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Two new subclasses H p,k(’\’ A, B) and Qp,k(/\, A, B) of multivalent analytic functions are introduced. Distortion inequalities and

inclusion relation for H p>k("’ A, B) and Qp,k(/\, A, B) are obtained. Some results of the partial sums of functions in these classes are

also given.
1. Introduction Lemmal. Let f € A(p) defined by (2) satisfy
Throughout this paper, we assume that o)
N={L23..}, keN\{l}, —1<B<0, _Zzp[nu —B)-pA(1-A)3,,4]|a, < p(A-B). (6)
1 .
B<A<1l, 0<A<l
Then
Let A(p) denote the class of functions of the form
0 zf’ (2) p 1+ Az (z e U) )
f@=2+ Y az" (peN), @) A-N2P + M) L1+ Bz :
n=2p
which are analytic in the unit disk U = {z : |z| < 1}. where
For functions f and g analytic in U, we say that f is .
subordinate to g in U and write f(z) < g(z) (z € U), if there 18 i j 27
exists a Schwarz function w(z) in U such that fok(2) = % Z(; g f (ekz) > &= &Xp <T> )
=
lw@)l<lzl, f(z)=gw(2) (zeU). )
h-p
Let 0 ( K N)’
o0 8,k = - 9
fj(z)=ZP+Zan’jz"€A(p) (i=12). (@ Pk 1 <nkpeN>. ©
n=2p

Then the Hadamard product (or convolution) of f,(z) and
f>(2) is defined by Proof. For f € A(p) defined by (2), the function f,,(z) in
o (8) can be expressed as

(fi* ) (@) =2"+ Z an,lan,Zzn =(*fi)@. )

n=2p

(e8]
fox® =20+ ) 6, a,z" (10
The following lemma will be required in our investigation. P n;p mhe :
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P eN). a
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S

1 k-1 i )
_ jtn=p) _
O pk = P Z & =
=0

=

In view of (1) and (9), we see that
PAS, k)20 (n22p). (12)

Letinequality (6) hold. Then from (10) and (12) we deduce
that

PAMS, ., —nB > —B(n-

zf' (@) (1 -V 2P +Af,p (2)) - p
pA-Bzf' (2) [ (1= 1) 2? + M4 (2))
i ‘ Yooy (n=pAS, 1) @,2" 7
P(A=B)+ 32, (pAAS, . —nB)a,z"?|  (13)
< Zzozp ( - PA(Sn,p,k) Ianl
p(A-B) =32, (pAAS, ,x —nB)|a,|
<1 (Jz]=1).

Hence, by the maximum modulus theorem, we arrive at (7).
O

We now consider the following two subclasses of A(p).

Definition 2. A function f € A(p) defined by (2) is said to be
intheclass H,, (A, A, B) ifand only if it satisfies the coefficient
inequality (6).

Definition 3. A function f € A(p) defined by (2) is said to be
in the class Qp,k(/\, A, B) if and only if it satisfies
\ 2
Y n[n(1-B) - pA(1-A)8, ] la,| < p* (A-B).
n=2p
(14)

It is obvious from Definitions 2 and 3 that

!
F(2) e Qb AB) iff p(Z) € H, (LAB). (5)
If we write
n(l-B)—pA(l1-A)J, i
X, =
" A-B ’
p(A-B) a6)
n
ﬁn:_an (HZZP),
p
then it is easy to verify that
aﬁn_ﬁatxn<0 a/.?n_na(x
oL por "~ QA paA ’
17)
O _ 10%,

0B  poB
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Thus we obtain the following inclusion relations:
Qp,k (A')A>B) C Hp,k (1, 1,—1),

Qux (L A,B) € Q, (1,1,-1).

H,, (L A,B) ¢
(18)

Therefore, by Lemma 1, we see that each function in the
classes H p,k(/\, A, B) and Qp,k()», A, B) is starlike with respect
to k-symmetric points. Analytic functions which are starlike
with respect to symmetric points and related functions
have been extensively investigated in [1-6]. Recently, several
authors have obtained many important properties and char-
acteristics of multivalent analytic functions (see, e.g., [7-11]).

