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The problem of the gravity information which can not be obtained in advance for bilateral teleoperation is studied. In outer space
exploration, the gravity term changes with the position changing of the slave manipulator. So it is necessary to design an adaptive
regulator controller to compensate for the unknown gravity signal.Moreover, to get amore accurate position tracking performance,
the controller is designed in the task space instead of the joint space. Additionally, the time delay considered in this paper is not
only time varying but also unsymmetrical. Finally, simulations are presented to show the effectiveness of the proposed approach.

1. Introduction

A teleoperation system can extend the human-sensing and
manipulative capabilities to the remote environment. Now
the teleoperation system has been used in many areas, for
instance, outer space operation, robotic telesurgery, handling
of toxic, and harmful materials, and underwater exploration
[1–3].

In bilateral teleoperation system, the master and the
slave manipulators are connected via a long communication
network. So the time delay cannot be ignored. It has been
noticed that the presence of time delay can influence the
system performance. And it can even destabilize a stable
system. It is recognized that Anderson and Spong [4] pro-
posed the first delay independent controller for constant
time delays via the scattering transformation. Later, the
wave variables method was introduced [5]. Then the wave
variables method had been improved by many papers [6–8].
However, it is necessary to recognize the fact that the classic
scattering transformation may lead to position drift. Then a
proportional derivative plus damping (PD+d) controller was
proposed in [9] and the scattering transformation approach
was discarded. Later, a simple proportional plus damping
(P+d) controller was proposed in [10]. However, the time

delay considered in this paper was constant. In [11], the
model-free linear observer-based PDoutput feedback control
design was used to solve the output feedback stabilization for
industrial robotic systems. Reference [12] presented a hybrid
control strategy for the trajectory tracking control problem
of robotic manipulators.The use of Internet for teleoperation
communication provides obvious benefits. Nevertheless, the
time delay caused by Internet communication channel is not
only time varying but also unsymmetrical. Time delay has
become an unavoidable factor affecting the stability of closed-
loop system [13–17].

Thanks to [18, 19], a simple P+d controller can ensure
position tracking and asymptotic convergence to zero of
velocities in the presence of variable time delays.

Comparing with other control methods, the PD con-
troller has irreplaceable advantages. Owing to its simple
structure and easy implementation, it has been used exten-
sively. However, in [9–12], it is easy to see that an assumption
was needed before designing the controller, in which the
gravity information can be achieved in advance. However,
in many practical applications, it is a serious restriction for
the application of PD controller in teleoperation system.
Moreover, this issue arises for the teleoperation applications
of the robots in the outer space. In outer space, different
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locations have different gravity acceleration. However, with
more and more advanced technology, it is possible to detect
the gravity. It is expensive and may take a long time and it
cannot adapt to the requirements of real-time control. So an
adaptive regulator is necessary.

In the existing literatures about the teleoperation system,
most controllers were designed in joint space. And the
objectives of most papers were to design a controller to
make the joint position error between the master and the
slave convergence to zero. However, the ultimate aim of
using teleoperation is to make the slave complete a certain
job under the control of the human operator. And the job
is completed by the terminal actuator. It is necessary to
notice the phenomenon where the master and the slave
manipulators have different joint lengths and joint mass
and even different dynamics models may exist. Under this
phenomenon, the joint synchronization cannot guarantee
the terminal actuator synchronization. This situation can be
avoided with the controller designing in the task space [20].

In some literatures for space teleoperation [21–24], the
gravity term was directly neglected when the gravity accel-
eration was zero. In this paper, we consider the situation
that gravity information cannot be obtained. An adaptive
regulator is added in the typical P+d controller to compensate
for the unknown gravity signal. Moreover, to make the slave
manipulator complete its job accurately under domination
of the human operator, the controller is designed in task
space. Consider the Internet communication channel; the
time delay considered in our paper is time varying and
asymptotical.

