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We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary
differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the
modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation,
the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

1. Introduction

Fractional differential equations (FDEs) are generalizations
of classical differential equations of integer order. Recently,
fractional differential equations have gained much attention
as they are widely used to describe various complex phe-
nomena in various applications such as the fluid flow, signal
processing, control theory, systems identification, finance
and fractional dynamics, and physics. The fractional differ-
ential equations have been investigated by many researchers
[1–3]. In recent decades, a large amount of literature has
been provided to construct the exact solutions of fractional
ordinary differential equations and fractional partial differ-
ential equations of physical interest. Many powerful and
efficient methods have been proposed to obtain approximate
solutions of fractional differential equations, such as the Ado-
mian decomposition method [4, 5], the variational iteration
method [6, 7], the homotopy analysis method [8, 9], the
homotopy perturbation method [10, 11], and the differential
transformation method [12–14]. The fractional subequation
method [15–17], the first integral method [18], the Exp-
function method [19, 20], and the (G󸀠/G)-expansion method
[21–23] can be used to construct the exact solutions for some
time and space fractional differential equations.

He and Wu [24] systematically proposed a new method
in 2006, called the Exp-function method, to obtain exact

solutions of nonlinear differential equations. The Exp-
functionmethod has been successfully applied tomany kinds
of nonlinear differential equations [25–28], such as high-
dimensional equations [29–31], variable-coefficient equa-
tions [32, 33], differential-difference equations [34, 35], and
stochastic equations [36, 37].

The present paper investigates for the first time the
applicability and effectiveness of the Exp-functionmethod on
fractional nonlinear partial differential equations.

2. The Modified Riemann-Liouville Derivative

Jumarie proposed a modified Riemann-Liouville derivative.
With this kind of fractional derivative and some useful
formulas, we can convert fractional differential equations into
integer-order differential equations by variable transforma-
tion in [38].

In this section, we firstly give some properties and defini-
tions of the modified Riemann-Liouville derivative which are
used further in this paper.

Assume that 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denote a con-
tinuous (but not necessarily differentiable) function. The
Jumarie modified Riemann-Liouville derivative of order 𝛼 is
defined by the expression
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𝐷𝛼
𝑥
𝑓 (𝑥) =

{{{{{{
{{{{{{
{

1

Γ (−𝛼)
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼−1

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉, 𝛼 < 0,

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫
𝑥

0

(𝑥 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉, 0 < 𝛼 < 1,

(𝑓(𝑛) (𝑥))
(𝛼−𝑛)

, 𝑛 ≤ 𝛼 ≤ 𝑛 + 1, 𝑛 ≥ 1.

(1)

A few properties of the fractional modified Riemann-
Liouville derivative were summarized and three famous
formulas of them are

𝐷𝛼
𝑥
𝑥𝛾 =

Γ (1 + 𝛾)

Γ (1 + 𝛾 − 𝛼)
𝑥𝛾−𝛼, 𝛾 > 0,

𝐷𝛼
𝑥
(𝑢 (𝑥) V (𝑥)) = V (𝑥)𝐷𝛼

𝑥
𝑢 (𝑥) + 𝑢 (𝑥)𝐷

𝛼

𝑥
V (𝑥) ,

𝐷𝛼
𝑥
𝑓 [𝑢 (𝑥)] = 𝑓󸀠

𝑢
(𝑢)𝐷
𝛼

𝑥
𝑢 (𝑥) = 𝐷𝛼

𝑢
𝑓 (𝑢) (𝑢

󸀠

𝑥
)
𝛼

,

(2)

which are direct consequences of the equality

𝑑𝛼𝑥 (𝑡) = Γ (1 + 𝛼) 𝑑𝑥 (𝑡) . (3)

Secondly, let us consider the time fractional differential
equation with independent variables 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡)

and a dependent variable 𝑢:

𝐹 (𝑢,𝐷𝛼
𝑡
𝑢, 𝑢
𝑥
1

, 𝑢
𝑥
2

, 𝑢
𝑥
3

, 𝐷2𝛼
𝑡
𝑢, 𝑢
𝑥
1
𝑥
1

, 𝑢
𝑥
2
𝑥
2

, 𝑢
𝑥
3
𝑥
3

, . . .) = 0.

(4)

Using the fractional variable transformation

𝑈 (𝜉) = 𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) ,

𝜉 = 𝑥
1
+ 𝑙
1
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑙

𝑚−1
𝑥
𝑚
+

𝜆𝑡𝛼

Γ (1 + 𝛼)
,

(5)

where 𝑙
𝑖
and 𝜆 are constants to be determined later. Similarly,

let us consider the space fractional differential equation with
independent variables𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) and a dependent

variable 𝑢:

𝐹 (𝑢, 𝑢
𝑡
, 𝐷𝛽
𝑥
1

𝑢, 𝑢
𝑥
2

, 𝑢
𝑥
3

, 𝐷2𝛽
𝑥
1

𝑢, 𝑢
𝑥
1
𝑥
1

, 𝑢
𝑥
2
𝑥
2

, 𝑢
𝑥
3
𝑥
3

, . . .) = 0.

(6)

Next, using the fractional variable transformation

𝑈 (𝜉) = 𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) ,

𝜉 =
𝜆𝑥
𝛽

1

Γ (1 + 𝛽)
+ 𝑙
1
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑙

𝑚−1
𝑥
𝑚
+ 𝑙
𝑚
𝑡,

(7)

where 𝑙
𝑖
and 𝜆 are constants to be determined later.

The fractional differential equation (6) is reduced to a
nonlinear ordinary differential equation

𝐻 = (𝑈 (𝜉) , 𝑈
󸀠

(𝜉) , 𝑈
󸀠󸀠

(𝜉) , . . .) , (8)

where “󸀠” = 𝑑/𝑑𝜉.