The main object of this paper is to present some distortion
inequalities of functions in the classes H,;(A, A, B) and
Qp,k()% A, B) which we have introduced here. In particular
some results of inclusion relation and convolution of func-
tions in these classes are also given. Further we derive several
interesting results of the partial sums of functions in these
classes.

2. Main Results
Theorem 4. Let p/k ¢ N and suppose that either

(@)1-B=p(l-A)and0<A< 1, o0r
(b) 1-B< p(1-A)and0 <A< (1-B)/p(l-A).

(@) If f € H, (A, A, B), then, for z € U,

A-
|2|? — —| I <

2p.
2= IZI (19)

P
<|f@|<lzf+ 2(1 B)
The bounds in (19) are best possible for the function f defined
by
A-B

2p
2(1—B)z . (20)

fl@)=2"+

(i) If f € Qp,k()% A, B), then, forz € U,

p-1 P( B), a2p1
el - ES 2 N
<|r' @) pielrt+ EE =D

The bounds in (21) are best possible for the function f defined
by
A-B 5,

_ P
f(z)=2z +4(1—B)Z

(22)

Proof. Let p/k ¢ N.Forn > 2p (n € N)and (n— p)/k ¢ N,

we have §,, i = 0,, ,x = 0,and so
1-B)-pA(1-A)S -
n( ) = PA( ) npk  2(1 B). (23)
p(A-B) A-B
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Forn > 2p (n € N) and (n — p)/k € N, we have SH’P,k =1

and

() If f(2) = 2° + ay,2°F +

H, (A, A, B), then, for

zeU,

n(1-B)~ pA(1—A)&,
p(A-B) o |f @)] < l2l” + |a,| l2I*
24
(2p+ 1)(1-B) - pA(1 -4 p(A-B)-2p(1-B)|a,,| P (33)
p(A-B) Tepr)(1-B) - pr(1-4)
If either (a) or (b) is satisfied, then |f (z)l > |z|P - 'a2p| |z|2P
2p+1)(1 _f) ;pm -4 25‘1 _:) oL @5) p(A-B)-2p(1-B)|a,| S (34)
p(A-B) - ~ (2p+1)(1-B)-pA(1-A)
Equalities in (33) are attained, for example, by
(i) If
_ P P(A_B) 2p+1
. JE = =B - pra-A) )
f(z)=2"+ Z a,2" € H,, (A, A,B), (26)
" (ii) If f(2) = 2 + ay)2® + - € Quu(L A, B), then, for
then it follows from (23) to (25) that zelU,
2(1 Z la| < 1. 27) If' @) < plal*™ +2p|ay,| 127!
n=2
? P [(A-B) -4 -B)|a,]]
Hence we have (2p+ 1)(1-B) - pA(1 —A)| 7 6
If @) < |2I? + |21 OZO: |a| |f, (Z)| > plalP™ - 2p |a2p| |21
n=2p
) b (28) i P l(A-B)-4(1-B) |a2p|]| o
< lzl s B)I z| (2p+1)(1-B) - pA(1-A)
o Equalities in (36) are attained, for example, by
@z |zl ~ 121 ) |a,
e ";f’l | @)  f@-= p A=
B ") [(2p+ 1)(1-B)- pA(1-A)]
> |2 - |2
2(1-B) 24,
forz e U. (37)
(ii) If Proof. Note that (1 — B)/p(1 — A) < A < 1 implies that
2(1-B) (2p+1)(1-B)-pA(1-A) 38)
(30) A-B p(A-B) '

fz) =2+ OZO: a,2" € Qui (A, A, B),

n=2p

then (23) to (25) yield

(i) For f(z) = 2* +a2P22P +--+ € H, (A, A, B), it follows
from (23), (24), and (38) that

(o]

2(1-B) &
((A—B)) Z nla,| < 1. (31)
P n=2p 2(1—B)|a | (2p+1)(1-B) - pA(1-A) Z |
2p n
This leads to (21). The proof of the theorem is complete. [ A-B p(A-B) n=2p+1
Theorem 5. Let <L
p 1-B

N I-B<p-4), p(1-A) <As (32) From this we can get (33).