This paper is organized as follows. Section 2 presents the
modeling framework and the related properties and assump-
tions. The controller is proposed and the stability analysis is
deprived in Section 3. In Section 4, some simulation results
are applied to prove the effectiveness of the approach. Finally,
some conclusion will be provided and some future work will
be mentioned.

2. Problem Formulation

Consider a master-slave bilateral teleoperation system mod-
eled as a pair of 𝑛-degree-of-freedom (DOF) serial links with
revolute joints. The nonlinear dynamics are presented as
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where 𝑚 represents the master manipulator and 𝑠 represents
the slave manipulator. 𝑞

𝑚
(𝑡), 𝑞
𝑠
(𝑡) ∈ R𝑛 are the vectors of

the joint displacements; ̇𝑞
𝑚
(𝑡), ̇𝑞
𝑠
(𝑡) ∈ R𝑛 are the vectors

of joint velocities; ̈𝑞
𝑚
(𝑡), ̈𝑞
𝑠
(𝑡) ∈ R𝑛 are the vectors of joint

accelerations; 𝑀
𝑚
(𝑞
𝑚
), 𝑀
𝑠
(𝑞
𝑠
) : R𝑛 → R𝑛×𝑛 are the

positive definite inertia matrices; 𝐶
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), 𝐶
𝑠
(𝑞
𝑠
, ̇𝑞
𝑠
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R𝑛 ×R𝑛 → R𝑛×𝑛 are the matrices of centripetal and coriolis
torques; 𝐺

𝑚
(𝑞
𝑚
), 𝐺
𝑠
(𝑞
𝑠
) : R𝑛 → R𝑛 are the gravitational

torques; 𝐹
ℎ
, 𝐹
𝑒
∈ R𝑛 are the human operator force and the

environment force, respectively; 𝐽
𝑚
(𝑞
𝑚
), 𝐽
𝑠
(𝑞
𝑠
) ∈ R𝑛×𝑛 are the

Jacobian matrices for the master manipulator and the salve
manipulator; 𝜏

𝑚
, 𝜏
𝑠
∈ R𝑛 are the applied torques.

Here the following assumption for Jacobian matrix
𝐽
𝑖
(𝑞
𝑖
) (𝑖 = 𝑚, 𝑠) is introduced.

Assumption 1. The Jacobian matrix 𝐽
𝑖
(𝑞
𝑖
) (𝑖 = 𝑚, 𝑠) should be

nonsingular.

Remark 2. As we all know, in reality industry production,
the singularity problem may exist in the Jacobian matrix.
Then the ‖𝐽

𝑖
(𝑞
𝑖
)‖ → ∞ and the torque of system will

tend to infinity when there exists singularity in Jacobian
matrix. Thanks to the new technology, this situation can be
avoided by institutional design and trajectory planning. So
this assumption in this paper is reasonable.

It is well known that the work space ofmanipulator can be
transformed from joint space to task spacewith a nonsingular
Jacobian matrix. So we have

𝑥
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(2)

where 𝑥
𝑖
is the joint position in task space and 𝑖 = 𝑚, 𝑠.

For the sake of simplicity, the arguments of functions
are eliminated hereafter. And the master and slave robot
dynamics in the task space are presented as follows:

𝑀
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where
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(4)

Below, fundamental properties of the master and slave
manipulators needed in the subsequent analysis are pre-
sented.

Property 1. The inertia matrix 𝑀
𝑡𝑖
(𝑞) is positive definite

function, and there exist positive constants 𝑚
1
and 𝑚

2
such

that

𝑚
1
𝐼 ≤ 𝑀

𝑡𝑖
(𝑞) ≤ 𝑚

2
𝐼. (5)

Property 2. Thematrix �̇�
𝑡𝑖
(𝑞)−2𝐶

𝑡𝑖
(𝑞, ̇𝑞) is skew-symmetric.

