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An approximation scheme is defined for incompressible miscible displacement in porous media.
This scheme is constructed by two methods. Under the regularity assumption for the pressure,
cubic Hermite finite element method is used for the pressure equation, which ensures the
approximation of the velocity smooth enough. A second order characteristic finite element method
is presented to handle the material derivative term of the concentration equation. It is of second
order accuracy in time increment, symmetric, and unconditionally stable. The optimal L2-norm
error estimates are derived for the scalar concentration.

1. Introduction

In this paper, we will consider the following incompressible miscible displacement in porous
media, which is governed by a coupled system of partial differential equations with initial
and boundary values. The pressure is governed by an elliptic equation and the concentration
is governed by a convection-diffusion equation [1–6] as follows:

−∇ ·
(
k

μ
∇p

)
≡ ∇ · u = q, x ∈ Ω, t ∈ J, (1.1a)

φ
∂c

∂t
+ u · ∇c − ∇ · (D∇c) = (c̃ − c)q̃, x ∈ Ω, t ∈ J, (1.1b)

u · ν = (D(x)∇c) · ν = 0, x ∈ ∂Ω, t ∈ J, (1.1c)

c(x, 0) = c0(x), x ∈ Ω, (1.1d)
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where Ω is a bounded domain in R2, J = (0, T], and q̃ = max{q, 0} is nonzero at injection
wells only. The variables in (1.1a)–(1.1d) are the pressure p(x, t) in the fluid mixture, the
Darcy velocity u = (u1, u2)

′, and the relative concentration c(x, t) of the injected fluid. The ν
is the unit outward normal vector on boundary ∂Ω.

The coefficients and data in (1.1a)–(1.1d) are k(x), the permeability of the porous
media; μ(x), the viscosity of the fluid mixture; q(x, t), representing flow rates at wells; φ(x),
the porosity of the rock; c̃(x, t), the injected concentration at injection wells (q > 0) and the
resident concentration at production wells (q < 0); q̃ = max(q, 0). Here, for the diffusion
coefficient, we consider a dispersion-free case [5, 6] as follows:

D = φdmI, (1.2)

where dm is the molecular diffusivity and I is a 2 × 2 identity matrix. Furthermore, a
compatibility condition

∫
Ω q(x, t)dx = 0 must be imposed to determine the pressure.

The pressure equation is elliptic and easily handled, but the concentration equation
is parabolic and normally convection dominated. It is well known that standard Galerkin
scheme applied to the convection-dominated problems does not work well and produces
excessive numerical diffusion or nonphysical oscillation. The characteristic method has
been introduced to obtain better approximations for (1.1a)–(1.1d), such as characteristic
finite element method [3–7], characteristic finite difference method [8], the modified of
characteristic finite element method (MMOC-Galerkin) [9], and the Eulerian-Lagrangian
localized adjoint method (ELLAM) [10].

We had considered a combined numerical approximation for (1.1) in [11]. Standard
mixed finite element was used for Darcy velocity equation and a characteristics-mixed finite
element method was presented for approximating the concentration equation. Characteristic
approximation was applied to handle the convection term, and a lowest order mixed finite
element spatial approximation was adopted to deal with the diffusion term. Thus, the scalar
unknown concentration and the diffusive flux can be approximated simultaneously. This
approximation conserves mass globally. The optimal L2-norm error estimates were derived.

It should be pointed out that the works mentioned above all gave one order accuracy
in time incrementΔt. That is to say, the first order characteristic method in timewas analyzed.
As for higher order characteristic method in time, Rui and Tabata [12] used the second
order Runge-Kutta method to approximate the material derivative term for convection-
diffusion problems. The scheme presented was of second order accuracy in time increment
Δt, symmetric, and unconditionally stable. Optimal error estimates were proved in the
framework of L2-theory. Numerical analysis of convection-diffusion-reaction problems with
higher order characteristic/finite elements were analyzed in [13, 14], which extended the
work [12]. The l∞(L2) error estimates of second order in time increment Δt were obtained.

