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The conserving σ-ω-ρ mean-field approximation with nonlinear interactions of hadrons has been
applied to examine properties of nuclear matter and hyperonic neutron stars. The nonlinear
interactions that will produce density-dependent effective masses and coupling constants of
hadrons are included in order to examine density correlations among properties of nuclear
matter and neutron stars such as binding energy, incompressibility, K, symmetry energy, a4,
hyperon-onset density, and maximum masses of neutron stars. The conditions of conserving
approximations in order to maintain thermodynamic consistency to an approximation are essential
for the analysis of density-dependent correlations.
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1. Introduction

The linear and nonlinear hadronic mean-field approximations have been extensively applied
to finite nuclei, nuclear matter, and neutron stars [1–3]. The ground state of symmetric nuclear
matter has always been a fundamental physical system in the understanding of complicated
normal and high density, exotic nuclear many-body systems. The high-density matter such as
a neutron star has been actively investigated, observed masses of hadronic neutron stars are
above 1.3M�, and the maximum masses of neutron stars are expected to be below 2.5M�
[4, 5]. The neutron stars are also speculated to be hyperon-mixed nuclear matter whose
equation of state will provide us with important conditions to understand interactions of
nuclear physics [6–9].

The current nonlinear mean-field approximation is constructed with σ-ω-ρ self-
interactions and mixing interactions of mesons. The nonlinear interactions of mesons are
renormalized as the self-consistent effective masses and effective coupling constants by
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the requirement of thermodynamic consistency, or equivalently the theory of conserving
approximations [10–21]. The self-consistent effective masses and effective coupling constants
of mesons are essential to maintain self-consistency in nonlinear approximations and examine
correlations among properties of nuclear and high-density, hyperonic matter.

The density-dependent correlations among properties of nuclear matter and neutron
stars have been discussed in terms of effective masses and coupling constants of mesons
and baryons, which are defined self-consistently to maintain conditions of conserving
approximations [20, 21]. The nonlinear σ-ω-ρ mean-field approximation suggests that
density-dependent correlations induced by nonlinear interactions be significant and so, the
analysis helps us understand nuclear many-body interactions.

The Lagrangian of nonlinear σ-ω-ρ mean-field approximation which yields density-
dependent effective masses and coupling constants is [20, 21]
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where ψB (B = n, p,Λ,Σ, . . .) and ψl (l = e−, μ−) denote the field of baryons and leptons,
respectively. The meson-fields operators are replaced by expectation values in the ground
state: φ0 for the σ-field, V0 for the vector-isoscalar ω-meson, VμV μ = V 2

0 − V2, (μ = 0, 1, 2, 3);
the neutral ρ-meson mean-field, R0, is chosen for τ3-direction in isospin space. The masses
in (1.1) are: M = 939 MeV, mσ = 550 MeV, mω = 783 MeV, and mρ = 770 MeV, in order to
compare the effects of nonlinear interactions and hyperon-matter with those of the linear σ-ω
approximation discussed by Serot and Walecka [1].

The nonlinear model is motivated by preserving the structure of Serot and Walecka’s
linear σ-ω mean-field approximation [1], Lorentz-invariance and renormalizability, thermo-
dynamic consistency: Landau’s hypothesis of quasiparticles [22, 23], the Hugenholtz-van
Hove theorem [24], and the virial theorem [25], and conditions of conserving approximations
[11, 12, 20, 21]. The concept of effective masses and effective coupling constants is naturally
generated by nonlinear interactions of mesons and baryons. The conditions of conserving
approximations will require the functional form of single particle energy, effective masses,
and coupling constants for self-consistency, and then empirical values of low-density nuclear
matter and high-density neutron matter will be restricted with the effective masses and
coupling constants [20, 21]. In other words, the admissible values of effective coupling
constants and masses are confined in certain values due to strong density-dependent
correlations among physical quantities of nuclear matter and neutron stars. The purpose
of the analysis is to study density-dependent correlations among properties of nuclear
matter and neutron stars with the minimum constraints at nuclear matter saturation and
the maximum masses of hyperonic neutron stars.

