8 and 9). The second demonstrates controlling
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Figure 8: A visual comparison of the difference between a traditional [11] body (a) and a blocking body (our method, (b)) lying on a hill.

Figure 9: Since the vertical extents of blockers are taken into
account, water can also flow below objects.

river flow by dropping blocking obstacles (Figures 11, 12, 13,
and 14). The last one combines floating with blocking. It has
logs floating down a river with a car crossing the river, hitting
some of the logs on the way (Figures 1 and 10). The scenarios
use either a 128 × 128 or a 256 × 256 simulation grid with a
1-meter simulation resolution. The time step is 20ms.

We have elected to benchmark ourmethod by comparing
it to our implementation of the interaction method of [11],
which we find to be the most advanced of the real-time
heightfield methods, especially when it comes to handling
heavy and large bodies that can be submerged. Other height-
field methods such as [9, 13, 14] would look very similar to
theThürey et al. method in our test cases with heavy objects,
since none of these prevent water from passing through
the bodies. For the floating objects, we do not claim that
our method currently achieves a quality similar to any of
the mentioned methods. A comparison to the significantly
more advanced methods based on a 3D grid or particles
is not included, since these cannot be directly applied to a
heightfield-based simulation. None of the heightfield-based
methods are currently even close to being competitive with
them in quality, but, on the other hand, there is a large
performance benefit when using heightfields.

The first two scenarios are handled well by our method.
Water flows around the blocking rigid bodies and under

Figure 10: Logs floating on a river.

Figure 11: A free flowing river before building a dam.

a truck. Visual comparisons between ourmethod and the one
in [11] have been provided in Figure 8, Figures 11 through 13,
and the accompanying video. The differences should be very
apparent, since theThürey et al. method [11] lets water mostly
flow through the bodies, only creating limited interaction
waves that are in many cases dwarfed by the existing water
movement.

Themethod of [15] also fares well in these cases.Themain
difference is in our pressure tracking, which allows for much
nicer object/water borders than those achieved in [15].

In the third scenario, the logs can in principle be imple-
mented as blocking bodies using our method. They float and
are advected by the flow, but the spatial aliasing problem as
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Figure 12: A dam built out of crates changes the river flow (our
method).

Figure 13: The same scene simulated using the method from [11],
(𝛼 = .5) does not alter the river flow much.

discussed in Section 4.1 makes the results unconvincing.This
is one of the main limitations of our method. The advection
is also somewhat limited, since the velocity under the body
is usually zero. This could possibly be solved in the future
by interpolating the velocity field for the effective surface
similarly to pressure.

When the third scenario is implemented with the com-
bined solution described in Section 4.2, the logs are classified
as floaters and do not block water. The car is a blocker and is
not affected by the water. We find this scenario to work much
better with the combined solution than when implemented
with either of the methods alone.

The stability of our method was tested empirically by
varying the time step. It was found that, even with high-speed
objects, the simulation is stable as long as the underlying pipe
method itself is stable, that is, the rigid body interaction is not
what limits the selection of the time step.Theonly direct effect
our interaction method has on fluid velocities is decreasing
them. The blocker update sometimes creates large height
gradients when a cell is left empty, but we did not find any
noticeable stability problems in practice even in those cases.
In the combined solution, the first problem appearing when
increasing the time step was the floating objects (whether
they used our method or that of [11]) becoming unstable due
to the torque caused by the buoyancy forces. Finally, when it
comes to the aliasing problems, the time step does not play
much of a role.

Our method and its predecessor [15] are the only
heightfield-based interaction methods where flow is really
blocked by the bodies. The other methods are concentrated
on scenarios such as floating boats, where the body-to-water
effect is mostly intended for visual, rather than interactive,
purposes. However, we think that controlling water masses

Figure 14: Combining our approach with the method of [11], block-
ing bodies can be used to interactively alter where floating bodies
end up with the flow.

with rigid bodies will open upmany kinds of new interaction
possibilities in games and should be given more considera-
tion. On the other hand, we also demonstrated that these two
kinds of effects can coexist in a single scene.