The goal of this paper is to present a second order characteristic finite element method
in time increment to handle the material derivative term of the concentration equation
of (1.1a)–(1.1d). It is organized as follows. In Section 2, we formulate the second order
characteristic finite element method for the concentration and cubic Hermite finite element
method for the pressure, respectively. Then, we present a combined approximation scheme.
In Section 3, we analyze the stability of the approximation scheme for the concentration
equation. In Section 4, we derive the optimal-order L2-norm error estimates for the scalar
concentration. They are of second order accuracy in time increment, symmetric, and
unconditionally stable. We conclude our results in Section 5.
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2. Formulation of the Method

2.1. Statements and Assumptions

In this paper, we adopt notations and norms of usual Sobolev spaces. For periodic functions,
we use the notation as in [4] as follows. Let:

Wk
p = W̃k

p (Ω) =
{
ψ :

∂αψ

∂xα
∈ Lp(Ω) for |α| ≤ k, periodic

}
(2.1)

be the periodic Sobolev space on Ωwith the usual norm. If p = 2, we write

Hk = H̃k(Ω) = W̃k
2 (Ω) (2.2)

with norm

∥∥ψ∥∥k =
∥∥ψ∥∥H̃k(Ω),

∥∥ψ∥∥ =
∥∥ψ∥∥0 =

∥∥ψ∥∥L2(Ω). (2.3)

Moreover, we adopt some notations for the functional spaces involved, which were
used in [12–14]. For a Banach space X and a positive integer m, spaces Cm([0, T], X) and
Hm((0, T), X) are abbreviated as Cm(X) andHm(X), respectively, and endowed with norms

∥∥ϕ∥∥Cm(X) := max
t∈[0,T]

{
max
j=0,...,m

∥∥∥ϕ(j)(t)
∥∥∥
X

}
,

∥∥ϕ∥∥Hm(X) :=

⎛
⎝
∫T
0

m∑
j=0

∥∥∥ϕ(j)(t)
∥∥∥2

X
dt

⎞
⎠

1/2

, (2.4)

where ϕ(j) denotes the jth derivative of ϕwith respect to time. The Banach spaceZm is defined
by

Zm =
{
f ∈ Cj

(
Hm−j(Ω)

)
; j = 0, . . . , m

}
, (2.5)

equipped with the norm

∥∥ϕ∥∥Zm := max
{∥∥ϕ∥∥Cj (Hm−j ); 0 ≤ j ≤ m

}
. (2.6)

We also require the following assumptions on the coefficients in (1.1) [3]. Let
a∗, a

∗, φ∗, φ
∗, and K∗ be positive constants such that

0 < a∗ ≤
k(x)
μ(x)

≤ a∗, 0 < φ∗ ≤ φ(x) ≤ φ∗,

∣∣q̃(x, t)∣∣ +
∣∣∣∣∂q̃∂t (x, t)

∣∣∣∣ ≤ K∗.

(C)

Other assumptions will be made in individual theorems as necessary.
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2.2. A Cubic Hermite Element Method for the Pressure

The variational form for the pressure equation (1.1a) is equal to the following:

(
k

μ
∇p,∇χ

)
=
(
q(t), χ

)
, χ ∈ H1(Ω), t ∈ J. (2.7)

For hp > 0, we discretize (2.7) in space on a quasiuniform triangle mesh Thp of Ω with
diameter of element ≤ hp. Let Whp ⊂ L2(Ω) be a cubic Hermite finite element space for this
mesh. The finite element method for the pressure, given at a time t ∈ J , consists of P ∈ Whp

such that

(
k

μ
∇P,∇χ

)
=
(
q(t), χ

)
, ∀χ ∈Whp. (2.8)

Since the left-hand side of (2.7) ((2.8), resp.) is a continuous and coercive bilinear form
and the right-hand side of (2.7) ((2.8), resp.) is a continuous linear functional, existence and
uniqueness of p (P , resp.) are ensured obviously [15].