Property 3. For all 𝑞
𝑖
, 𝑥, 𝑦 ∈ 𝑅

𝑛×1, there exists a positive scalar
𝛼
𝑖
such that ‖𝐶

𝑖
(𝑞, 𝑥)𝑦‖ ≤ 𝛼

𝑖
‖𝑥‖‖𝑦‖.
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Property 4. The gravity functions 𝐺
𝑡𝑚

and 𝐺
𝑡𝑠
can be lin-

earized and can be expressed as 𝐺
𝑡𝑚
(𝑞
𝑚
) = 𝑌

𝑚
𝑎
𝑚

and
𝐺
𝑡𝑠
(𝑞
𝑠
) = 𝑌

𝑠
𝑎
𝑠
, where 𝑌

𝑚
and 𝑌

𝑠
are known nonlinear

functions and usually are called regressor matrices, while 𝑎
𝑚

and 𝑎
𝑠
are unknown vectors.

The following standard assumptions are imposed on the
teleoperation system.

Assumption 3. The variable time delay has an upper bound
𝑇
𝑖
; that is, 0 ≤ 𝑇

𝑖
(𝑡) ≤ 𝑇

𝑖
≤ ∞, 𝑖 = 𝑚, 𝑠.

Assumption 4. Following standard considerations, we
assume that the human operator and the environment are
passive (force to velocity) maps; that is, there exist scalars
𝜅
𝑖
∈ 𝑅
+

0
such that for all 𝑡 ≥ 0

∫

𝑡

0

�̇�
𝑇

𝑚
𝐹
ℎ
𝑑𝜎 ≥ −𝜅

𝑚
, − ∫

𝑡

0

�̇�
𝑇

𝑠
𝐹
𝑒
𝑑𝜎 ≥ −𝜅

𝑠
. (6)

Before proposing the controller, the following lemma is
needed.

Lemma 5. For any vector signals 𝑥, 𝑦, any variable time delay
0 ≤ 𝑇
𝑖
(𝑡) ≤ 𝑇

𝑖
≤ ∞, and constant 𝛼 > 0, one has

−2∫

𝑡

0

𝑥
𝑇

(𝜎) ∫

0

−𝑇𝑖(𝜎)

𝑦 (𝜎 + 𝜃) 𝑑𝜃 𝑑𝜎 ≤ 𝛼‖𝑥‖
2

2
+

𝑇

2

𝑖

𝛼





𝑦





2

2
. (7)

3. Controller Design

In original researches, little attention was paid to the gravity
term; moreover, they even made the assumption that the
gravity can be accurately obtained in advance. However,
in many cases, the gravity not only cannot be accurately
obtained directly, but also cannot be measured. This issue
arises for the teleoperation applications of the robots in the
outer space. It is well known that the gravity coefficient 𝑔 is
different for the earth, outer space, and the moon. The above
two issues may render that the precise value of parameter 𝑔 is
not known for teleoperation. In this section, we consider this
problem and propose a new controller combining a typical
P+d controller and an adaptive regulator.

Without the accurate gravity information, the new direct
force-feedback controller combined with the estimate gravity
information is designed as follows:

𝜏
𝑚
= 𝐽
𝑇

𝑚
[𝐾
𝑚
(𝑥
𝑠
(𝑡 − 𝑇

𝑠
(𝑡)) − 𝑥

𝑚
) − 𝐵
𝑚
�̇�
𝑚
+ 𝐺
𝑡𝑚
] ,

𝜏
𝑠
= 𝐽
𝑇

𝑠
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𝑠
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𝑠
− 𝑥
𝑚
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𝑚
(𝑡))] + 𝐵

𝑠
�̇�
𝑠
− 𝐺
𝑡𝑠
] ,

(8)

where𝐾
𝑚
,𝐾
𝑠
,𝐵
𝑚
, and𝐵

𝑠
are positive constant scalars and the

𝐺
𝑡𝑚

and 𝐺
𝑡𝑠
are the estimations for 𝐺

𝑡𝑚
and 𝐺

𝑡𝑠
, respectively.