The properties at saturation of symmetric nuclear matter and neutron stars are taken so
as to fix nonlinear coupling constants. The binding energy at saturation is fixed as −15.75 MeV
at kF = 1.30 fm−1, and the symmetry energy, a4 = 30.0 MeV. Then, the minimum value of
incompressibility, K, is determined by simultaneously maintaining the maximum masses of
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isospin-asymmetric neutron stars to be Mmax(n, p, e) = 2.50M� [20, 21]. In this way, the
density-dependent correlations among properties of nuclear matter and hyperonic neutron
stars, Mstar(n, p,Σ−,Λ, e), are investigated. The constraints will confine nonlinear parameters
within certain values and suppress the effect of nonlinear interactions.

It can be checked numerically that the baryons and an electron, (n, p,Σ−,Λ, e), are
sufficient to determine the masses of hyperonic neutron stars; other hyperons can be
included, but because of charge neutrality and self-consistency, the other hyperon-onset
densities are pushed up to high densities where EOSs of the hyperons are not so important
to determine the properties of neutron stars. Consequently, other hyperons produce small
density-dependent correlations to properties of nuclear matter and neutron stars compared to
(n, p,Σ−,Λ, e) matter. In other words, the EOS of (n, p,Σ−,Λ, e) matter dominates the density-
region decisive to properties of neutron stars. This is one of the important results obtained in
the current conserving nonlinear mean-field approximation.

The self-consistency required by thermodynamic consistency restricts values of
nonlinear coefficients. The suppressions of nonlinear coefficients and nonlinear interactions
are directly observed in self-consistent effective masses and self-energies of mesons and
baryons, which are discussed as naturalness of nonlinear corrections [20, 21]. The more
accurately we can determine the observables and constraints for nuclear and high-density
matter, the better we would be able to understand interactions and correlations, or limitations
of hadronic models. The conserving mean-field approximation is applied in order to
extract density-dependent correlations among properties of nuclear matter and high-density,
hyperonic matter.

2. Self-Consistent Effective Masses and Coupling Constants of Mesons

The density-dependent, effective coupling constants are assumed to be induced by σ-
field, preserving Lorentz-invariance as simple as possible. We have assumed that only
nucleon-meson coupling constants are density-dependent in the current analysis since we
are interested in the density correlations among properties of symmetric nuclear matter and
high-density matter. The density-dependent nucleon-meson coupling constants are given by

g∗σN = gσN +
(
gσσN

2

)
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g∗ωN = gωN + gσωNφ0,
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The effective masses of mesons and coupling constants have to be determined self-
consistently. Note that the effective mass depends on the (n, p) scalar source of nucleons, ρsN .
The nonlinear mean-field approximation is thermodynamically consistent only if effective
masses of mesons and coupling constants are renormalized as (2.1) and (2.2).

The introduction of nonlinear σσN-vertex interaction is equivalent to define the
effective mass of nucleon as

M∗
N =MN − g∗σNφ0 =MN − gσNφ0 −

(
gσσN

2

)
φ2

0, (2.3)

and the effective mass of hyperon H is

M∗
H =MH − gσHφ0. (2.4)

The effective masses of nucleons and hyperons are obtained from (2.3) and (2.4):

MH −M∗
H =

gσH
g∗σN

(MN −M∗
N). (2.5)

The scalar sources of nucleons (N) and hyperons (H) are respectively given by [17]
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∫
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where ρ∗s is the modified scalar density defined by g∗σNρ
∗
s = g∗σNρsN − gσωNV0ρB − gσρNR0ρ3.

The hyperon sources are

Σs
H = −
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∑
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dqq2 M∗
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where kFB is the Fermi-momentum of the hyperon H, and E∗H(k) = (k2 +M∗2
H)1/2. The sum

is performed to baryons, and N is used to denote proton and neutron: N = (p, n); the
hyperons are denoted as, H = Λ,Σ−,Σ0,Σ+, . . . . Although the hyperon coupling constants
are not density-dependent in the current investigation, the density-dependent interactions
of nucleons and self-consistency will effectively modify hyperon coupling constants as
gσH/g

∗
σN . The density dependence of nucleon coupling constants and correlations are mainly

investigated, since it is important to distinguish the density-dependences of nucleon coupling
constants from those of hyperons for quantitative analyses of nuclear matter. The density-
dependent interactions of hyperon coupling constants will be examined quantitatively in the
near future.