By the theory of the cubic Hermit element, the finite element space Whp possess the
following approximation property [15, 16]:

inf
χ∈Whp

∥∥g − χ
∥∥
s ≤ Kh

4−s
p

∥∥g∥∥4, s = 0, 1, ∀g ∈ H4(Ω), (2.9)

where K is a positive constant independent of hp.
Define Π: C2(Ω) → Whp is the interplant operator. Then, we have the following

theorem.

Theorem 2.1. Let p and P be the solutions of (1.1a)–(1.1d) and (2.8), respectively, and assume
p ∈ H4(Ω). Then, there exists a positive constant K independent of hp such that

∥∥∇(p − P)∥∥ ≤ Kh3p
∥∥p∥∥4. (2.10)

Proof. By Céa lemma, we have

a
∥∥∇(p − P)∥∥2 ≤

(
k

μ
∇
(
p − P

)
,∇
(
p − P

))

=
(
k

μ
∇
(
p − P

)
,∇
(
p −Πp

))
+
(
k

μ
∇
(
p − P

)
,∇
(
Πp − P

))

=
(
k

μ
∇
(
p − P

)
,∇
(
p −Πp

))

≤ a∗
∥∥∇(p − P)∥∥∥∥∇(p −ΠP

)∥∥.

(2.11)
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Then by (2.9), we can derive

∥∥∇(p − P)∥∥ ≤ Kh3p
∥∥p∥∥4. (2.12)

2.3. A Second Order Characteristic Method for the Concentration

Now, we define the characteristic lines associated with vector field u and recall some classical
properties satisfied by them. Thus, for given (x, t) ∈ Ω × [0, T], the characteristic line through
(x, t) is the vector function Xe(x, t; ·) solving the following initial value problem:

∂Xe

∂τ
(x, t; τ) = v(Xe(x, t; τ), τ), Xe(x, t; τ) = x, (2.13)

where v(Xe(x, t; τ), τ) := u(Xe(x, t; τ), τ)/φ.
Next, assuming they exist, we denote by Fe (by L, resp.) the gradient ofXe (of v, resp.)

with respect to the space variable x, that is,

(Fe)rs(x, t; τ) :=
∂(Xe)r
∂xs

(x, t; τ), Lrs(x, t) :=
∂vr
∂xs

(x, t). (2.14)

We adopted some propositions and lemmas from [13].

Proposition 2.2. If v ∈ C0(Cn(Ω)) for n ≥ 1 an integer, then Xe ∈ C0(Ω × [0, T] × [0, T]) and it is
Cn with respect to the x variable.

In order to compute second order approximations of matrices Fe and F−1
e , we need the

following equations:

∂Fe
∂τ

(x, t; τ) = L(Xe(x, t; τ), τ)Fe(x, t; τ),

∂2Fe
∂τ2

(x, t; τ) = ∇
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(x, t; τ).

(2.15)

Proposition 2.3. If v ∈ C0(C1(Ω)), then

‖Fe(x, t; τ)‖ ≤ e‖v‖C0(C1(Ω))|τ−t|, ∀x ∈ Ω, t, τ ∈ [0, T]. (2.16)

Proposition 2.4. If v ∈ C0(C2(Ω)) ∩ C1(C1(Ω)), then Fe satisfies the Taylor expansions as

Fe(x, t; s) = I + (s − t)L(x, t)

+
∫ t
s

(τ − s)∇
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(x, t; τ)dτ,

(2.17)
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and its inverse, F−1
e , satisfies the Liouville theorem as

F−1
e (x, t; s) = I + (s − t)L(Xe(x, t; s), s)

−
∫ t
s

(τ − t)∇
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)Fe(Xe(x, t; s), s; τ)dτ.