In addition, they are described as follows:

𝐺
𝑡𝑚

= 𝑌
𝑚
𝑎
𝑚
,

𝐺
𝑡𝑠
= 𝑌
𝑠
𝑎
𝑠
,

(9)

where 𝑎
𝑚
(𝑡) and 𝑎

𝑠
(𝑡) are the adaptive matrices with the

tuning laws as
⋅

𝑎
𝑚
(𝑡) = − Γ

𝑚
𝑌
𝑚
�̇�
𝑇

𝑚
,

⋅

𝑎
𝑠
(𝑡) = − Γ

𝑠
𝑌
𝑠
�̇�
𝑇

𝑠
,

(10)

where Γ
𝑚
and Γ
𝑠
are positive definite matrices.

Theorem 6. For the teleoperation system (1) controlled by (8)
with Assumptions 1–4, the closed-loop system is stable with the
tuning laws (10) and the following condition holds:

2𝐵
𝑚
𝐵
𝑠
> 𝐾
𝑚
𝐾
𝑠
(𝑇

2

𝑚
+ 𝑇

2

𝑠
) . (11)

And the velocity and position errors are bounded (i.e.,
�̇�
𝑖
, 𝑥
𝑚
− 𝑥
𝑠
∈ ℓ
∞
) and �̇�

𝑖
∈ ℓ
2
; moreover |𝑥

𝑚
− 𝑥
𝑠
(𝑡 − 𝑇
𝑠
(𝑡))| ∈

ℓ
∞
.

Proof. Let us consider the Lyapunov function candidates:

𝑉
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1
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+
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+
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𝑚
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2

+ ∫

𝑡
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𝑚
𝐹
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(12)

𝑉
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=

1
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𝑎
𝑇

𝑚
Γ
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𝑚
𝑎
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+

𝐾
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2𝐾
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𝑎
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𝑠
Γ
−1

𝑠
𝑎
𝑠
, (13)

where 𝑎
𝑚
= 𝑎
𝑚
− 𝑎
𝑚
and 𝑎
𝑠
= 𝑎
𝑠
− 𝑎
𝑠
.

Property 1 and Assumption 4 guarantee that the function
𝑉
1
is positive definite and it is obvious that 𝑉

2
is also positive

definite with the positive Γ
𝑚
and Γ
𝑠
.

The derivative of the above function 𝑉
1
is presented as

follows:

�̇�
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= �̇�
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+ 𝐽
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𝑚
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+

𝐾
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𝑠
(−𝐶
𝑡𝑠
�̇�
𝑠
− 𝐺
𝑡𝑠
+ 𝐹
𝑒
− 𝐽
−𝑇

𝑠
𝜏
𝑠
) +

1

2

�̇�
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𝑠
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+ 𝐾
𝑚
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𝑚
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𝑠
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𝑚
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𝑚
𝐹
ℎ
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𝐾
𝑚
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𝑠
𝐹
𝑒
;

(14)

with Property 2 and the new controller (11) the subsequent
equation can be given as

�̇�
1
= �̇�
𝑇

𝑚
[𝐾
𝑚
(𝑥
𝑠
(𝑡 − 𝑇
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𝑚
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−
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where 𝐺
𝑡𝑚

= 𝐺
𝑡𝑚

−𝐺
𝑡𝑚

= 𝑌
𝑚
(𝑎
𝑚
− 𝑎
𝑚
) and 𝐺

𝑡𝑠
= 𝐺
𝑡𝑠
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𝑡𝑠
=

𝑌
𝑠
(𝑎
𝑠
− 𝑎
𝑠
). With the following equation:

𝑥
𝑖
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𝑖
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𝑖
(𝑡 + 𝜃) 𝑑𝜃, (16)
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−
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𝑚
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�̇�
𝑇

𝑠
∫

0

−𝑇𝑚(𝑡)

�̇�
𝑚
(𝑡 + 𝜃) 𝑑𝜃 + �̇�

𝑇

𝑚
𝐺
𝑡𝑚

+

𝐾
𝑚

𝐾
𝑠

�̇�
𝑇

𝑠
𝐺
𝑡𝑠
.