3. Description of the Exp-Function Method

We consider the general nonlinear ordinary differential equa-
tion in (8). According to Exp-function method, we assume
that the wave solution can be expressed in the following form
[24]:

𝑈 (𝜉) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp [𝑛𝜉]

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
exp [𝑚𝜉]

, (9)

where 𝑝, 𝑞, 𝑐, and 𝑑 are positive integers which are known to
be further determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown constants.

We can rewrite (9) in the following equivalent form:

𝑈 (𝜉) =
𝑎
−𝑐
exp [−𝑐𝜉] + ⋅ ⋅ ⋅ + 𝑎

𝑑
exp [𝑑𝜉]

𝑏
−𝑝

exp [−𝑝𝜉] + ⋅ ⋅ ⋅ + 𝑏
𝑞
exp [𝑞𝜉]

. (10)

This equivalent formulation plays an important and fun-
damental part for finding the analytic solution of problems.
To determine the value of 𝑐 and 𝑝, we balance the linear term
of the highest order of (8) with the highest degree nonlinear
term. Similarly, to determine the value of 𝑑 and 𝑞, we balance
the linear term of the lowest order of (8) with the lowest
degree nonlinear term.

We suppose that the solution in (8) can be expressed as

𝑈 (𝜉) =
𝑛

∑
𝑖=1

𝑎
𝑖
𝜙𝑖, (11)

where 𝜙 is the solution of the auxiliary equation 𝜙󸀠 = 𝛼+𝛽𝜙+

𝛾𝜙2. In a similar way, 𝜙 can be expressed in (11).

Theorem 1. Suppose that 𝑈(𝑟) and 𝑈𝑠 are, respectively, the
highest order linear term and the highest degree nonlinear term
of a nonlinear ODE, where 𝑟 and 𝑠 are both positive integers.
Then the balancing procedure using the Exp-function ansatz
𝑈(𝜉) = ∑

𝑑

𝑛=−𝑐
𝑎
𝑛
exp(𝑛𝜉)/∑𝑞

𝑚=−𝑝
𝑏
𝑚
exp(𝑚𝜉) leads to 𝑑 = 𝑞

and 𝑐 = 𝑝 and ∀𝑟 ≥ 1, ∀𝑠 ≥ 2 [39].

To show the efficiency of the method described in the
previous part, we present some FDEs examples.

4. The Time Fractional
Sharma-Tasso-Olver Equation

We consider the nonlinear fractional Sharma-Tasso-Olver
equation [40]

𝐷𝛼
𝑡
𝑢 + 3𝑎𝑢2

𝑥
+ 3𝑎𝑢2𝑢

𝑥
+ 3𝑎𝑢𝑢

𝑥𝑥
+ 𝑎𝑢
𝑥𝑥𝑥

= 0,

𝑡 > 0, 0 < 𝛼 ≤ 1,
(12)
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subject to the initial condition

𝑢 (𝑥, 0) = −√2𝐵
0
tan(

√2𝐵
0

2
𝑥) , (13)

where 𝑎 and 𝐵
0
are arbitrary constants and 𝛼 is a parameter

describing the order of the fractional time derivative. The
function 𝑢(𝑥, 𝑡) is assumed to be a causal function of time.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝑥 −
𝜆𝑡𝛼

Γ (1 + 𝛼)
, (14)

where 𝜆 is a constant.
Substituting (14) into (12), we can know that (12) reduced

into an ODE

−𝜆𝑈󸀠 + 3𝑎(𝑈󸀠)
2

+ 3𝑎𝑈2𝑈󸀠 + 3𝑎𝑈𝑈󸀠󸀠 + 𝑎𝑈󸀠󸀠󸀠 = 0, (15)

where “𝑈󸀠” = 𝑑𝑈/𝑑𝜉.
Integrating (15) with respect to 𝜉 yields

𝜉
0
− 𝜆𝑈 + 3𝑎𝑈𝑈󸀠 + 𝑎𝑈3 + 𝑎𝑈󸀠󸀠 = 0, (16)

where 𝜉
0
is a constant of integration.

Here take notice of the nonlinear term in (16), and we can
balance 𝑈󸀠󸀠 and 𝑈3 by the idea of the Exp-function method
[24] to determine the values of 𝑝, 𝑞, 𝑐, and 𝑑. By simple
calculation, we have

𝑈3 =
𝑐
1
exp [− (3𝑐 + 𝑝) 𝜉] + ⋅ ⋅ ⋅
𝑐
2
exp [−4𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈󸀠󸀠 =
𝑐
3
exp [− (3𝑝 + 𝑐) 𝜉] + ⋅ ⋅ ⋅
𝑐
4
exp [−4𝑝𝜉] + ⋅ ⋅ ⋅

,

(17)

where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing the highest order of Exp-function in (17) we have

− (3𝑝 + 𝑐) = − (3𝑐 + 𝑝) , (18)

which leads to the result

𝑝 = 𝑐. (19)

Similarly to determine values of 𝑑 and 𝑞, we balance the linear
term of the lowest order in (16):

𝑈󸀠󸀠 =
⋅ ⋅ ⋅ + 𝑑

1
exp [(3𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [4𝑞𝜉]

,

𝑈3 =
⋅ ⋅ ⋅ + 𝑑

3
exp [(3𝑑 + 𝑞) 𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [4𝑞𝜉]

,

(20)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(20), we obtain

3𝑞 + 𝑑 = 3𝑑 + 𝑞, (21)

and this gives

𝑞 = 𝑑. (22)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (10)
reduces to

𝑈 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (23)

Substituting (23) into (16) and by the help of symbolic
computation, we have
1

𝐴
[𝑅
3
exp (3𝜉) + 𝑅

2
exp (2𝜉) + 𝑅

1
exp (𝜉) + 𝑅

0

+ 𝑅
−1
exp (−𝜉) + 𝑅

−2
exp (−2𝜉) + 𝑅

−3
exp (−3𝜉)]