(39)



4
(ii) For f(2) = 2P +a,,2°" +--- € Q,4(A, A, B), from (23),
(24), and (38) we deduce that
4U—B”a|+@p+00—m—pMj—m Si”W|
A-B 2 PZ (A-B) n=2p+1 !
<1
(40)
Hence we have (36). The proof of the theorem is complete.
O
Theorem 6. Let p/k € N.
D Iff e Hp,k()t, A, B), then, forz € U,
A-B
p_ 2p
e yry
(41)
A-B
p 2p
<|f@)| <zl + Ta B _A)|z| .
The bounds in (41) are sharp for the function f defined by
A-B
_ b 2p
f(z)=z +2(1—B)—)L(1—A)Z . (42)
(i) If f € Qp,k(/\, A, B), then, forz € U,
1 p(A-B) 2p-1
PR e —aa =
(43)
1 p-1 p(A-B) 2p-1
<|f @ =Pl 4 g A
The bounds in (43) are sharp for the function f defined by
A-B
_ b 2p
f)=2z +4(1—B)—2)L(1—A)Z . (44)

Proof. Let p/k € N.Forn > 2p (n € N)and (n—- p)/k € N,
wehaven =2p+k(l-1) (I € N), 8, i = 6,, ) = 1, and

1’[(1 — B) — PA(I - A) 8n,p,k
p(A-B)

_20-B)-A(1-4)

> _B . (45)

Forn > 2p (n € N) and (n — p)/k ¢ N, we have SH)P)k =
82p+1,pk = 0> and so

n(l1-B)-pA(1-A)J, i
p(A-B)

N (2p+1)(1-B)
p(A-B)

(46)

_20-B)-A(1-4)
> - .

Abstract and Applied Analysis
(i) If

f(z)=2"+ Z a,z" € H,; (A, A, B), (47)
n=2p

then it follows from (45) and (46) that
ZU_E_AO_A)§LM<1

A-B 5, (48)
Hence we have
If @] < lzl” + 121 ) |a,|
n=2p
A-B
p 2p
e aa
(49)
If @] 2 Izl =121 Y |a,|
n=2p
A-B
p_ 2p
2 = Ty T ra -y
forz e U.
(ii) If
f@=2"+) az"€Q,(AAB), (50)
n=2p
then (45) and (46) yield
2(1-B)-A(1-4) &
nla, < 1. 51
S(A_B) Zzp |a| (51)
This leads to (43). Thus we complete the proof. O

Next, we generalize the inclusion relation Qp,k(/\, A,B) C
Hp)k(/\, A, B) which is mentioned in (18).

Theorem 7. If-1 < D < 0, then

Qux (A, A,B) ¢ H,; (A,C(D), D), (52)
where
(1-D)(A-B)
D)=D+ - ————=.
C (D) + 20-B) (53)
Proof. Since B< A < 1and -1 < D < 0, we see that
D<C(D)<1. (54)

Let f € Qui(A, A B). In order to prove that f ¢
Hp)k(/\, C(D), D), we need only to find the smallest C (D <
C < 1) such that

?’l(l - D) - P)\(l - C) 6n,p,k
p(C-D)

(55)
n [n(l -B)-pA(1-A) 5n,p,k]

p*(A-B)
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for all n > 2p, that is, that

(1-D)(n-pAS, ,x) s
p(C-D) Pk

_n {(1 —B)(n-pAd, )

P p(A-B)

(56)

+ /\6,,,1,,,{]» .

Forn > 2pand (n - p)/k € N, (56) is equivalent to

. 1-D
(n=p)A/(n-pr)+n(1-B)/p(A-B) (57)
=¢(\n).

C>

Noting (1), a simple calculation shows that (d¢(A, x))/dx < 0
for all real x > 2p and 0 < A < 1, and so the function ¢(A, n)
is decreasing in n (n > 2p). Therefore

eN ) N

¢N).

#(12p) (

o(ur((k] 1))

Forn > 2pand (n— p)/k ¢ N, (56) becomes

¢ (A,n) < (58)

v

p(1-D)(A-B) _

C>2D+ "(_B) =¢(0,n),

¢(0,2p+1) (%eN), (59)

O lwan (Een).