(17)

The derivative of the above function𝑉
2
is given as follows:

�̇�
2
= 𝑎
𝑇

𝑚
Γ
−1

𝑚

⋅

𝑎
𝑚
+ 𝑎
𝑇

𝑠
Γ
−1

𝑠

⋅

𝑎
𝑠

(18)

with the adaptive tuning law (11) yielding

�̇�
2
= 𝑎
𝑇

𝑚
Γ
−1

𝑚
(−Γ
𝑚
𝑌
𝑚
�̇�
𝑚
) +

𝐾
𝑚

𝐾
𝑠

𝑎
𝑇

𝑠
Γ
−1

𝑠
(−Γ
𝑠
𝑌
𝑠
�̇�
𝑠
)

= −(𝑌
𝑚
𝑎
𝑚
)
𝑇

�̇�
𝑚
−

𝐾
𝑚

𝐾
𝑠

(𝑌
𝑠
𝑎
𝑠
)
𝑇

�̇�
𝑠
,

�̇� = �̇�
1
+ �̇�
2
= −𝐵
𝑚





�̇�
𝑚






2

−

𝐾
𝑚

𝐾
𝑠

𝐵
𝑠





�̇�
𝑠






2

− 𝐾
𝑚
�̇�
𝑇

𝑚
∫

0

−𝑇𝑠(𝑡)

�̇�
𝑠
(𝑡 + 𝜃) 𝑑𝜃

− 𝐾
𝑚
�̇�
𝑇

𝑠
∫

0

−𝑇𝑚(𝑡)

�̇�
𝑚
(𝑡 + 𝜃) 𝑑𝜃.

(19)

Now let us invoke Lemma 5 to obtain a bound on the
integral of �̇�. Toward this end, integrate the above equation
from 0 to 𝑡, yielding

𝑉 (𝑡) − 𝑉 (0) ≤ −𝐵
𝑚





�̇�
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−
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+
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−
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−

𝐾
𝑚
𝑇
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𝑚

2𝛽
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�̇�
𝑚
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− (

𝐾
𝑚

𝐾
𝑠

𝐵
𝑠
−

𝐾
𝑚
𝛽
𝑠
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−

𝐾
𝑚
𝑇

2

𝑠

2𝛽
𝑚
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�̇�
𝑠






2

.

(20)

Thus, satisfying condition (12) with the nonnegativity of
𝑉, �̇�
𝑖
∈ ℓ
2
can be proved; moreover, �̇�

𝑖
, 𝑥
𝑚
− 𝑥
𝑠
∈ ℓ
∞

and
|𝑥
𝑚
− 𝑥
𝑠
(𝑡 − 𝑇

𝑠
(𝑡))| ∈ ℓ

∞
can be proved.
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Figure 1: The time delay.
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Figure 2: The human insert force.

Remark 7. In this paper, we consider the situation that gravity
information cannot be obtained. An adaptive regulator is
added in the typical P+d controller to compensate for the
unknown gravity signal.

Remark 8. In order to make the slave manipulator complete
its job accurately under domination of the human operator,
the controller is designed in task space. Consider the Internet
communication channel; the time delay considered in this
paper is time varying and asymptotical.

Remark 9. From the above proof, we can see that the adaptive
tuning law is derived in the paper. Therefore, we can obtain
less conservative result by optimizing these parameters.
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Figure 3:The positions of themaster and the slave in task spacewith
the known gravity term.
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Figure 4: The positions of the master and the slave in task space
without adaptive regulator.

The numerical example given in the next part shows the
effectiveness of our result.