= 0,

(24)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))3,

𝑅
3
= −𝜆𝑎

1
𝑏2
1
+ 𝑎𝑎3
1
+ 𝜉
0
𝑏3
1
,

𝑅
2
= 𝑎𝑎
0
𝑏2
1
− 𝜆𝑎
0
𝑏2
1
+ 3𝑎𝑎2

1
𝑏
0
+ 3𝑎𝑎2

1
𝑎
0

+ 3𝜉
0
𝑏2
1
𝑏
0
− 𝑎𝑎
1
𝑏
1
𝑏
0
− 2𝜆𝑎

1
𝑏
1
𝑏
0
− 3𝑎𝑎

1
𝑎
0
𝑏
1
,

𝑅
1
= −2𝜆𝑎

0
𝑏
1
𝑏
0
+ 3𝑎𝑎

0
𝑎
1
𝑏
0
− 𝑎𝑎
0
𝑏
1
𝑏
0
− 3𝑎𝑎2

0
𝑏
1

+ 3𝑎𝑎
1
𝑎2
0
+ 𝑎𝑎
1
𝑏2
0
+ 3𝜉
0
𝑏
1
𝑏2
0
− 𝜆𝑎
1
𝑏2
0

+ 3𝜉
0
𝑏2
1
𝑏
−1
− 𝜆𝑎
−1
𝑏2
1
+ 6𝑎𝑎2

1
𝑏
−1

+ 3𝑎𝑎2
1
𝑎
−1
+ 4𝑎𝑎

−1
𝑏2
1
− 2𝜆𝑎

1
𝑏
1
𝑏
−1

− 6𝑎𝑎
1
𝑎
−1
𝑏
1
− 4𝑎𝑎

1
𝑏
1
𝑏
−1
,

𝑅
0
= 3𝑎𝑎

−1
𝑏
1
𝑏
0
+ 𝜉
0
𝑏3
0
+ 𝑎𝑎3
0
− 𝜆𝑎
0
𝑏2
0

− 2𝜆𝑎
−1
𝑏
1
𝑏
0
+ 9𝑎𝑎

1
𝑎
0
𝑏
−1
− 9𝑎𝑎

0
𝑎
−1
𝑏
1

+ 6𝑎𝑎
1
𝑎
0
𝑎
−1
+ 3𝑎𝑎

1
𝑏
0
𝑏
−1
,

𝑅
−1
= −2𝜆𝑎

0
𝑏
−1
𝑏
0
− 3𝑎𝑎

0
𝑎
−1
𝑏
0
− 𝑎𝑎
0
𝑏
−1
𝑏
0

− 𝜆𝑎
−1
𝑏2
0
+ 3𝑎𝑎2

0
𝑏
−1
+ 3𝑎𝑎2

0
𝑎
−1

+ 𝑎𝑎
−1
𝑏2
0
+ 3𝜉
0
𝑏2
0
𝑏
−1
+ 3𝜉
0
𝑏
1
𝑏2
−1

− 𝜆𝑎
1
𝑏2
−1
− 6𝑎𝑎2

−1
𝑏
1
+ 3𝑎𝑎

1
𝑎2
−1

+ 4𝑎𝑎
1
𝑏2
−1
− 2𝜆𝑎

−1
𝑏
1
𝑏
−1
+ 6𝑎𝑎

−1
𝑎
1
𝑏
−1

− 4𝑎𝑎
−1
𝑏
1
𝑏
−1
,

𝑅
−2
= 𝑎𝑎
0
𝑏2
−1
− 𝜆𝑎
0
𝑏2
−1
− 3𝑎𝑎2

−1
𝑏
0

+ 3𝑎𝑎
0
𝑎2
−1
+ 3𝜉
0
𝑏
0
𝑏2
−1
− 2𝜆𝑎

−1
𝑏
0
𝑏
−1

+ 3𝑎𝑎
−1
𝑎
0
𝑏
−1
− 𝑎𝑎
−1
𝑏
0
𝑏
−1
,

𝑅
−3
= −𝜆𝑎

−1
𝑏2
−1
+ 𝜉
0
𝑏3
−1
+ 𝑎𝑎3
−1
.

(25)
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Solving this system of algebraic equations by using sym-
bolic computation, we obtain the following results.

Case 1. We have

𝑎
0
= 0, 𝑏

−1
= −

𝑎
−1

2
, 𝑏

0
= 0,

𝑏
1
=
𝑎
1

2
, 𝜉

0
= 0,

𝜆 = 𝜆, 𝑎 =
𝜆

4
,

(26)

where 𝑎
−1

and 𝑎
1
are free parameters. Substituting these

results into (23), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = (𝑎
1
exp(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑎
−1
exp (−(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))

× (
𝑎
1

2
exp(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

−
𝑎
−1

2
exp(−(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))
−1

.

(27)

If we set 𝑎
1
= 2 and 𝑎

−1
= −2, (27) becomes

𝑢 (𝑥, 𝑡) = tanh(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
) , (28)

which is the other exact solution of the fractional Sharma-
Tasso-Olver equation.

If we set 𝑎
1
= 𝑎
−1
= 2, (27) becomes

𝑢 (𝑥, 𝑡) = coth(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
) , (29)

which is the other exact solution of the fractional Sharma-
Tasso-Olver equation.

Case 2. We have

𝑎
0
= 0, 𝑏

−1
= 𝑏
−1
, 𝑏

0
= 0,

𝑏
1
=

𝑎
1
𝑏
−1

(𝑎
−1
+ 2𝑏
−1
)
, 𝜉

0
= 𝜉
0
,

𝜆 =
𝜉
0
𝑏
−1
(3𝑎2
−1
+ 6𝑎
−1
𝑏
−1
+ 4𝑏2
−1
)

2𝑎
−1
(𝑎
−1
+ 2𝑏
−1
) (𝑎
−1
+ 𝑏
−1
)
,

𝑎 =
𝑏3
−1
𝜉
0

2𝑎
−1
(𝑎
−1
+ 2𝑏
−1
) (𝑎
−1
+ 𝑏
−1
)
,

(30)

where 𝑎
−1

and 𝑏
−1

are free parameters. Substituting these
results into (23), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = (𝑎
1
exp(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑎
−1
exp(−(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))

× (
𝑎
1
𝑏
−1

(𝑎
−1
+ 2𝑏
−1
)
exp(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑏
−1
exp(−(𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))
−1

.