Themethod of [15] also allows for this kind of interaction
but is less grounded in physical simulation than our blocking
solution. Most importantly, we take external pressure into
account similarly to [29] and take steps toward amore general
approach that would allow the method to be extended to any
number of layers and more complex geometry. For example,
new physical situations can now be simulated, such as the
equalization of two columns of water that are connected by a
tunnel, because the external pressure in the tunnel is included
in the model.

A crucial addition compared to [15] in our method is the
procedure for estimating the effective surface. The result is
roughly the same surface that would exist in, for example,
the method of [11] and can therefore be used for calculating
water-to-body effects. It also has the necessary property of
reacting smoothly to all kinds of geometry changes, which is
necessary for retaining visual quality.

Thürey et al. [11] use a similar idea to our blocker handling
step as the primary method for handling object-to-water
effects. This has the problem that water is moved blindly to
the surroundings, causing water to leak through a blocking
body. In our approach, most of the work is done in a later
step when calculating the new flow, which limits flow into the
bodies.

In all examples, the water simulation and body-to-
water effects are implemented on the GPU. The model is
designed for implementation without random write access,
which allows using fast GPU texture memory without any
need for thread synchronization or atomic operations. Our
implementation packs the simulation state into four grid-
sized textures with four 32-bit floating point channels each
(and their duplicates for double buffering).

On a laptop with an NVIDIA Quadro 1000M, a simula-
tion step takes about 5ms of the GPU time on a 512×512 grid
and 2ms on a 256×256 grid. For the 1m resolution grid in our
examples, a 20ms time step is stable enough. This makes the
method feasible for real-time applications with large bodies
of water, even with the limited GPU budget that this kind of
system would be allowed in a game.

Solving the aliasing problems could result in a single
method usable for all kinds of scenarios. A priority for
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future work is to either generalize the 2D approach of [10]
to our more complicated case or modify and simplify a 3D
approach such as the one in [37] to become compatible
with our underlying 2D simulation and fast enough for large
grids. Our method is also admittedly not rigorously based
on physics. Momentum conservation is not considered, the
solid-fluid velocity equality constraint is not enforced, and
the depth update still has some ad hoc steps to improve
stability. Finding a way to apply a completely physically based
solution without losing too much speed is another important
topic for future work. Our combined solution could also
be improved by dynamically changing between the methods
depending on the situation. For example, if a floating piece
of ice gets stuck, it could be converted to a blocking body,
allowing for a dam to be formed.

Our implementation concentrates on the water behavior
and interaction and is visually fairly simple. Implementing
adaptive tessellation, spray, foam, bubbles, breaking waves,
and other effects using, for example, a particle system would
naturally improve the visual quality of the results consider-
ably. It could also be possible to extend the method to create,
for example, foam based on the actual interaction, instead of
the typical texture-based procedural methods used in current
games (similarly to [42]).

6. Conclusions

We presented a GPU-parallel real-time water-solid interac-
tion method for heightfield water simulation. Our method
extends and generalizes that presented in [15]. It is based
on bodies pushing down the water surface but includes
a procedure for estimating where the surface would be
without the body. This allows richer rigid body interaction
in heightfield water simulation than what could be achieved
using any of the previous methods.

A limitation of our method is that some aliasing artifacts
are encountered especially when the method is used to han-
dle floating objects. Despite trying various approaches, the
artifacts could not be removed. To circumvent the problem,
combining differentmethods in the same scenewas proposed
and demonstrated.

One of the most important remaining problems is to
find a solution for the spatial aliasing problems inherent
in the presented flow blocking method. This could allow a
single method to be used for all kinds of bodies. Further
physical realism should also be strived for, but it is important
to do this without sacrificing performance. Various visual
enhancements are also possible, including foam, and are
integrating a particle system to create splashes.

The presented method is fast enough for real-time games
on current systems, evenwith the need to dedicatemost of the
computational resources for various other game functionali-
ties. The method can be combined with an off-the-shelf rigid
body solver, enabling new kinds of player interaction with
water.
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