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This paper describes the peak, fat tail, and skewness characteristics of asset price via a Lévy process. It applies asymmetric GARCH
model to depict asset price’s random volatility characteristics and builds a GARCH-Lévy option pricing model with random
jump characteristics. It also uses circular maximum likelihood estimation technology to improve the stability of model parameter
estimation. In order to test the model’s pricing results, we use Hong Kong Hang Seng Index (HSI) price data and its option data
to carry out empirical studies. Results prove that the pricing bias of EGARCH-Lévy model is lower than that of standard Heston-
Nandi (HN)model in the financial industry. For short-term, middle-term, and long-term European-style options, the pricing error
of EGARCH-Lévy model is the lowest.

1. Introduction

The Black-Scholes-Merton (BSM) option pricing model,
which was constructed by Black-Scholes (1973) [1] and
Merton (1973) [2], lays a fundamental theoretical framework
for option pricing analysis. Lots of empirical studies have
shown that “volatility smile” exists in the BSM model and it
results in a big option pricing bias. Researchers attempt to
build different models to reduce option pricing bias. Duan
(1995) [3] used GARCH model to describe asset’s random
volatility and carry out option pricing analysis. Empirical
studies indicate that this model can better weaken the BSW
model’s “volatility smile” problem. Duan (1999) [4] used the
generalized error distribution (GED) to build the GARCH-
GED option pricing model and enlarged the GARCH option
pricing model’s scope of applications. Based on Duan (1999)
[4], Heston and Nandi (2000) [5] built a GARCH option
pricing model (HN model) that has a closed-form formula
and used the HN model to carry out empirical studies
for S&P500 options. Results prove that the HN model can
effectively reduce the BSM model’s pricing error. Through

empirical studies based on individual stock options, Stentoft
(2005) [6] also discovered theHNmodel’s advantage. By now,
the HNmodel has become a new standard for option pricing
in the financial industry [7].

However, a big bias still exists in traditional GARCH
option pricing model. Therefore, it is necessary to optimize
such models. Much research progress has been made in this
aspect. Siu et al. (2004) [8] and Christoffersen et al. (2010) [9]
built a nonnormal distribution-basedGARCHoption pricing
model. Elliott et al. (2006) [10] introducedMarkov-switching
model into option pricing. Christoffersen et al. (2008) [11]
built a long-term and short-term mixed volatility GARCH
model. Rombouts and Stentoft (2015) [12] built a mixed
normal distribution-based asymmetric GARCH model, and
they found that their model was better at pricing European
options through empirical studies. Chorro et al. (2015) [7]
summarized recent progress of option pricing research under
this framework.

In this paper, an option pricing method is created based
on Esscher measure. This method allows the residual to
submit to a Lévy process. Empirical studies prove that, for
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European options, this model’s general error is lower than
that of the HN model. In respect to short-term, middle-
term, and long-term option pricing, the pricing error of
Dynamic EGARCH-Lévy model is the lowest. Newey and
Steigerwald (1997) [13] found that the maximum likelihood
(ML) estimation method is very sensitive to the misspec-
ifications of innovations’ density. From a numerical point
of view, this leads to optimization issues that grow with
the number of parameters, such as local maxima. In our
empirical experiments, we use another estimation approach
introduced in Chorro et al. (2014) [14] which specifically
aims at dealing with the potential inefficiency of the MLEs.
Such efficiency issues are all the more likely to occur in
our experiments as asymmetric GARCH models mixed with
asymmetric conditional distributions. In addition, in order to
guarantee the stability of parameter estimation, the circular
maximum likelihood estimationmethod is used in this paper.
Firstly, initial values of parameters are set according to results
of existing documents to carry out maximum likelihood
estimation. Then estimated results are treated as initial value
of next maximum likelihood estimation.This process is done
iteratively until parameters’ estimation results become stable.
Since the model in this paper only uses underlying assets’
price data, it is suitable for Over-The-Counter (OTC) option
pricing. Historical price of options contains much valuable
information. In another parameter estimation method, the
minimum of quadratic sum of the bias between option
market price and theoretical price is used to set up an
objective function. However, this method has no advantage
against the GARCH option pricing model (refer to [9–12]). It
is a valuable research direction to carry out GARCH option
pricing analysis based on historical price information of
options. Further studies will be made in the future.