The scalar sources of baryons are, respectively, given by

ρsB =
∑

B

gσB/g
∗
σN
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B
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, (2.8)



Advances in High Energy Physics 5

where gσB/g
∗
σN ≡ 1 with B = (n, p). The ω-meson and ρ-meson contributions to the self-

energy are given by

Σμ
ω = −

g∗2ωN
m∗2ω

ρωδμ,0, Σμ
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4m∗2ρ
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where the isoscalar density, ρω, is given by

ρω = ρp + ρn +
∑

H

rωHNρH, (2.10)

and the density-dependent ratios of hyperon-nucleon coupling constants on ω, rωHN , are
defined self-consistently that will be explained in the next section. The self-energies, Σμ

ρp and
Σμ
ρn, are briefly denoted as Σμ

ρ(pn)
; the isovector density is denoted as ρ3 = (k3

Fp
−k3

Fn
)/3π2 where

the Fermi momentum kFp is for proton and kFn for neutron. The baryon-isovector density,
ρ3B, and the ratios of hyperon-nucleon coupling constants on ρ-meson are also defined, for
example, ρ3B = ρ3 + (gρΣ/g∗ρN)ρ3Σ and ρ3Σ = ρΣ+ − ρΣ− .

The energy density, pressure of isospin-asymmetric, and charge-neutral nuclear matter
are calculated by way of the energy-momentum tensor as
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where kFB is the Fermi momentum for baryons. One can check that the thermodynamic
relations, such as ENHA + pNHA = ρBEn(kFn) and the chemical potential, μ = ∂ENHA/∂ρB =
En(kFn) = E∗(kFn) − Σ0(kFn), are exactly satisfied for a given baryon density, ρB = 2k3

F/3π2.
Hence, the Hugenholtz-Van Hove theorem to the approximation is exactly maintained in
all densities. In Figures 1 and 2, the binding energies of (n, p, e)-(n, p,Σ−, e) and (n, p, e)-
(n, p,Λ, e) matter are shown. By comparing binding energies of phase transitions from
(n, p, e) to (n, p,H, e) matter, it is clearly examined that the equation of state (EOS) becomes
softer when a hyperon, H, is produced. Note that the bare hyperon-coupling ratios are defined
by rσΣ−N = gσΣ−/gσN and rσΛN = gσΛ/gσN . The phase transition begins at kFΣ− ∼ 1.6 fm−1 and
kFΛ ∼ 1.7 fm−1. As one can notice from Figures 1 and 2, the onset densities do not change
with the given ratios, rσHN = 1, 2/3, 1/3, expected from effective quark models [26]. Although
properties of nuclear matter and EOS of neutron stars are sensitive to nonlinear interactions,
the hyperon-onset densities confined by conservation laws and phase-equilibrium conditions
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Figure 1: The binding energies of (n, p, e) and (n, p,Σ−, e). The onset density of Σ− is about kF = 1.6 fm−1 as
shown in the figure. The ratios of Σ−-coupling constant on σ are (dotted line) rσΣ−N = gσΣ−/gσN = 1.0, and
(dashed line) rσΣ−N = 2/3, (dotted-dashed line) rσΣ−N = 1/3, respectively. The other coupling constants are
fixed as in Table 1.

indicate that the hyperon-onset densities are fairly fixed with respect to the change of
nonlinear interactions in the current conserving mean-field approximation (see Table 1). The
hyperon-onset densities seem to be density-independent, though properties of nuclear and
neutron matter are strongly density-dependent.

The equations of motion, self-energies (2.6) and (2.9) enable one to obtain the effective
coupling constants and masses, (2.1) and (2.2). In Figures 3 and 4, the effective masses of
nucleons and hyperons (Σ−, Λ) after hyperon-onset densities are shown, respectively. The
hyperon effective masses, M∗

Σ− and M∗
Λ, behave almost the same as those of nucleons in

high densities when the hyperon coupling ratios are rσHN = 1. However, the other values of
ratios, rσHN = 1/3, 2/3, indicate that density dependence of hyperons to effective masses are
small in high densities and generate softer EOS, resulting in the lower maximum masses of
neutron stars (see Table 1). As the softer EOS is examined in the two-fold hyperon matter,
(n, p,Σ−,Λ, e), it may be conjectured that many-hyperon matter (n, p,Σ−,Λ,H1,H2, . . . , e)
with the ratio, rσHN < 1, would generate much softer EOS and be unable to support
observed masses of neutron stars. In addition, many studies with hadronic field theory
model independently indicate strong density-dependent interactions and correlations among
properties of nuclear matter and neutron stars. Hence, the coupling ratios, rσHN < 1, predicted
by quark-based effective models may not be compatible with those of hadronic models, which
should be rigorously investigated to examine consistency and restriction of both hadronic and
effective quark models.