4. Simulations

In order to show the effectiveness of the proposed scheme,
in this section some simulations are presented in which the
local and remotemanipulators aremodeled as a pair of 2DOF
serial links.

𝑀
𝑚
(𝑞
𝑚
) ̈𝑞
𝑚
+ 𝐶
𝑚
(𝑞
𝑚
, ̇𝑞
𝑚
) ̇𝑞
𝑚
+ 𝐺
𝑚
(𝑞
𝑚
) = 𝜏
𝑚
− 𝐽
𝑇

𝑚
(𝑞
𝑚
) 𝐹
ℎ
,

𝑀
𝑠
(𝑞
𝑠
) ̈𝑞
𝑠
+ 𝐶
𝑠
(𝑞
𝑠
, ̇𝑞
𝑠
) ̇𝑞
𝑠
+ 𝐺
𝑠
(𝑞
𝑠
) = 𝐽
𝑇

𝑠
(𝑞
𝑠
) 𝐹
𝑒
− 𝜏
𝑠
,

(21)
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Figure 5:The positions of themaster and the slave in task spacewith
adaptive regulator.
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Figure 6: The positions of the master and the slave in task space
with the known gravity term.

where

𝑀
𝑚
(𝑞) = 𝑀

𝑠
(𝑞) = [

𝑀
11

𝑀
12

∗ 𝑀
22

] ,

𝐶
𝑚
(𝑞, ̇𝑞) = 𝐶

𝑠
(𝑞, ̇𝑞) = [

𝐶
11

𝐶
12

𝐶
21

𝐶
22

] ,

𝐺
𝑚
(𝑞) = 𝐺

𝑠
(𝑞) = [

𝐺
1

𝐺
2

]

(22)

in which

𝑀
11
= (2𝑙
1
cos (𝑞

2
) + 𝑙
2
) 𝑙
2
𝑚
2
+ 𝑙
2

1
(𝑚
1
+ 𝑚
2
) ,

𝑀
12
= 𝑙
2

2
𝑚
2
+ 𝑙
1
𝑙
2
𝑚
2
cos (𝑞

2
) ,
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Figure 7: The positions of the master and the slave in task space
without adaptive regulator.
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Figure 8:Thepositions of themaster and the slave in task spacewith
adaptive regulator.

𝑀
21
= 𝑀
12
,

𝑀
22
= 𝑙
2

2
𝑚
2
,

𝐶
11
= − 𝑙
1
𝑙
2
𝑚
2
sin (𝑞
2
) ̇𝑞
2
,

𝐶
12
= − 𝑙
1
𝑙
2
𝑚
2
sin (𝑞
2
) ( ̇𝑞
1
+ ̇𝑞
2
) ,

𝐶
21
= 𝑙
1
𝑙
2
𝑚
2
sin (𝑞
2
) ̇𝑞
1
,

𝐶
22
= 0,

𝐺
1
= 𝑔 (𝑚

2
𝑙
2
cos (𝑞

1
+ 𝑞
2
) + (𝑚

1
+ 𝑚
2
) 𝑙
1
cos (𝑞

1
)) ,

𝐺
2
= 𝑔𝑚

2
𝑙
2
cos (𝑞

1
+ 𝑞
2
) .

(23)

The manipulator Jacobian matrix 𝐽
𝑖
(𝑞
𝑖
) mapping from

joint space to task space is given as

𝐽
𝑖
= [

𝐽
11

𝐽
12

𝐽
21

𝐽
22

] (24)

in which

𝐽
11
= − 𝑙
1
sin (𝑞
1
) − 𝑙
2
sin (𝑞
1
+ 𝑞
2
) ,

𝐽
12
= − 𝑙
2
sin (𝑞
1
+ 𝑞
2
) ,

𝐽
21
= 𝑙
1
cos (𝑞

1
) + 𝑙
2
cos (𝑞

1
+ 𝑞
2
) ,

𝐽
22
= 𝑙
2
cos (𝑞

1
+ 𝑞
2
) .