Remaining parts of this paper are arranged as follows:
Section 2, asymmetrical heteroscedastic Lévy process model
building; Section 3, analysis of parameter estimation of
asymmetrical heteroscedastic Lévy process model; Section 4,
analysis of price forecast errors of options other than samples
and comparison of pricing results of different option pricing
models; Section 5, conclusions.

2. Neutral Dynamic Evolution Model
for Asset Risks

𝜙𝑡 is set as the information set at moment 𝑡. Assume that asset
return process 𝑅𝑡 satisfies the following condition:

𝑅𝑡 = log( 𝑆𝑡𝑆𝑡−1) = 𝑟𝑡 + 𝑚𝑡 + 𝜀𝑡, (1)

where 𝑟𝑡 stands for risk-free interest rate; 𝜀𝑡 satisfies certain
conditional distribution process, that is, 𝜀𝑡 | 𝜙𝑡 ∼ 𝐷(0, ℎ𝑡),
where ℎ𝑡 stands for conditional variance satisfying ℎ𝑡 =𝐹(ℎ𝑡−1, 𝜀𝑡−1).

Formula (1) is used in many option pricing research
documents to describe asset return process but the formof𝑚𝑡
varies greatly. For instance, in Duan (1995) [3],𝑚𝑡 = 𝜆0√ℎ𝑡 −ℎ𝑡/2 and volatility ℎ𝑡 is described via asymmetrical GARCH
process. In Duan (1999) [4], 𝑚𝑡 = 𝜆0ℎ𝑡 and volatility ℎ𝑡 is

described via asymmetrical GARCH process. In Chorro et al.
(2015) [7],𝑚𝑡 = 𝜆0√ℎ𝑡−ℎ𝑡/2 and volatility ℎ𝑡 is described via
GARCH process with a leverage effect.

In Section 2.2 of this paper, Esscher martingale measure
conversion technology is used to export specific form of 𝑚𝑡
under the condition of equivalent martingale measure and
such form is used for option pricing analysis.

2.1. Lévy Process-Driven Asymmetrical Heteroscedastic Model.
In this part, a dynamic asset distribution evolution process
based on Lévy process and asymmetrical heteroscedastic
process is built. We assume that the residual 𝜀𝑡 in (1) submits
to infinite-jump Lévy process and it is recorded as 𝜀𝑡 | 𝜙𝑡 ∼
Levy(0, ℎ𝑡). Because Lévy process can flexibly depict asset
distribution characteristics, it has been widely applied to
the description of financial asset distribution (refer to [15–
18]). Infinite-jump Lévy process usually has three character-
istic items, 𝜇, 𝜎, and V, representing linear drift, Brownian
motion diffusion, and jump, respectively. According to Lévy-
Khintchine formula, the relationship between the character-
istic function submitted to Lévy distribution random variable𝑋 and 𝛾, 𝜎, and V is described as follows:

𝜑𝑋 (𝑢) = 𝐸 (exp (𝑖𝑢𝑋)) = exp(𝑖𝑢𝛾 − 𝜎2𝑢22
+ ∫+∞
−∞

(exp (𝑖𝑢𝑥) − 1 − 𝑖𝑢𝑥|𝑥|≤1) V 𝑑𝑥) .
(2)

In order to accurately depict the higher moment char-
acteristics of asset returns, two widely applied infinite-jump
Lévy processes, that is, NIG process and VG process, are
taken into consideration in this paper. These two processes
are reviewed as follows.