3. The Phase Transition Conditions and Hyperon-Onset Densities

The hyperon-onset densities at phase transition are given by chemical potentials as

μH = μn − qHμe, (3.1)
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Figure 2: The binding energies of (n, p, e) and (n, p,Λ, e). The onset density of Λ is about kF = 1.7 fm−1 as
shown in the figure. The ratios of Λ-coupling constant on σ are (dotted line) rσΛN = gσΛ/gσN = 1.0, and
(dashed line) rσΛN = 2/3, (dotted-dashed line) rσΛN = 1/3, respectively. The other coupling constants are
fixed as in Table 1.

where μH , μn, and μe, are the hyperon, neutron, and electron chemical potentials, and qH
is the hyperon charge in the unit of e. The phase transition conditions (3.1) are generally
obtained by minimizing the energy density E(n, p,H, e), and the baryons are restricted by the
baryon-number conservation and charge neutrality. The leptons are produced to maintain
charge neutrality, and the lepton densities slowly increase for a low density region, but they
decrease rapidly and vanish in high densities since the energies of leptons are absorbed and
used to produce higher energy hyperons. The muon can be generated but restricted in a
region narrower than that of an electron with the phase-equilibrium condition, μμ− = μe− , and
so, the effect of the muon chemical potential is smaller than that of an electron.

The hyperon-onset densities are determined by chemical potentials which are equal
to the single particle energy. The single particle energies of baryons, EB(k) = (k2 +
M∗2

B )1/2−Σ0
ω,ρ(kB), are related to self-energies which depend on effective masses and coupling

constants induced by nonlinear interactions. The phase-equilibrium conditions (3.1) are
complicated equations which interrelate the density-dependent interactions with hyperon-
onset densities. The hyperon-onset densities are important to determine the maximum
masses of neutron stars, since the generation of hyperons will soften the EOS of hyperon-
mixed nuclear matter. The EOS of hyperons depends also on binding energy and hyperon
coupling constants given by density-dependent effective masses and coupling constants of
nucleons. In this way, the correlations between properties of nuclear matter and hyperonic
matter are intimately constructed to each other. The coupling constants of hyperons, rσHN and
rωHN , play an essential role to determine onset densities.

The hyperon coupling constants, rωHN , can be calculated in terms of the effective
masses, coupling constants, and binding energies of hyperons in the current conserving
mean-field approximation. For example, suppose that (n, p,H, e) phase is generated after
(n, p, e) phase. The hyperon-onset density is determined by the phase transition conditions
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Figure 3: The effective masses of N and Σ−. Note that the effective mass of hyperon shows M∗
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as rσΣ−N = 1/3. The smaller coupling ratios mean less density-dependent interactions for the hyperon.
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Figure 4: The effective masses of N and Λ. Note that the effective mass of hyperon shows M∗
Λ/MΛ ∼ 1 as

rσΛN = 1/3. The smaller coupling ratios indicate less density-dependent interactions for the hyperon.

(3.1), and the binding energy at the onset-density, αH , should be the lowest energy level of
the hyperon H (the hyperon single particle energy at saturation). The Hugenholtz-Van Hove
theorem of a self-bound system at the onset density (ρH = 0) leads to

αH =
(( E

ρB

)

H

−MH

)

ρH=0
= EH(0) −MH = E∗H(0) − Σ0

ωH −MH

= gωHV0 +M∗
H −MH.