(25)

Moreover, with the detailed definition of 𝑎𝑇
𝑚
, 𝑎𝑇
𝑠
, 𝑌
𝑚
, and

𝑌
𝑠
, 𝐺
𝑡𝑚

and 𝐺
𝑡𝑠
can follow this definition:

𝐺
𝑡
= 𝐽
−𝑇

[

cos (𝑞
1
+ 𝑞
2
) cos (𝑞

1
)

cos (𝑞
1
+ 𝑞
2
) 0

] [

𝑔𝑚
2
𝑙
2

𝑔𝑙
1
(𝑚
1
+ 𝑚
2
)
] . (26)

For simulation, in the master manipulator we choose
the parameters 𝑚

1
= 10 kg, 𝑚

2
= 7 kg, 𝑙

1
= 0.7m, and

𝑙
2

= 0.5m and the master manipulator usually placed in
the laboratory; therefore, we can set the 𝑔 = 9.81m/s2. The
slave manipulator parameters are 𝑚

1
= 7 kg, 𝑚

2
= 5 kg,

𝑙
1
= 0.5m, 𝑙

2
= 0.4m, and 𝑔 = 0.2m/s2. The controller

parameters are set as 𝐾𝑚 = 20, 𝐵
𝑚

= 40, 𝐾𝑠 = 40,
𝐵𝑠 = 60, and Γ

𝑠
= 0.1. The initial joint configurations of the

master and slave are set as 𝑥
𝑚
(0) = [0.7830 0.8562]

𝑇 and
𝑥
𝑠
(0) = [0.7794 0.25]

𝑇. The simulation results are used to
verify the following: when we move the master robot, does
the slave manipulator follow the master manipulator? Based
on Theorem 6, the delays are set as 𝑇

𝑚
(𝑡) = 0.3 + 0.2 sin(𝑡)

and 𝑇
𝑠
(𝑡) = 1.1 + 0.2 sin(𝑡). Figure 1 shows the time delay

we set in this paper. The human operation inserting forces
are presented in Figure 2. Figure 3 shows the positions of 𝑥

𝑚

and 𝑥
𝑠
when the gravity term can be obtained in advance

and 𝑔 = 5m/s2. Figure 4 shows the positions of 𝑥
𝑚

and
𝑥
𝑠
without the adaptive regulator and 𝑔 = 5m/s2. Figure 5

shows the positions of 𝑥
𝑚
and 𝑥

𝑠
with the adaptive regulator

and 𝑔 = 5m/s2. Figure 6 shows the positions of 𝑥
𝑚

and
𝑥
𝑠
when the gravity term can be obtained in advance and

𝑔 = 1m/s2. Figure 7 shows the positions of𝑥
𝑚
and𝑥
𝑠
without

the adaptive regulator and 𝑔 = 1m/s2. Figure 8 shows
the positions of 𝑥

𝑚
and 𝑥

𝑠
with the adaptive regulator and

𝑔 = 1m/s2.
From Figure 3, we can see that the slave moves with

the master when the gravity term is known in advance.
However, in Figure 4, without the adaptive regulator, the
slave does not move with the master, specially, in the 𝑥

𝑠2

direction. In Figure 5, the problem is solved by apply-
ing the new controller we proposed in this paper. By
comparing Figures 7 and 8, we also can get the same
conclusion.
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5. Conclusion

In this paper, the case that the gravity term cannot be
obtained is considered in outer space exploration. An adap-
tive regulator is proposed to compensate for the unknown
gravity term. By proposing the proper Lyapunov function, the
adaptive tuning law is also derived in our paper.Moreover, the
simulation results prove the effectiveness of our controller.
In this paper, we consider that the Jacobian matrix is accu-
rately known. However, in some cases, the Jacobian matrix
cannot be known. Therefore, in the future, we will consider
using adaptive theory to estimate the unknown Jacobian
matrix.
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