As a widely applied infinite-jump Lévy distribution, NIG
distribution is put forward from [19] and it is recorded as
NIG(𝑎, 𝛽, 𝛿, 𝜇). Its characteristic function is as follows:

𝜑NIG (𝑢)
= exp(𝑖𝑢𝜇 + 𝛿√𝑎2 − 𝛽2 − 𝛿√𝑎2 − (𝛽 + 𝑖𝑢)2) , (3)

where 𝑎 > 0, |𝛽| < 𝑎, 𝛿 > 0, 𝜇 and 𝑎 mainly control mean
value and kurtosis while 𝛽 and 𝛿 mainly control skewness
and secondarymoment. NIG distribution’s jumping term and
density function may be expressed as follows:

V (𝑑𝑥) = 𝛿𝑎𝜋
exp (𝛽𝑥)𝐾1 (𝑎 |𝑥|)|𝑥| 𝑑𝑥,

𝑓NIG (𝑥) = 𝛿𝑎𝜋 exp (𝛿√𝑎2 + 𝛽2)

⋅ 𝐾1 (𝑎√𝛿2 + (𝑥 − 𝜇)2)
√𝛿2 + (𝑥 − 𝜇)2 exp (𝛽 (𝑥 − 𝜇)) ,

(4)

where 𝐾1(⋅) stands for postadjustment Bessel function of the
second kind.
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VG process is put forward from [15] and it is recorded
as VG(𝜆, 𝑎, 𝛽, 𝜇) for short. Its characteristic function is as
follows:

𝜑VG (𝑢) = exp (𝑖𝑢𝜇)( 𝑎2 − 𝛽2
𝑎2 − (𝛽 + 𝑖𝑢)2)

𝜆

, (5)

where 𝜆 > 0, 𝑎 > |𝛽| ≥ 0 and jumping term and density func-
tion may be expressed as follows:

V (𝑑𝑥) = 𝜆𝑥 [exp ((𝛽 − 𝑎) 𝑥) 1𝑥>0
− exp ((𝑎 + 𝛽) 𝑥) 1𝑥<0] 𝑑𝑥,

𝑓VG (𝑥) = (𝑎2 − 𝛽2)𝜆
√𝜋Γ (𝜆) (2𝑎)𝜆−1/2 󵄨󵄨󵄨󵄨𝑥 − 𝜇󵄨󵄨󵄨󵄨𝜆−1/2

⋅ 𝐾𝜆−1/2 (𝑎 󵄨󵄨󵄨󵄨𝑥 − 𝜇󵄨󵄨󵄨󵄨) exp (𝛽 (𝑥 − 𝜇)) ,

(6)

where Γ(⋅) is Gamma function.
If the conditional variance ℎ𝑡 of 𝜀𝑡 in formula (1) satisfies

the following condition,

ℎ𝑡 = exp (𝜔 + 𝑎1ℎ−1/2𝑡−1 (󵄨󵄨󵄨󵄨𝜀𝑡−1󵄨󵄨󵄨󵄨 − 𝛾𝜀𝑡−1)) ℎ𝑏1𝑡−1 (7)

that is, EGARCH(1, 1) process in [18], the Lévy process
satisfying formula (7) is recorded as EGARCH-Lévy process.
Because EGARCH process can effectively capture asym-
metrical heteroscedastic characteristics of returns, it has
been widely applied to volatility modeling. Conditional
heteroscedastic process (7)may also be expanded tomore sit-
uations, for example, NGARCHmodel in [20], LMSVmodel
in [21], and long- and short-term volatility model. Residual𝜀𝑡 distributionmay be expanded to more Lévy processes, that
is, CTS process in [10] and RDTS process in [18].