(2.18)

By using Liouville’s theorem and the chain rule, we obtain

∂

∂τ
detF−1

e (x, t; τ) = −detF−1
e (x, t; τ)divv(Xe(x, t; τ), τ),

∂2

∂τ2
detF−1

e (x, t; τ) = − detF−1
e (x, t; τ)

(
(divv)2(Xe(x, t; τ), τ)

× div
(
∂v

∂t
+ Lv

)
(Xe(x, t; τ), τ)

−
(
L · LT

)
(Xe(x, t; τ), τ)

)
.

(2.19)

Proposition 2.5. If v ∈ C0(C1(Ω)), then

detFe(x, t; τ) ≤ e‖v‖C0(C1(Ω))|τ−t|, ∀x ∈ Ω, t, τ ∈ [0, T]. (2.20)

Proposition 2.6. If v ∈ C0(C2(Ω)) ∩ C1(C1(Ω)), then detF−1
e satisfies

detF−1
e (x, t; s) = 1 − (s − t)divv(x, t) +

∫ t
s

(τ − s) ∂
2

∂τ2

(
detF−1

e

)
(x, t; τ)dτ. (2.21)

Variational Formulation

From the definition of the characteristic curves and by using the chain rule, it follows that

φ
dc

dτ
(Xe(x, t; τ), τ) = φ

∂c

∂t
(Xe(x, t; τ), τ) + u(Xe(x, t; τ), τ) · ∇c(Xe(x, t; τ), τ). (2.22)

By writing (1.1b) at point Xe(x, t; τ) and time τ and using (2.22), we have

φ
dc

dτ
(Xe(x, t; τ), τ) − ∇ · (D∇c)(Xe(x, t; τ), τ) =

(
(c̃ − c)q̃

)
(Xe(x, t; τ), τ). (2.23)

Before giving a week formulation of (2.23), we adopted a lemma from [13], which can
be considered as Green’s formula.
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Lemma 2.7. Let X : Ω → X(Ω), X ∈ C2(Ω) be an invertible vector valued function. Let F = ∇X
and assume that F−1 ∈ C1(Ω). Then

∫
Ω
divw(X(x))ψ(x)dx =

∫
Γ
F−Tn(x) ·w(X(x))ψ(x)dAx

−
∫
Ω
F−1w(X(x)) · ∇ψ(x)dx −

∫
Ω
divF−T ·w(X(x))ψ(x)dx,

(2.24)

withw ∈ H1(X(Ω)) a vector valued function and ψ ∈ H1(Ω) a scalar function.

Now, we can multiply (2.23) by a test function ψ ∈ H1(Ω), integrate in Ω, and apply
the usual Green’s formula and (2.24) with X(x) = Xe(x, t; τ), obtaining

∫
Ω
φ
dc

dτ
(Xe(x, t; τ), τ)ψ(x)dx +

∫
Ω
F−1
e (x, t; τ)D∇c(Xe(x, t; τ)) · ∇ψ(x)dx

+
∫
Ω
divF−T

e (x, t; τ) ·D∇c(Xe(x, t; τ), τ)ψ(x)dx

=
∫
Ω

(
(c̃ − c)q̃

)
(Xe(x, t; τ), τ)ψ(x)dx.

(2.25)

2.4. The Combined Approximation Scheme

Wenowpresent our sequential time-stepping procedure that combines (2.8) and (2.25). Part J
into 0 = t0 < t1 < · · · < tN = T , withΔtnc = tn− tn−1. The analysis is valid for variable time steps,
but we drop the superscript from Δtc for convenience. For functions f on Ω × J , we write
fn(x) for f(x, tn). As in [3], let us part J into pressure time steps 0 = t0 < t1 < · · · < tM = T ,
with Δtmp = tm − tm−1. Each pressure step is also a concentration step, that is, for eachm there
exists n such that tm = tn, in general, Δtp > Δtc. We may vary Δtp, but except for Δt1p we drop
the superscript. For functions f onΩ× J , we write fm(x) for f(x, tm); thus, subscripts refer to
pressure steps and superscripts to concentration steps.