(31)

Comparing our results with the results [18, 19], it can be
seen that our results are new to our best knowledge.

5. The Space Fractional Burgers Equation

We consider the space fractional Burgers equation [41]

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝑘

𝜕2𝑢

𝜕𝑥2
+ 𝑛

𝜕𝛽𝑢

𝜕𝑥𝛽
= 0,

𝑥, 𝑡 > 0, 0 < 𝛽 ≤ 1,

(32)

with the following initial value problem:

𝑢 (0, 𝑡) = 0, 𝑢
𝑥
(0, 𝑡) =

1

𝑡
−

𝜋2

2𝑘𝑡2
, (33)

where 𝑘 and 𝑛 are arbitrary constants and 𝛽 is a parameter
describing the order of the fractional space derivative. The
function 𝑢(𝑥, 𝑡) is assumed to be a causal function of time.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 =
𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡, (34)

where 𝜆 is a constant.
Substituting (34) into (32), we can know that (32) reduced

into an ODE

−𝑐𝑈󸀠 + 𝜆𝑈𝑈󸀠 − 𝑘𝜆2𝑈󸀠󸀠 + 𝑛𝜆𝑈󸀠 = 0, (35)

where “𝑈󸀠” = 𝑑𝑈/𝑑𝜉.
Integrating (35) with respect to 𝜉 yields

(𝜆𝑛 − 𝑐)𝑈 + 𝜆
𝑈2

2
− 𝑘𝜆2𝑈󸀠 + 𝜉

0
= 0, (36)

where 𝜉
0
is a constant of integration.

Here take notice of the nonlinear term in (36), andwe can
balance 𝑈󸀠 and 𝑈2 by the idea of the Exp-function method
[24] to determine the values of 𝑝, 𝑞, 𝑐, and 𝑑. By simple
calculation, we have

𝑈󸀠 =
𝑐
1
exp [− (𝑐 + 𝑝) 𝜉] + ⋅ ⋅ ⋅
𝑐
2
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈2 =
𝑐
3
exp [−2𝑐𝜉] + ⋅ ⋅ ⋅

𝑐
4
exp [−2𝑝𝜉] + ⋅ ⋅ ⋅

,

(37)
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where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing the highest order of Exp-function in (37) we have

− (𝑝 + 𝑐) = −2𝑐, (38)

which leads to the result

𝑝 = 𝑐. (39)

Similarly to determine values of 𝑑 and 𝑞, we balance the linear
term of the lowest order in (36):

𝑈󸀠 =
⋅ ⋅ ⋅ + 𝑑

1
exp [(𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [2𝑞𝜉]

,

𝑈2 =
⋅ ⋅ ⋅ + 𝑑

3
exp [2𝑑𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [2𝑞𝜉]

,

(40)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(40), we obtain

𝑞 + 𝑑 = 2𝑑, (41)

and this gives

𝑞 = 𝑑. (42)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (10)
reduces to

𝑈 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (43)

Substituting (43) into (36) and by the help of computa-
tion, we have

1

𝐴
[𝑅
2
exp (2𝜉) + 𝑅

1
exp (𝜉) + 𝑅

0

+ 𝑅
−1
exp (−𝜉) + 𝑅

−2
exp (−2𝜉)] = 0,

(44)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))2,

𝑅
2
=
𝜆

2
𝑎2
1
+ 𝜉
0
𝑏2
1
− 𝑐𝑎
1
𝑏
1
+ 𝑛𝜆𝑎

1
𝑏
1
,

𝑅
1
= −𝑐𝑎

1
𝑏
0
+ 2𝜉
0
𝑏
1
𝑏
0
+ 𝜆𝑎
1
𝑎
0
− 𝑐𝑎
0
𝑏
1

+ 𝑛𝜆𝑎
0
𝑏
1
+ 𝑘𝜆2𝑎

0
𝑏
1

+ 𝑛𝜆𝑎
1
𝑏
0
− 𝑘𝜆2𝑎

1
𝑏
0
,

𝑅
0
= −2𝑘𝜆2𝑎

1
𝑏
−1
+ 2𝑘𝜆2𝑎

−1
𝑏
1
+ 𝑛𝜆𝑎

1
𝑏
−1

+ 𝑛𝜆𝑎
0
𝑏
0
+ 𝑛𝜆𝑏

1
𝑎
−1
+
1

2
𝜆𝑎2
0

− 𝑐𝑎
0
𝑏
0
+ 𝜉
0
𝑏2
0
+ 2𝜉
0
𝑏
1
𝑏
−1

− 𝑐𝑎
1
𝑏
−1
− 𝑐𝑏
1
𝑎
−1
+ 𝜆𝑏𝑎

1
𝑎
−1
,

𝑅
−1
= −𝑐𝑎

−1
𝑏
0
− 𝑐𝑎
0
𝑏
−1
+ 2𝜉
0
𝑏
0
𝑏
−1

+ 𝜆𝑎
0
𝑎
−1
− 𝑘𝜆2𝑎

0
𝑏
−1
+ 𝑛𝜆𝑎

−1
𝑏
0

+ 𝑛𝜆𝑎
0
𝑏
−1
+ 𝑘𝜆2𝑎

−1
𝑏
0
,

𝑅
−2
=
1

2
𝜆𝑎2
−1
+ 𝜉
0
𝑏2
−1
− 𝑐𝑎
−1
𝑏
−1
+ 𝑛𝜆𝑎

−1
𝑏
−1
.