2.2. Neutral Dynamics of Risks and OptionsWorth Estimation.
Usually a market is incomplete, without a unique equivalent
martingale measure (EMM). In this paper, Radon-Nikodym
(R-N) derivative is used to realize conversion of risk-neutral
measures. In formula (8), Esscher martingale measure con-
version technology is used to create R-N derivative for
measure conversion:

𝑑𝑄𝑡𝑑𝑃𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜙𝑡 =

𝑒𝜃𝑡𝑥𝑡𝐸𝑃𝑡 (𝑒𝜃𝑡𝑥𝑡) , (8)

where 𝑑𝑄𝑡 and 𝑑𝑃𝑡 stand for the probability density function
of randomprocess 𝑥𝑡 under the risk-neutral measure and real
measure, respectively; 𝐸𝑃𝑡 stands for the expectation under
the real measure; 𝜃𝑡 stands for the conversion parameter
between realmeasure and risk-neutralmeasure. In this paper,
R-N derivative is used to create underlying asset’s equivalent
martingale process.

According to (8), we figure out that the sufficient condi-
tion for asset prices satisfies martingale process under risk-
neutral measure 𝑄, that is,𝑚𝑡 satisfying

𝑚𝑡 = 𝜑𝜀𝑡 (𝜃𝑡) − 𝜑𝜀𝑡 (𝜃𝑡 + 1) , (9)

where 𝜑𝜀𝑡 stands for the logarithmic moment generating
function of residual 𝜀𝑡 under actual measure 𝑃, that is,𝜑𝜀𝑡(𝑢) = log(𝐸𝑡(𝑒𝑢𝜀𝑡)). In fact, if asset price satisfies the mar-
tingale process under measure 𝑄, 𝑆𝑡−1 = 𝑒−𝑟𝑡𝐸𝑄(𝑆𝑡), accord-
ing to formulas (1) and (8), it is found that

𝑒𝑟𝑡 = 𝐸𝑄( 𝑆𝑡𝑆𝑡−1) = ∫+∞
−∞

𝑒𝑅𝑡𝑑𝑄𝑡 (Pursuant to (1))
= ∫+∞
−∞

𝑒𝑅𝑡 𝑒𝜃𝑡𝑅𝑡𝐸𝑃 (𝑒𝜃𝑡𝑅𝑡)𝑑𝑃𝑡 (Pursuant to (8))

= ∫+∞
−∞

𝑒(𝜃𝑡+1)(𝑟𝑡+𝑚𝑡+𝜀𝑡)𝑑𝑃𝑡𝐸𝑃 (𝑒𝜃𝑡(𝑟𝑡+𝑚𝑡+𝜀𝑡)) (Pursuant to (1))

= 𝑒𝑟𝑡+𝑚𝑡 𝐸𝑃 (𝑒(𝜃𝑡+1)𝜀𝑡)𝐸𝑃 (𝑒𝜃𝑡𝜀𝑡) .

(10)

After taking the logarithm and transposing terms, the
following result is worked out:

𝑚𝑡 = log (𝐸𝑃 (𝑒𝜃𝑡𝜀𝑡)) − log (𝐸𝑃 (𝑒(𝜃𝑡+1)𝜀𝑡))
= 𝜑𝜀𝑡 (𝜃𝑡) − 𝜑𝜀𝑡 (𝜃𝑡 + 1) . (11)

That is to say, formula (9) is tenable.
After formula (9) is put into formula (1), the evolution

process of asset log returns under measure 𝑄 is figured out
as follows:

𝑅𝑡 = 𝑟𝑡 + 𝜑𝜀𝑡 (𝜃𝑡) − 𝜑𝜀𝑡 (𝜃𝑡 + 1) + 𝜀𝑡, (12)

where 𝜀𝑡 | 𝜙𝑡 ∼ Levy(0, ℎ𝑡). According to formula (12), we can
figure out the evolution process of asset returns under
measure 𝑄 as long as we get residual 𝜀𝑡 which submits to
Levy(0, ℎ𝑡) process under measure 𝑃. This lays a foundation
for realizing option pricing through the Monte Carlo tech-
nique.