(3.2)
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Table 1: Properties of nuclear matter and (n, p,Σ−, e), (n, p,Λ, e) neutron stars. The properties of symmetric
nuclear matter connected with isospin-asymmetric, beta-equilibrium matter (n, p, e) whose EOS produces
Mmax(n, p, e) = 2.50M� are listed. The coupling constants are chosen from the data NHA2.50 in the paper
[20, 21].

gσ gω gρ gσ3 (MeV) gσ4 gω4 gρ4 gσω gσρ gωρ
9.326 10.421 4.765 10.0 20.0 20.0 4.00 18.0 −18.0 −18.0
gσσN gσωN gσρN g∗σ g∗ω g∗ρ
−0.018 0.013 0.048 9.063 10.800 7.567
M∗

N/M m∗σ/mσ m∗ω/mω K (MeV) a4 (MeV)
0.70 1.02 1.01 329 30.0

Table 2: The maximum masses, Mmax, and central energy densities, EC (1015 g/cm3), of neutron stars
produced by way of (a) (n, p, e)-(n, p,Σ−, e) and (b) (n, p, e)-(n, p,Λ, e) are listed, respectively, with the
same coupling constants. The EOS of the hyperon phase (n, p,Σ−, e) and (n, p,Λ, e) is calculated with the
ratio rσHN = gσH/gσN = 1.0, 2/3, 1/3 [26].

(a)

(n, p, e)-(n, p,Σ−, e)
rσΣ−N Mmax Ec
1.00 2.22 2.14
2/3 2.08 2.24
1/3 1.93 1.21

(b)

(n, p, e)-(n, p,Λ, e)
rσΛN Mmax Ec
1.00 2.22 2.15
2/3 1.67 1.00
1/3 1.56 1.02

By employing the effective masses of baryons (2.5) and the self-energy of ω-meson (2.9) with
Σ0
ω = −g∗ωNV0, one can obtain

rωHN =
m∗2ω

gωNg
∗
ωNρω

(
gσH
g∗σN

(
MN −M∗

N

)
+ αH

)
=

m∗2ω
gωNg

∗
ωNρω

(
MH −M∗

H + αH
)
, (3.3)

where ρω = ρp + ρn, since ρH = 0; αH is the lowest binding energy of isospin symmetric
hyperon matter. The hyperon-nucleon coupling ratio is determined by the density-dependent
ratio, gσH/g∗σN . Hence, the hyperon-coupling constants and the lowest binding energies of
hyperons are constrained with effective coupling constants, masses of hadrons, nonlinear
interactions, nuclear observables, and masses of neutron stars. The hyperon-onset density
and hyperon EOS are intimately related to nonlinear interactions and properties of nuclear
matter.

With a given ratio rσHN , the hyperon-onset densities are calculated by the phase-
equilibrium conditions (3.1) and the hyperon-nucleon coupling ratio rωHN (3.3), which are
complicated functions of single particle energy and self-energies, effective masses, and
coupling constants of hadrons. Figures 5 and 6 show the EOS of (n, p, e)-(n, p,Σ−, e) and



10 Advances in High Energy Physics

36

35

15 15.5

log10 (E g/cm3)

rσΣ−N = 1
rσΣ−N = 1/3

(n, p,Σ−, e)

lo
g 10

(P
d

yn
/

cm
2 )

(n, p, e)

p = E

NHA2.50

The EOS of (n, p, e) and (n, p,Σ−, e)
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Figure 6: The equation of state for Λ from (n, p, e) to (n, p,Λ, e). The EOS for rσΛN = 1/3 becomes softer in
(n, p,Λ, e) phase.

(n, p, e)-(n, p,Λ, e) matter with coupling ratios on σ, rσHN = 1.0, (1/3) (rσHN = 2/3 is omitted
to be concise). The EOSs after hyperon-onset densities become softer in the density range
important to determine the masses of neutron stars. In addition, it can be checked numerically
that the Λ-onset density, kFΛ in the two-fold hyperon production such as (n, p,Σ−,Λ, e),
for example, is different from that of (n, p,Λ, e). The Λ-onset density in (n, p,Σ−,Λ, e) is
pushed up to a high density: kFΛ ∼ 2.2 fm−1. This holds in general for other hyperons, since
the additional new hyperon production requires high energy and pressure for nucleons to
absorb energies of leptons so that nucleons can transform to hyperons. The hyperon phase,
(n, p,Σ−,Λ, e), exists in the density range relevant to determine properties of neutron stars,
and furthermore, the EOS is again softened by Λ production. Hence, the β-equilibrium matter,
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(n, p, e), and the hyperon matter, (n, p,Σ−, e), (n, p,Σ−,Λ, e), would be more important than
(n, p,Σ−,Λ,H1,H2, . . . , e) in order to study the maximum masses of stable neutron stars and
properties of nuclear matter.