¢(0,2p)

Consequently, by taking

(1-D)(A-B)

C(D)=¢(0,2p) =D+ 20-B)

» (60)

it follows from (55) to (60) that f € Hp)k(/\, C(D), D). The
proof is complete. O

Remark 8. 1f we take D = B in Theorem 7, then from (1) we
have C(D) = (A + B)/2 < A. This shows that

A+B
Qi (W AB) € Hyy (W 552, B) € Hye (L AB). (6D
Theorem 9. Let f € Hp’k()t, A, B). Then

(f*hy)(z) #0 (z€U; 0€C, |o|=1), (62)

5
where
2p 2p+1
h (2) = p_2(1+Ba)' zr 1+ Bo _z
0(A-B) 1-z po(A-B) (1-z)
A(l + Ao)
z*P p
ZeN),
1-2zk <kE )
ok (2) = 4 k(p/kl+1)+p
p z <£¢N>
1-zk k

(63)
Proof. For f € Hp,k()\, A, B), from Lemma 1 we have (7),
which is equivalent to
zf' (2)
(L-NzF + Ay (2)

1+ Ao
1+ Bo (64)

(zeU; 0€C, |o|=1, 1+ Bo#0)
or to
p(1+A0) [(1=1) 2" + Af,; (2)] - (1 + Bo) zf' (2) #0

(zeU; 0€C, |ol=1).

(65)
Obviously
2 = f(z) % 2%,
! 00
M = f(z) * <ZP+1 Z nzn>
p n=2p (66)
2p 2p+1
=f(z)*(zp+ 22 +Z—2)
-z p(l-2)
If we put
fox @) = f () (28 + gpx (2), (67)
then, for p/k € N,
00 e 2p
9ok (z) = Z 8n’P’kz” = Zzzp+lk = z—k’ (68)
n=2p prd 1-z
and, for p/k ¢ N,
0 k([p/k]+1)+p
— k([p/Kl+)+p _ %
gp,k(z)—;Z PR = = — (69)
Now, making use of (65) to (69), we arrive at
f (2) * {p(l +A0) [1=1)2" + A (2" + g, (2))]
2 2p+1 70)
2pz°P ZPPF
-(1+B P 0
(1+ o)(pz + - + (1_Z)2)} #

forz € U, 0 € C, and |o| = 1. This gives the desired result
(62). The proof of the theorem is complete. O



Corollary 10. Let f € Q, (A, A, B). Then

f(2) * zh (2) #0

where h,(z) is the same as in Theorem 9.

(zeU; 0€C, |ol=1), (71)

Proof. Since f € Qp)k(/\, A, B) if and only if

zf' ()
l?—e@m@Aﬁy (72)
it follows from Theorem 9 that
zhf, (2)
f(z)* T
, 73)
:ﬁ;”*hﬂm¢o (zeU; geC, |o] = 1).
Thus we complete the proof. O

Finally, we derive certain results of the partial sums of
functions in the classes H P’k(A, A, B) and Qp,k(/\, A, B).

Let f € A(p) be given by (2) and define the partial sums
s,(z) and s,,(z) by

Sy (Z) = ZP)
2p+m=2 (74)
sm@)=2"+ Y az" (meN\{1}).
n=2p

For simplicity we use the notation «, (n > 2p) defined by
(16).

Theorem 11. Let f € Hp,k()t, A, B) and let either

(@1-B=p(l-A)and0< A<, or
(b)1-B< p(1-A)and0 <A< (1-B)/p(1-A).

Then, for m € N, we have

f(2)

Re<5m (z)) >1- P (z€U), (75)
S (Z) “2p+m—1

Re< @ ) > 1 P (zeU). (76)

The bounds in (75) and (76) are best possible for each m.