(45)

Solving this system of algebraic equations by using sym-
bolic computation, we obtain the following results.

Case 1. We have

𝑎
1
=
𝑏
1
(−4𝑘𝜆𝑏

−1
+ 𝑎
−1
)

𝑏
−1

, 𝑎
0
= 0,

𝑘 = 𝑘, 𝑏
1
= 𝑏
1
, 𝑏

0
= 0, 𝜆 = 𝜆,

𝑐 =
𝜆 (−2𝑘𝜆𝑏

−1
+ 𝑛𝑏
−1
+ 𝑎
−1
)

𝑏
−1

,

𝜉
0
=
𝜆𝑎
−1
(−4𝑘𝜆𝑏

−1
+ 𝑎
−1
)

2𝑏2
−1

, 𝑛 = 𝑛,

(46)

where 𝑎
−1
, 𝑏
1
, and 𝑏

−1
are free parameters. Substituting these

results into (43), we get the following exact solution:

𝑢 (𝑥, 𝑡) = (
𝑏
1
(−4𝑘𝜆𝑏

−1
+ 𝑎
−1
)

𝑏
−1

exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)

+ 𝑎
−1
exp(−( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)))

× (𝑏
1
exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)

+ 𝑏
−1
exp(−( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)))

−1

,

(47)

which is the exact solution of the space fractional Burgers
equation.

Case 2. We have

𝑎
−1
= 0, 𝑎

0
= −

𝑏
0
(𝜆𝑎
1
+ 2𝑛𝜆𝑏

1
− 2𝑐𝑏
1
)

𝜆𝑏
1

,

𝑘 =
𝑐𝑏
1
− 𝜆𝑎
1
− 𝑛𝜆𝑏

1

𝜆2𝑏
1

, 𝑏
−1
= 0,

𝑏
0
= 𝑏
0
, 𝜆 = 𝜆, 𝑐 = 𝑐,

𝜉
0
= −

𝑎
1
(𝜆𝑎
1
+ 2𝑛𝜆𝑏

1
− 2𝑐𝑏
1
)

2𝑏2
1

, 𝑛 = 𝑛,

(48)
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where 𝑎
1
, 𝑏
0
, and 𝑏

1
are free parameters. Substituting these

results into (43), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = (𝑎
1
exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)

−
𝑏
0
(𝜆𝑎
1
+ 2𝑛𝜆𝑏

1
− 2𝑐𝑏
1
)

𝜆𝑏
1

)

×(𝑏
1
exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡) + 𝑏

0
)

−1

,

(49)

which is the exact solution of the space fractional Burgers
equation.

Case 3. We have

𝑎
1
= − (𝑎2

−1
𝑏2
0
− 2𝑎
−1
𝑏2
0
𝑘𝜆𝑏
−1
− 2𝑎
0
𝑏
0
𝑎
−1
𝑏
−1

+ 2𝑎
0
𝑏
0
𝑏2
−1
𝑘𝜆 + 𝑎2

0
𝑏2
−1
) (𝑎
−1
− 2𝑘𝜆𝑏

−1
)

× (4𝑏4
−1
𝑘2𝜆2)

−1

,

𝑏
1
= − (𝑎2

−1
𝑏2
0
− 2𝑎
−1
𝑏2
0
𝑘𝜆𝑏
−1
− 2𝑎
0
𝑏
0
𝑎
−1
𝑏
−1

+ 2𝑎
0
𝑏
0
𝑏2
−1
𝑘𝜆 + 𝑎2

0
𝑏2
−1
) (4𝑏3
−1
𝑘2𝜆2)

−1

,

𝑎
0
= 𝑎
0
, 𝑎

−1
= 𝑎
−1
, 𝑏

0
= 𝑏
0
, 𝑏

−1
= 𝑏
−1
,

𝑐 =
𝜆 (𝑎
−1
− 𝑘𝜆𝑏

−1
+ 𝑛𝑏
−1
)

𝑏
−1

, 𝑘 = 𝑘, 𝜆 = 𝜆,

𝑛 = 𝑛, 𝜉
0
=
𝜆𝑎
−1
(𝑎
−1
− 2𝑘𝜆𝑏

−1
)

2𝑏2
−1

,

(50)

where 𝑎
0
, 𝑎
−1
, 𝑏
0
, and 𝑏

−1
are free parameters. Substituting

these results into (43), we get the following exact solution:

𝑢 (𝑥, 𝑡) = (− (𝑎2
−1
𝑏2
0
− 2𝑎
−1
𝑏2
0
𝑘𝜆𝑏
−1
− 2𝑎
0
𝑏
0
𝑎
−1
𝑏
−1

+ 2𝑎
0
𝑏
0
𝑏2
−1
𝑘𝜆 + 𝑎2

0
𝑏2
−1
)

× (𝑎
−1
− 2𝑘𝜆𝑏

−1
) (4𝑏4
−1
𝑘2𝜆2)

−1

× exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡) + 𝑎

0

+ 𝑎
−1
exp(−( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)))

× (− (𝑎2
−1
𝑏2
0
− 2𝑎
−1
𝑏2
0
𝑘𝜆𝑏
−1
− 2𝑎
0
𝑏
0
𝑎
−1
𝑏
−1

+ 2𝑎
0
𝑏
0
𝑏2
−1
𝑘𝜆 + 𝑎2

0
𝑏2
−1
)

× (4𝑏3
−1
𝑘2𝜆2)

−1

× exp( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡) + 𝑏

0
+ 𝑏
−1

× exp(−( 𝜆𝑥𝛽

Γ (1 + 𝛽)
− 𝑐𝑡)))

−1

,

(51)

which is the exact solution of the space fractional Burgers
equation.

The obtained solutions for the space fractional Burgers
equation are new to our best knowledge.