According to the risk-neutral pricing theory, options
worth is figured out as follows:

𝐶𝑡 = exp (−𝑟 (𝑇 − 𝑡)) 𝐸𝑄𝑡 [max (𝑆𝑇 − 𝐾, 0)] , (13)

where 𝑟 stands for risk-free interest rate; 𝐸𝑄𝑡 stands for
randomvariable’s expectation undermeasure𝑄; 𝑆𝑇 stands for
underlying asset’s price under measure 𝑄 at the time of 𝑇.

According to formulas (12) and (13), the following option
value estimation formula may be worked out as follows:

𝐶𝑡 = exp (−𝑟 (𝑇 − 𝑡)) 1𝑀
⋅ 𝑀∑
𝑗=1

max(𝑆𝑡 exp( 𝑇∑
𝑖=𝑡+1

𝑅𝑗𝑖) − 𝐾, 0) , (14)

where𝑀 stands for the simulated path number in the Monte
Carlo technique (it is assumed that 𝑀 = 10000 in this
paper); 𝑅𝑗𝑖 stands for log returns of underlying asset at the 𝑗th
path under measure 𝑄 and it can be figured out by sampling
pursuant to formula (12).
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Figure 1:The relationship between likelihood function value ofDynamic EGARCH-Lévy-NIGmodel and cycle index (a) and the relationship
between the parameter value of Dynamic EGARCH-Lévy-NIG model and cycle index (b).

3. Volatility Model Parameter Estimation

In this part, we use the daily closing price of HSI to carry
out empirical studies for the EGARCH- Lévy model and the
HNmodel. Data come fromWinddatabase. Samples are 7,325
daily closing prices of HIS collected during the period from
December 31, 1986, to July 14, 2016.

Formula (12) is used to figure out underlying asset’s
evolution process under measure 𝑄. Formula (12) is divided
into two situations according to 𝜃𝑡 value: (I) when 𝜃𝑡 ≡ 𝜃, it
is recorded as EGARCH-Lévy model; (II) when 𝜃𝑡 = 𝜃√ℎ𝑡,
it is recorded as Dynamic EGARCH-Lévy model. Models in
this paper may be classified as EGARCH-Lévy-NIG model,
EGARCH-Lévy-VG model, Dynamic EGARCH-Lévy-NIG
model, and EGARCH-Lévy-VG model.

We use Software R (R3.1.2) to complete parameter esti-
mation. In order to reduce the estimation bias caused due to
improper setting of initial values of parameters, the circular
maximum likelihood estimation method is used in this
paper. The first estimation result is treated as initial value
of the second estimation to utilize optimization function
iteratively. Iteration does not stop until likelihood function
values become stable.

Figure 1 shows the relationship between the model’s
likelihood function value and cycle index. We only report
Dynamic EGARCH-Lévy model’s results. Other models’
results are similar. Figure 1 indicates that, with the increase
of cycle index, likelihood function value and parameter value
of Dynamic EGARCH-Lévy model tend to become stable
gradually and three cycles lead to optimal results.

Table 1 shows parameter estimation results of five mod-
els, that is, HN, EGARCH-Lévy-NIG, EGARCH-Lévy-NIG,
EGARCH-Lévy-VG, Dynamic EGARCH-Lévy-NIG, and
Dynamic EGARCH-Lévy-VG models. It indicates that,
according to estimated likelihood value and BIC value,
HN model performs worst and Dynamic EGARCH-Lévy-
NIG model performs best, and EGARCH-Lévy-NIG model
is better than EGARCH-Lévy-VG model. Compared with
HNmodel, Lévy process-based asymmetrical heteroscedastic
volatility model’s maximum likelihood value and BIC value
increase significantly, indicating that EGARCH-Lévy model

can better describe dynamic process of volatility and laying
a foundation for further improving the accuracy of option
pricing. In addition, Table 1 shows a sequence of “HN
model to EGARCH-Lévy-NIGmodel to EGARCH-Lévy-VG
model” by ascending order of 𝜃 value, indicating that risk-
neutral measure conversion parameter values of different
models vary greatly and parameter 𝜃 has a significant impact
on volatility estimation.