If concentration step tn relates to pressure steps by tm−1 < tn ≤ tm, we require a
velocity approximation for (2.25) based on Um−1 and earlier values. If m ≥ 2, take the linear
extrapolation ofUm−1 andUm−2 defined by

EUn =
(
1 +

tn − tm−1
tm−1 − tm−2

)
Um−1 −

tn − tm−1
tm−1 − tm−2

Um−2; (2.26)

ifm = 1, set

EUn = U0. (2.27)

We retain the superscript on Δt1p because EUn is first-order correct in time during the first
pressure step and second-order during later steps.
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Let X : (0, T) → R2 be a solution of the ordinary differential equation

dX

dt
= v̂(X, t), where v̂(X, t) :=

EU(X, t)
φ

. (2.28)

Then, we can write

φ
d

dt
c(X, t) = φ

∂c

∂t
+ EU(X, t) · ∇c. (2.29)

Subject to an initial condition X(tn+1) = x, we get approximate values of X at tn by the Euler
method and the second order Runga-Kutta method, respectively,

Xn
E(x) = x −Δtcv̂n+1(x),

Xn
RK(x) = x −Δtcv̂n+(1/2)

(
x − Δtc

2
v̂n+1(x)

)
.

(2.30)

Next, assuming they exist, we denote by FnE (resp., by LE) the gradient of Xn
E (resp., of

v̂(x))with respect to the space variable x, that is, [13, 14]

FnE(x) := ∇Xn
E(x) = I(x) −ΔtcLn+1E (x). (2.31)

Hypothesis 2.8. For convenience, we assume that (1.1a)–(1.1d) is Ω-periodic ([3]), that is, all
functions will be assumed to be spatially Ω-periodic throughout the rest of this paper.

This is physically reasonable, because no-flow conditions (1.1c) are generally treated
by reflection, and, in general, interior flow patterns are much more important than boundary
effects in reservoir simulation. Thus, the boundary conditions (1.1c) can be dropped.

Lemma 2.9. Under Hypothesis 2.8, if ‖v̂‖C0(W1,∞(Ω))Δtc < 1/2, we can see that

Xn
E

(
Ω
)
= Xn

RK

(
Ω
)
= Ω. (2.32)

Lemma 2.10. Under Hypothesis 2.8, if ‖v̂‖C0(W1,∞(Ω))Δtc < 1/2, we have

(
FnE
)−1(x) = I + ΔtcLn+1E (x) + (Δtc)2

(
Ln+1E (x)

)2
+O

(
(Δtc)3

)
. (2.33)

Corollary 2.11. Under the assumptions of Lemma 2.10, for all x ∈ Ω, we have

det
(
FnE
)−1(x) = 1 + Δtc div v̂n+1(x) +O

(
(Δtc)2

)
,

∣∣∣det (FnE)−1(x)
∣∣∣ ≤ 1 + Δtc

∥∥∥v̂n+1(x)
∥∥∥
C0(W1,∞(Ω))

+O
(
(Δtc)2

)
.

(2.34)
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The time difference for (2.25) will be combined with a standard finite element in the
space variables. For hc > 0, we discrete (2.25) in space on a quasi-uniformmeshThc ofΩwith
diameter of element ≤ hc. LetMhc ⊂ H1(Ω) be a finite element space.

A characteristic discretization of the weak form (2.25) is given by {Cn}Nn=1 ∈ Mhc such
that

(
φ
Cn+1 − Cn ◦Xn

RK

Δtc
, ϕ

)
+

(
D
∇Cn+1 + (∇Cn) ◦Xn

E

2
,∇ϕ

)

+
Δtc
2
(
D(Ln∇Cn) ◦Xn

E,∇ϕ
)
+
Δtc
2
(
(∇div v̂n ·D∇Cn) ◦Xn

E, ϕ
)