Proof. If either (a) or (b) is satisfied, then, for n > 2p,

n(1-B)-pA(1-A)6,,, 1-B
an: = 21)
p(A-B) A-B
i _(n+1)(1-B) = pA(1 = A) 8,1 pk
n+1 p(A_B)
(77)
LB A ) (O~ B
g p(A-B)

>, + 1=B-pr(1-4) >,
p(A-B)

Abstract and Applied Analysis

Let f € H, (A, A, B). Then it follows from (77) that

2p+m=2 00
z |an| T X pim-1" z |an|
n=2p n=2p+m-1
(78)
<Y a1 (meN\{1}).
n=2p
If we put
_ f@ )
pl(z)_.1+-a2p+m1<5m(z) 1 (79)

forz € Uand m € N\ {1}, then p,(0) = 1 and we deduce
from (78) that

p(2) -1

pi(z)+1

0o n-p
“2p+m—1 Zn=2p+m—1 anz

2p+m—2 _ —
2 (1 + Zn’;z:‘ a,z" P) + 0 p it Dozpim-1 Gn?" P

< (x2p+m71 ZEZZPer—l |an|
2-2 Zflg;n_z lanl ~ Xpim-1 Zﬁzp+m4 |an|

1 (zeU; meN\{1}).

IN

(80)

This implies that Re{p,(z)} > 0 for z € U, and so (75) holds
true form € N\ {1}.

Similarly, by setting

Sm (2)
j23 (2) = (1 + “2p+m—1) m ~ Xpim-1> (81)
it follows from (78) that
p,(2) -1
pa(2)+1
= (—(1 +(x2p+m—1) Z anz"_P>
n=2p+m-1

2p+m=2
X <2<1 + ) anz"_P>
n=2p

o -1
+ (1 - a2p+m71) Z anznp>

n=2p+m-1

< (1 + “2p+m—1) Z;;“;prn—l |an|
- 2-2 2222%2 |an| - (“2p+m—1 - 1) 2;22p+m—1 |an|

<1 (zeU; meN\{1}).

(82)

Hence we have (76) form € N \ {1}.
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For m = 1, replacing (78) by

[eS) &)
(X2p Z |an| < Z Xy |an| <1 (83)
n=2p n=2p

and proceeding as the above, we see that (75) and (76) are also
true.

Furthermore, taking the function f defined by

2p+m—1

f@=2"+=2 €H, (LAB),  (84)

2p+m—1

we have s,,(z) = z%,

Re(f(Z)>_>1_ 1

i
as z — exp(—),
ptm-—1

Sm (Z) “2p+m—1
0
Re<sm(z)>—> 2Pl asz— 1.
f(Z) L+ “2p+m—1
(85)
Thus the proof of Theorem 11 is completed. O

Remark 12. Replacing H, (A, A, B) by Q, (A, A, B), it fol-
lows from Theorem 11 that inequalities (75) and (76) are true.
In Theorem 13 we improve the bounds in (75) and (76) for
fe Qp)k(/\, A, B).

Theorem 13. Let f € Qp,k()t, A, B) and let either (a) or (b) in
Theorem 11 be satisfied. Then, for m € N, one has

f @ P
e<5m(z)>>l_(2P+m_l)a2p+m1 (ZGU)’
% ) (86)
S (2) prm—1l)o;,,
Re<f(z)>>p+(2p+m_1)“2p+m—l (ZGU)'

The bounds in (86) are sharp for the function f defined by

2p+m—1

f(z)=2"+ P

2p+m—1)appmy €Qpr (LA B). (87)

Proof. In view of the assumptions of Theorem 13, it follows
from (77) that

2pim=2 Cp+m-1)oy,n, &
Z |an| + 2p+m 1 Z lanl
n=2p P n=2p+m-1
S n
< Z —a,la,l <1 (meN\{1}), (88)
n=2p

(o)

00
o, Z |an| < Z %(xn |an| <1

n=2p n=2p

7
If we put
(2P tm-= 1) X p+m-1 ( f (z) >
zZ) = 1 + - 1 >
p1(2) o 5 @)
(2p+m-1) % pim-1 ) s, (2)
z)=|1+ m (89)
P2 ( p @
_ (2p +m-— 1) Xopim-1
p bl
then (88) leads to Re (pj(z)) >0(zeU; meN; j=1,2).
Hence we have (86). Sharpness can be verified easily. O]
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