6. The Time Fractional fmKdV Equation

We consider the following fractional time fractional fmKdV
equation [42]:

𝐷𝛼
𝑡
𝑢 + 𝑢2𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0,

𝑡 > 0, 0 < 𝛼 ≤ 1,
(52)

with the initial conditions as

𝑢 (𝑥, 0) =
4√2𝑘sin2 (𝑘𝑥)
3 − sin2 (𝑘𝑥)

, (53)

where 𝑘 is an arbitrary constant and 𝛼 is a parameter
describing the order of the fractional time derivative.

For our purpose, we introduce the following transforma-
tions

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝑐𝑥 −
𝜆𝑡𝛼

Γ (1 + 𝛼)
, (54)

where 𝜆 and 𝑐 are constants.
Substituting (54) into (52), we can know that (52) reduced

into an ODE

−𝜆𝑈󸀠 + 𝑐𝑈2𝑈󸀠 + 𝑐3𝑈󸀠󸀠󸀠 = 0, (55)

where “𝑈󸀠” = 𝑑𝑈/𝑑𝜉.
By using the ansatz (55), for the linear term of highest

order 𝑈󸀠󸀠󸀠 with the highest order and the nonlinear term
𝑈2𝑈󸀠, balancing 𝑈󸀠󸀠󸀠 with 𝑈2𝑈󸀠 in (55) gives

𝑈󸀠󸀠󸀠 =
𝑐
1
exp [− (7𝑝 + 𝑐) 𝜉] + ⋅ ⋅ ⋅
𝑐
2
exp [−8𝑝𝜉] + ⋅ ⋅ ⋅

=
𝑐
1
exp [− (3𝑝 + 𝑐) 𝜉] + ⋅ ⋅ ⋅
𝑐
2
exp [−4𝑝𝜉] + ⋅ ⋅ ⋅

,

𝑈2𝑈󸀠 =
𝑐
3
exp [− (𝑝 + 3𝑐) 𝜉] + ⋅ ⋅ ⋅
𝑐
4
exp [−4𝑝𝜉] + ⋅ ⋅ ⋅

,

(56)
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where 𝑐
𝑖
are determined coefficients only for simplicity.

Balancing the highest order of Exp-function in (56) we have

− (3𝑝 + 𝑐) = − (3𝑐 + 𝑝) , (57)

which leads to the result

𝑝 = 𝑐. (58)

Similarly to determine values of 𝑑 and 𝑞, we balance the linear
term of the lowest order in (55):

𝑈󸀠󸀠󸀠 =
⋅ ⋅ ⋅ + 𝑑

1
exp [(3𝑞 + 𝑑) 𝜉]

⋅ ⋅ ⋅ + 𝑑
2
exp [4𝑞𝜉]

,

𝑈2𝑈󸀠 =
⋅ ⋅ ⋅ + 𝑑

3
exp [(3𝑑 + 𝑞) 𝜉]

⋅ ⋅ ⋅ + 𝑑
4
exp [4𝑞𝜉]

,

(59)

where 𝑑
𝑖
are determined coefficients only for simplicity. From

(59), we obtain

3𝑞 + 𝑑 = 3𝑑 + 𝑞, (60)

and this gives

𝑞 = 𝑑. (61)

For simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1, so (10) reduces
to

𝑈 (𝜉) =
𝑎
1
exp (𝜉) + 𝑎

0
+ 𝑎
−1
exp (−𝜉)

𝑏
1
exp (𝜉) + 𝑏

0
+ 𝑏
−1
exp (−𝜉)

. (62)

Substituting (62) into (55) and by the help of computation,
we have

1

𝐴
[𝑅
3
exp (3𝜉) + 𝑅

2
exp (2𝜉) + 𝑅

1
exp (𝜉) + 𝑅

0

+ 𝑅
−1
exp (−𝜉) + 𝑅

−2
exp (−2𝜉)

+ 𝑅
−3
exp (−3𝜉)] = 0,

(63)