4. Incompressibilities and Symmetry Energies for High Density

The equation of state (EOS) given by (ENHA, pNHA, ρB) and Tolman -Oppenheimer-Volkoff
(TOV) equation [27–29] will enable one to calculate properties of nuclear matter at saturation
and neutron stars. The values of nonlinear coupling constants are adjusted so that the
binding energy at saturation is −15.75 MeV at kF = 1.30 fm−1, and the symmetry energy
is a4 = 30.0 MeV, searching simultaneously the lower bound of nuclear incompressibility,
K, which corresponds to the maximum mass of neutron stars. The results are listed in
Table 1. The coupling constants and effective masses, nonlinear interactions are strictly
confined with these imposed constraints, and consequently, physical quantities exhibit strong
density-dependent correlations. The derivation of equation of state, incompressibility and
symmetry energy, correlations among properties of nuclear and neutron matter in the
conserving nonlinear mean-field approximation have been discussed in detail [20, 21]. We
exhibit characteristic density-dependent correlations of properties of nuclear matter such
as incompressibility and symmetry energy of (n, p, e)-(n, p,Σ−, e) and (n, p, e)-(n, p,Λ, e)
matter.

The incompressibility, K, and nucleon symmetry energy, a4, are respectively,
calculated in the conserving mean-field approximation as [30, 31]

K = 9ρB
∂2E
∂ρ2

B

, a4 =
1
2
ρN

[[
∂2E
∂ρ2

3

]

ρN

]

ρ3=0

. (4.1)

The computation of nucleon symmetry energy must be performed by maintaining phase-
equilibrium conditions, which will fix mean-fields, φ0, V0, andR0 and the ground state energy,
E(ρp, ρn); then, the derivative of the energy density E(ρp, ρn) can be calculated by changing
ρp and ρn with fixed ρN = ρp + ρn and mean fields. The hyperon onset and softening of
EOS are perceived as the discontinuity and abrupt reduction of incompressibility shown
in Figure 7. This characteristic property can be understood from the decreasing slope of
binding energy curves in Figures 1 and 2 and would significantly change incompressibility,
symmetry energy, and Landau parameters in high densities, which should be examined, for
example, in heavy-ion collision experiments as a signal for the hyperon production [30–33].
The symmetry energies are monotonically increasing around saturation density, while they
saturate in high densities [20, 21], as shown in Figure 8; the saturation of symmetry energy
in a high density is also numerically checked in hyperon matter. The theoretical calculations
of K and a4 depend on interactions of baryons, many-body interactions, and constraints such
as isospin asymmetry and charge neutrality. The current results are different in high densities
from those discussed in articles [30–35].

The lowest binding energies of Λ and Σ− are fixed in the current calculation as
−28 MeV and 20 MeV, respectively, [26, 36–38]. The lowest binding energies are related to the
hyperon-coupling strength as shown in (3.3). We have checked the hyperon-onset densities
by changing the values of binding energies to examine whether onset densities can be
noticeably changed or not. In the numerical analysis, the hyperon-onset densities are fairly
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fixed with changes of αH , if |αH | is confined smaller than gσH/g∗σN(MN −M∗
N); experimental

values of |αH | are typically smaller than gσH/g
∗
σN(MN − M∗

N). It suggests that effective
masses and coupling constants be more important to determine hyperon-onset densities than
binding energies are. However, the binding energies of hyperons αH , effective masses, and
coupling constants are important factors to determine the EOS and properties for neutron
stars. Therefore, hyperon-onset densities, binding energies, and nonlinear interactions of
hadrons will intimately interrelate properties of nuclear matter with those of neutron
stars.
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5. Remarks

The current conserving mean-field approximation and renormalized nonlinear interactions
have exhibited interesting density-dependent correlations among observables of nuclear and
high-density hyperonic matter.

(1) The hyperon-onset densities are fairly fixed, respectively, although density-
dependent interactions prominently affect the EOS and properties of nuclear and neutron
matter. Therefore, the hyperon-onset density could be one of the important constraints on
theoretical and experimental models of high density, exotic nuclear matter. The signals of
hyperon production and onset density should be investigated further in heavy-ion collision
experiments, and the results obtained in the current investigation should be examined
carefully for nonlinear interactions including all other hyperons.