4. HSI Option Forecast Analysis

In this part, empirical test will be carried out to verify forecast
results of different option models. Known as a new standard
in the financial industry, HN model is used as reference
model to test the forecast results of four option pricingmodels
created in this paper.

4.1. Description of Option Data. HSI option data come from
the HKEX website (http://sc.hkex.com.hk/TuniS/www.hkex
.com.hk/chi/index c.htm). Samples occurred during the
period from July 10, 2016, to July 31, 2017. There are up to
81 types of one-day closing prices. Options include short-
term ones (expiring within 30 days), middle-term ones
(expiring in 30–60 days), and long-term ones (expiring 60
days later). Options with a short term (less than 60 days) are
traded briskly. Long-term options have a limited closing price
selection space. Taking into consideration actual transaction
details of HSI options, sample options are divided into three
types, that is, short-term options (𝑇 < 30), middle-term
options (30 ≤ 𝑇 < 60), and long-term options (60 ≤ 𝑇).
Inactively traded options are eliminated. Taking into con-
sideration the weekend effect of stock prices, option data
on every Wednesday are used as samples. In this way, the
weekend effect is removed.

4.2. Option Price Forecast Analysis. In the process of option
pricing, we use the Monte Carlo estimation technique,
including four steps:

(I) Use the maximum likelihood estimation method to
estimate option pricing model’s parameters.

http://sc.hkex.com.hk/TuniS/www.hkex.com.hk/chi/index_c.htm
http://sc.hkex.com.hk/TuniS/www.hkex.com.hk/chi/index_c.htm
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Table 2: The error of different option pricing models.

Model 𝑇 < 30 30 ≤ 𝑇 < 60 𝑇 ≥ 60 Average
HN-GARCH 40.50% 26.52% 31.30% 32.78%
EGARCH-Lévy-NIG 51.17% 16.41% 19.08% 28.89%
Dynamic EGARCH- Lévy-NIG 15.30% 13.38% 16.58% 15.08%
EGARCH-Lévy-VG 54.70% 16.66% 19.14% 30.17%
Dynamic EGARCH-Lévy-VG 38.94% 13.67% 16.59% 23.07%
Mean 40.12% 17.33% 20.54% 25.99%

(II) Generate disturbing term 𝑧𝑡 submitted to Lévy dis-
tribution and generate volatility series ℎ𝑡 according
to EGARCH-Lévy model. Then generate logarithmic
yield series 𝑅1𝑡+1, 𝑅1𝑡+2, . . . , 𝑅1𝑇 under measure 𝑄 by
using formula (12).

(III) Work out underlying asset’s expiry-date price (𝑆𝑇 =𝑆𝑡 exp(∑𝑇𝑖=𝑡+1 𝑅𝑗𝑖 )) under measure 𝑄 according to the
result specified in section (II) and formula 𝑆𝑡+1 =𝑆𝑡 exp(𝑅𝑡+1).

(IV) Repeat steps (II) and (III) for 𝑀(𝑀 = 10000) times
and figure out the asset’s 𝑀 expiry-date prices under
measure 𝑄. Then figure out option worth according
to the following formula:

𝐶𝑡 = exp (−𝑟 (𝑇 − 𝑡)) 1𝑀
⋅ 𝑀∑
𝑗=1

max(𝑆𝑡 exp( 𝑇∑
𝑖=𝑡+1

𝑅𝑗𝑖) − 𝐾, 0) (15)

Theoretical option price can be worked out by following
steps (I) to (IV). In order to test optionmodel’s pricing error,
we use the average relative parameter error (ARPE) index
in common use in documents. Its calculating formula is as
follows:

ARPE = 1𝑁
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐶𝑖 − 𝐶𝑖󵄨󵄨󵄨󵄨󵄨𝐶𝑖 , (16)

where 𝐶𝑖 stands for the theoretical price of 𝑖th option; 𝐶𝑖
stands for the market price of 𝑖th option;𝑁 stands for option
number. For more contents of this index, refer to [10, 12].