where

𝐴 = (𝑏
−1
exp (−𝜉) + 𝑏

0
+ 𝑏
1
exp (𝜉))4,

𝑅
3
= 𝜆𝑎
0
𝑏3
1
− 𝑐3𝑎
0
𝑏3
1
+ 𝑐𝑎3
1
𝑏
0

− 𝜆𝑎
1
𝑏2
1
𝑏
0
− 𝑐𝑎2
1
𝑎
0
𝑏
1
+ 𝑐3𝑎
1
𝑏2
1
𝑏
0
,

𝑅
2
= 2𝜆𝑎

−1
𝑏3
1
+ 2𝑐𝑎3
1
𝑏
−1
− 8𝑐3𝑎

−1
𝑏3
1

− 2𝑐𝑎2
1
𝑎
−1
𝑏
1
+ 8𝑐3𝑎

1
𝑏2
1
𝑏
−1

− 2𝜆𝑎
1
𝑏2
1
𝑏
−1
− 4𝑐3𝑎

1
𝑏
1
𝑏2
0

− 2𝜆𝑎
1
𝑏
1
𝑏2
0
+ 2𝑐𝑎2
1
𝑎
0
𝑏
0

− 2𝑐𝑎
1
𝑎2
0
𝑏
1
+ 4𝑐3𝑎

0
𝑏2
1
𝑏
0
+ 2𝜆𝑎

0
𝑏2
1
𝑏
0
,

𝑅
1
= −𝜆𝑎

1
𝑏3
0
− 𝑐𝑎3
0
𝑏
1
+ 𝑐3𝑎
1
𝑏3
0

− 18𝑐3𝑎
1
𝑏
1
𝑏
0
𝑏
−1
− 6𝜆𝑎

1
𝑏
1
𝑏
0
𝑏
−1

− 6𝑐𝑎
1
𝑎
0
𝑎
−1
𝑏
1
+ 𝜆𝑎
0
𝑏2
1
𝑏
−1

+ 𝑐𝑎2
1
𝑎
−1
𝑏
0
+ 𝜆𝑎
0
𝑏
1
𝑏2
0

+ 𝑐𝑎2
0
𝑎
1
𝑏
0
− 𝑐3𝑎
0
𝑏
1
𝑏2
0

+ 23𝑐3𝑎
0
𝑏2
1
𝑏
−1
+ 5𝑐𝑎2
1
𝑎
0
𝑏
−1

+ 5𝜆𝑎
−1
𝑏2
1
𝑏
0
− 5𝑐3𝑎

−1
𝑏2
1
𝑏
0
,

𝑅
0
= 4𝑐𝑎2
1
𝑎
−1
𝑏
−1
− 4𝑐𝑎
1
𝑎2
−1
𝑏
1

− 4𝑐𝑎2
0
𝑎
−1
𝑏
1
+ 4𝑐3𝑎

1
𝑏2
0
𝑏
−1

+ 32𝑐3𝑎
−1
𝑏2
1
𝑏
−1
− 4𝑐3𝑎

−1
𝑏
1
𝑏2
0

− 32𝑐3𝑎
1
𝑏
1
𝑏2
−1
− 4𝜆𝑎

1
𝑏
1
𝑏2
−1

− 4𝜆𝑎
1
𝑏2
0
𝑏
−1
+ 4𝜆𝑎

−1
𝑏2
1
𝑏
−1

+ 4𝜆𝑎
−1
𝑏
1
𝑏2
0
+ 4𝑐𝑎
1
𝑎2
0
𝑏
−1
,

𝑅
−1
= 𝑐𝑎3
0
𝑏
−1
− 𝑐3𝑎
−1
𝑏3
0
+ 𝜆𝑎
−1
𝑏3
0

+ 6𝜆𝑎
−1
𝑏
1
𝑏
0
𝑏
−1
+ 6𝑐𝑎
1
𝑎
−1
𝑎
0
𝑏
−1

+ 18𝑐3𝑎
−1
𝑏
1
𝑏
0
𝑏
−1
− 𝑐𝑎
1
𝑎2
−1
𝑏
0

+ 𝑐3𝑎
0
𝑏
−1
𝑏2
0
− 5𝜆𝑎

1
𝑏
0
𝑏2
−1

− 𝑐𝑎2
0
𝑎
−1
𝑏
0
− 5𝑐𝑎
0
𝑎2
−1
𝑏
1

+ 5𝑐3𝑎
1
𝑏
0
𝑏2
−1
− 𝜆𝑎
0
𝑏
−1
𝑏2
0

− 23𝑐3𝑎
0
𝑏
1
𝑏2
−1
− 𝜆𝑎
0
𝑏
1
𝑏2
−1
,

𝑅
−2
= −2𝑐𝑎

0
𝑎2
−1
𝑏
0
− 4𝑐3𝑎

0
𝑏2
−1
𝑏
0

+ 2𝜆𝑎
−1
𝑏2
0
𝑏
−1
+ 2𝑐𝑎2
0
𝑎
−1
𝑏
−1

+ 2𝜆𝑎
−1
𝑏
1
𝑏2
−1
+ 4𝑐3𝑎

−1
𝑏2
0
𝑏
−1

+ 2𝑐𝑎2
−1
𝑎
1
𝑏
−1
− 8𝑐3𝑎

−1
𝑏
1
𝑏2
−1

− 2𝜆𝑎
0
𝑏2
−1
𝑏
0
+ 8𝑐3𝑎

1
𝑏3
−1

− 2𝜆𝑎
1
𝑏3
−1
− 2𝑐𝑎3
−1
𝑏
1
,

𝑅
−3
= 𝜆𝑎
−1
𝑏
0
𝑏2
−1
+ 𝑐𝑎2
−1
𝑎
0
𝑏
−1

− 𝑐3𝑎
−1
𝑏
0
𝑏2
−1
+ 𝑐3𝑎
0
𝑏3
−1

− 𝑐𝑎3
−1
𝑏
0
− 𝜆𝑎
0
𝑏3
−1
.

(64)

Solving this system of algebraic equations by using symbolic
computation, we obtain the following results.
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Case 1. We have

𝑎
0
= 𝑎
0
, 𝑎

1
= −

𝑖√6 (2𝑎2
0
+ 3𝑐2𝑏2

0
)

24𝑐𝑏
−1

,

𝑎
−1
=
𝑖√6

2
𝑐𝑏
−1
, 𝑏

0
= 𝑏
0
,

𝑏
1
=
2𝑎2
0
+ 3𝑐2𝑏2

0

12𝑐2𝑏
−1

, 𝑏
−1
= 𝑏
−1
,

𝜆 = −
𝑐3

2
,

(65)

where 𝑎
0
, 𝑏
0
, and 𝑏

−1
are free parameters. Substituting these

results into (62), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = (−
𝑖√6 (2𝑎2

0
+ 3𝑐2𝑏2

0
)

24𝑐𝑏
−1

exp(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
) + 𝑎
0

+ (𝑖√6/2) 𝑐𝑏
−1

exp(−(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))

× (
2𝑎2
0
+ 3𝑐2𝑏2

0

12𝑐2𝑏
−1

exp(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
) + 𝑏
0
+ 𝑏
−1

× exp(−(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))
−1

.

(66)

Case 2. We have

𝑎
0
= 𝑎
0
, 𝑎

1
= 0, 𝑎

−1
= 0,

𝑏
0
= 0, 𝑏

1
=

𝑎2
0

24𝑐2𝑏
−1

,

𝑏
−1
= 𝑏
−1
, 𝜆 = 𝑐3,

(67)

where 𝑏
−1

is a free parameter. Substituting these results into
(62), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = 𝑎
0
(

𝑎2
0

24𝑐2𝑏
−1

exp(𝑐𝑥 − 𝑐3𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑏
−1
exp(−(𝑐𝑥 − 𝑐3𝑡𝛼

Γ (1 + 𝛼)
)))

−1

.