(2) The onset density of Λ in the two-fold hyperon phase, (n, p,Σ−,Λ, e), shifts
to a higher density than that of (n, p,Λ, e), and the EOS becomes softer. The two-fold
hyperon production requires high energy and pressure restricted by phase-equilibrium
conditions, and Fermi energies of baryons will be redistributed among baryons to maintain
the phase-equilibrium conditions and constraints, resulting in the reduction of Fermi energies
(chemical potentials). The chemical potentials of leptons tend to be converted to those of
baryons in high densities, and leptons vanish so that nuclear matter become baryons-only
phase (e.g., (n, p,Σ−, e)-(n, p,Σ−) phase transition in Figure 8). The conversion of chemical
potentials among baryons in order to satisfy phase-transition conditions and constraints can
be observed numerically with newly generated hyperons. The characteristic feature increases
the hyperon-onset density higher and makes the EOS softer. Hence, it suggests that properties
of neutron stars be mainly determined by (n, p, e), (n, p,Σ−, e), and (n, p,Σ−,Λ, e) matter
rather than (n, p,Σ−,Λ,H1,H2, . . . , e) matter; many-hyperon matter could be possible in a
high density, such as in the core of neutron stars.

(3) The softening of EOS and discontinuity of incompressibility are interrelated to the
strength of the hyperon coupling constants and effective masses of mesons and hyperons;
hence, theoretical and experimental analyses of incompressibility and EOS in high densities
are essential to determine physical quantities. The discontinuous change is also obtained
for the symmetry energy for (n, p, e)-(n, p,Σ−, e)-(n, p,Σ−) matter. The symmetry energy is
monotonically increasing in the density range, ρB/ρ0 � 3.0, but it saturates in a high density
(see Figure 8); the saturation of symmetry energy is the effect of both nonlinear interactions
and isospin asymmetry [20, 21]. The theoretical predictions for the symmetry energy are very
different in high densities. The value should be investigated actively in heavy-ion collision
and other experiments to discriminate these predictions [34, 35].

(4) The binding energies, effective masses, and coupling constants of hyperons
generate strong density correlations among properties of nuclear matter and neutron stars.
Therefore, the binding energies and coupling ratios of hyperons, the hyperon-onset densities
and signals of phase transition of (n, p, e), (n, p,Σ−, e), and (n, p,Σ−,Λ, e), will, respectively,
exhibit important information on saturation properties (the binding energy and density,
incompressibility, and symmetry energy) not only for isospin-symmetric but also for isospin-
asymmetric nuclear matter and neutron stars [39].

(5) The values of hyperon coupling ratios, (rσΛN ∼ 1, 1/3, 2/3), yield consistent results
with the central energy density and the maximum mass configuration [5]. However, the
hyperon coupling ratios, rσHN � 1, suggested by effective quark models indicate that density
interactions of baryons are weak in high densities. It seems to be inconsistent with predictions
suggested by theoretical models of hadrons that density-dependent interactions be significant
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for nuclear matter and neutron stars. This aspect should be investigated further for both
hadronic and effective quark models.

The densities of hyperon onset and phase transitions, (n, p, e) → (n, p,Σ−,Λ, e, . . .),
are sensitive to coupling ratios given by density-dependent effective masses and coupling
constants of nucleons. The hyperon-onset densities and binding energies of hyperons are
important to determine properties of EOS and neutron stars. Hence, the consistency of
coupling strengths and binding energies of hyperons could be evaluated from certain
astronomical data. The results suggest that the analyses of nuclear matter and neutron stars
may provide important information on the models of nuclear and astronomical physics.
The signals of the abrupt change of EOS, discontinuous change of incompressibility, and
the saturation property of symmetry energy are essential to understand high density,
exotic nuclear matter. The nonlinear mean-field approximation has exhibited interesting
correlations among effective coupling constants and masses of hadrons, incompressibility,
symmetry energy, and masses of hyperonic neutron stars. The properties of nuclear matter,
neutron stars, and nuclear astrophysics are abundant in interesting physics to one another;
the interdisciplinary progresses of these fields would be anticipated in the near future.
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