Table 2 shows different models’ option pricing errors
under the condition of different expiry dates. Its first column
specifies model name and the second, third, and fourth
columns, respectively, represent different models’ pricing
errors against short-term options, middle-term options, and
long-term options. The fourth column reflects the mean
value of different models’ pricing errors against options with
various time limits.The last line reflects themean value of five
models’ pricing errors against short-term options, middle-
term options, and long-term options.

According to Table 2, we can draw an important conclu-
sion as follows: for European-style call options, the pricing
error of the EGARCH-Lévy model (other than EGARCH-
Lévy-VG, whose pricing error against short-term options is
higher) is lower than that of the HN model, indicating that
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Figure 2:The relationship between models’ error and exercise price
in middle-term options.

the models in this paper can forecast the prices of European-
style options well. With respect to the pricing of short-term
options, middle-term options, and long-term options, the
pricing error of the Dynamic EGARCH-Lévy-NIG model is
the lowest, indicating that this model is better than other
models in terms of option pricing. From the last line of Table 2
we can see that all these models’ average pricing error against
middle-term options is the lowest, the average pricing error
against short-term options is the highest, and the average
pricing error against long-term options is moderate. This
indicates that GARCH option price models can produce a
better result when they are used for middle-term options.

Figures 2, 3, and 4 show the relationship between different
models’ pricing error and exercise price. From Figure 2, we
can see that differentmodels’ error increases with the increase
of exercise price, indicating that the higher the exercise price
of option, theweaker themodel’s capability to estimate option
price. The reason for this result is possibly that as exercise
price is high, the option is an out-of-the-money option and
its price is unstable. When exercise price is low, the error of
the EGARCH-Lévy model is much lower than that of the HN
model. However, when exercise price is high, the error of the
EGARCH-Lévy model is relatively high, indicating that this
model should not be used for options whose exercise price
deviates seriously from underlying asset’s price. For middle-
term and long-term options, the EGARCH-Lévy model’s
pricing error is relatively low. In actual application, such
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Figure 3:The relationship between models’ error and exercise price
in short-term options.
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Figure 4:The relationship betweenmodels’ error and exercise price
in long-term options.

model may be used for the pricing of middle-term and long-
term options.

5. Main Conclusions

This paper introduces an option pricing method, which
allows asset returns to satisfy a Lévy process. An asym-
metrical GARCH model is used to describe assets’ ran-
dom volatility characteristics. Based on the description of
dynamic evolution process of asset returns, we use risk-
neutralmartingale pricing technology to build option pricing
models and use HSI option data to carry out empirical
studies for the EGARCH-Lévy-NIG, EGARCH-Lévy-VG,
Dynamic EGARCH-Lévy-NIG, and Dynamic EGARCH-
Lévy-VG models. Results prove that, for short-term, middle-
term, and long-term options, the pricing error of the
Dynamic EGARCH-Lévymodel is the lowest, indicating that
this model has an advantage in terms of option pricing. The

models introduced in this paper can substantially reduce
European-style option pricing errors.

Extended studies in several valuable research directions
will be done in the future. One important extension is to
introduce option market prices into the estimation of option
pricing model parameters to estimate parameters by treating
minimum error between option market prices and model
prices as objective function so as to increase the accu-
racy of parameters estimated. Another valuable extension
is to introduce the Markov Switching Volatility Model into
the description of volatility of asset returns. However, this
method needs more complicated estimation technology, for
example, Bayesian estimation. Therefore, it is hard to use
this method, and our next works would be oriented in some
simple and effectiveness methods, such as the state-of-the-art
grey system models TPDGM [22], KGM(1, 𝑛) [23], and the
hybrid machine learning models [24]. In further studies, Fast
Fourier Transform may be used for option pricing so as to
increase the efficiency of option pricing models.
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