(68)

If we set 𝑎2
0
= 24𝑐2 and 𝑏

−1
= 1, (68) becomes

𝑢 (𝑥, 𝑡) = 2𝑐√6sech(𝑐𝑥 − 𝑐3𝑡𝛼

Γ (1 + 𝛼)
) , (69)

which is the exact solution of the time fractional fmKdV
equation.

Case 3. We have

𝑎
0
=
𝑏
0
(𝑎2
−1
+ 3𝑐2𝑏2

−1
)

𝑎
−1
𝑏
−1

,

𝑎
1
=
𝑏2
0
(2𝑎2
−1
+ 3𝑐2𝑏2

−1
)

8𝑎
−1
𝑏2
−1

,

𝑎
−1
= 𝑎
−1
,

𝑏
0
= 𝑏
0
, 𝑏

1
=
𝑏2
0
(2𝑎2
−1
+ 3𝑐2𝑏2

−1
)

8𝑎2
−1
𝑏
−1

,

𝑏
−1
= 𝑏
−1
, 𝜆 =

𝑐 (𝑎2
−1
+ 𝑐2𝑏2
−1
)

𝑏2
−1

,

(70)

where 𝑎
−1

and 𝑏
−1

are free parameters. Substituting these
results into (62), we obtain the following exact solution:

𝑢 (𝑥, 𝑡) = (
𝑏2
0
(2𝑎2
−1
+ 3𝑐2𝑏2

−1
)

8𝑎
−1
𝑏2
−1

exp(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

+
𝑏
0
(𝑎2
−1
+ 3𝑐2𝑏2

−1
)

𝑎
−1
𝑏
−1

+ 𝑎
−1
exp(−(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))

× (
𝑏2
0
(2𝑎2
−1
+ 3𝑐2𝑏2

−1
)

8𝑎2
−1
𝑏
−1

exp(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑏
0
+ 𝑏
−1
exp(−(𝑐𝑥 − 𝜆𝑡𝛼

Γ (1 + 𝛼)
)))

−1

.

(71)

Case 4. We have

𝑎
0
=
𝑖√6

2
𝑐𝑏
0
, 𝑎

1
= −

𝑖√6

2
𝑐𝑏
1
,

𝑎
−1
= 0, 𝑏

0
= 𝑏
0
, 𝑏

1
= 𝑏
1
,

𝑏
−1
= 0, 𝜆 = −

𝑐3

2
,

(72)

where 𝑏
0
and 𝑏
1
are free parameters. Substituting these results

into (62), we obtain the following exact solution:

𝑢 (𝑥, 𝑡)

=
𝑖√6𝑐

2
(
𝑏
1
exp (𝑐𝑥 + (𝑐3/2) 𝑡𝛼/Γ (1 + 𝛼)) − 𝑏

0

𝑏
1
exp (𝑐𝑥 + (𝑐3/2) 𝑡𝛼/Γ (1 + 𝛼)) + 𝑏

0

) .

(73)
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If we set 𝑏
0
= 1 and 𝑏

1
= 1, (73) becomes

𝑢 (𝑥, 𝑡) =
𝑖√6𝑐

2
(sinh(𝑐𝑥 +

(𝑐3/2) 𝑡𝛼

Γ (1 + 𝛼)
)

+ cosh(𝑐𝑥 +
(𝑐3/2) 𝑡𝛼

Γ (1 + 𝛼)
) − 1)

× (sinh(𝑐𝑥 +
(𝑐3/2) 𝑡𝛼

Γ (1 + 𝛼)
)

+ cosh(𝑐𝑥 +
(𝑐3/2) 𝑡𝛼

Γ (1 + 𝛼)
) + 1)

−1

,

(74)

which is the exact solution of the time fractional fmKdV
equation.

Case 5. We have

𝑎
0
= 0, 𝑎

1
= −𝑖√6𝑐𝑏

1
, 𝑎

−1
= 𝑖√6𝑐𝑏

−1
,

𝑏
0
= 0, 𝑏

1
= 𝑏
1
, 𝑏

−1
= 𝑏
−1
,

𝜆 = −2𝑐3,

(75)

where 𝑏
1
and 𝑏

−1
are free parameters. Substituting these

results into (62), we have the following exact solution:

𝑢 (𝑥, 𝑡) = (−𝑖√6𝑐𝑏
1
exp(𝑥 + 2𝑐3𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑖√6𝑐𝑏
−1
exp(−(𝑥 + 2𝑐3𝑡𝛼

Γ (1 + 𝛼)
)))

× (𝑏
1
exp(𝑥 + 2𝑐3𝑡𝛼

Γ (1 + 𝛼)
)

+ 𝑏
−1
exp(−(𝑥 + 2𝑐3𝑡𝛼

Γ (1 + 𝛼)
)))

−1

.

(76)

If we take 𝑏
1
= 𝑏
−1
= 1, (76) becomes

𝑢 (𝑥, 𝑡) = −𝑖𝑐√6 tanh(𝑥 + 2𝑐3𝑡𝛼

Γ (1 + 𝛼)
) , (77)

which is the exact solution of the time fractional fmKdV
equation.

The established solutions have been checked by putting
them back into the original equation (52). To the best of our
knowledge, they have not been obtained in literature.

7. Conclusion

In this paper, we use the Exp-function method to calculate
the exact solutions for the time and space fractional nonlinear
partial differential equations. When the parameters take
certain values, the solitary wave solutions are derived from

the exponential form. Since this method is very efficient, reli-
able, simple, and powerful in finding the exact solutions for
the nonlinear fractional differential equations, the proposed
method can be extended to solve many systems of nonlinear
fractional partial differential equations. We hope that the
present solutions may be useful in further numerical analysis
and these results are going to be very useful in further future
research.
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