+
1
2

(
q̃n+1Cn+1 +

(
q̃nCn) ◦Xn

E, ϕ
)
=

1
2

(
q̃n+1c̃n+1 +

(
q̃nc̃n

)
◦Xn

E, ϕ
)
, ∀ϕ ∈Mhc,

(2.35a)

C0 = C̃0, ∀x ∈ Ω, (2.35b)

where g ◦Xn
E and g ◦Xn

RK are compositions

(
g ◦Xn

E

)
(x) = g

(
Xn
E(x)

)
,

(
g ◦Xn

RK

)
(x) = g

(
Xn
RK(x)

)
, (2.36)

C̃0 is an initial approximation of exact solution c0(x) into Mhc , which will be defined in
Section 5.

At each pressure time step tm, we define

Um =
k

μ
∇Pm, (2.37)

C∗ = min(max(C, 0), 1) (2.38)

is the truncation of C to [0, 1]. Then at tm, (2.8) is the following:
(
k

μ
∇Pm,∇χ

)
=
(
qm, χ

)
, ∀χ ∈ Whp, (2.39a)

(Pm, 1) = 0. (2.39b)

The steps of calculation are as follows.

Step 1. C0 known → solve (U0, P0) by (2.37), (2.39a) and (2.39b);

Step 2. by (2.35a) and (2.35b) to solve C1 → then by (2.35a) and (2.35b) to solve C2;

Step 3. analogously, {Cj−1}n1j=1 known → {Cj}n1j=1 such that tn1 = t1;

Step 4. then by (2.37), (2.39a) and (2.39b) for (U1, P1);

Step 5. calculate the approximations in turn analogously to get the pressure, velocity, and
concentration at other time step, respectively.
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Throughout the analysis,K will denote a generic positive constant, independent of hc,
hp,Δtc, andΔtp, but possibly depending on constants in (C). Similarly, εwill denote a generic
small positive constant.

3. Stability for the Concentration Equation

In this section, we derive the stability for the concentration equation. For a given series of
functions {ϕ}Nn=0, we define the following norms and seminorm:

∥∥ϕ∥∥l∞(L2) = max
{∥∥ϕn∥∥; 0 ≤ n ≤N

}
,

∥∥ϕn∥∥l2(L2) =

{
Δtc

N∑
n=0

∥∥ϕn∥∥2

}1/2

,

∥∥ϕ∥∥′
l2(H1) =

{
Δtc

N−1∑
n=0

∥∥∥∇ϕn+1 + (∇ϕn) ◦Xn
E

∥∥∥2

D

}1/2

,

∥∥ϕ∥∥2
φ =

(
φϕ, ϕ

)
,

∥∥ϕ∥∥2
D =

(
Dϕ, ϕ

)
,

∥∥ϕ∥∥2
D =

(
q(x, t)ϕ, ϕ

)
.

(3.1)

In the following sections, we use positive constants as

c0 = c0
(
‖EU‖C0(L∞)

)
, c1 = c1

(
‖EU‖l∞(W (1,∞))

)
, c2 = c2

(
‖EU‖C0(W (2,∞))∩C1(L∞)

)
. (3.2)

In our analysis, we need some lemmas.

Lemma 3.1. Under the definitions (2.26) and (2.30), for n = 0, . . . ,N and ϕ ∈ L2(Ω), it holds that

∥∥ϕ ◦Xn
i

∥∥2 ≤ (1 + c1Δtc)
∥∥ϕ∥∥2

, i = 1, 2. (3.3)

Proof. We only need to show a proof in the case i = 1. Let J1 be the Jacobian matrix of the
transformation y = Xn

E(x) = x − vn(x)Δtc as

J1 =

⎛
⎜⎜⎜⎜⎝

1 −
∂vn1 (x)
∂x1

Δtc −
∂vn1 (x)
∂x2

Δtc

−
∂vn2 (x)
∂x1

Δtc 1 −
∂vn2 (x)
∂x2

Δtc

⎞
⎟⎟⎟⎟⎠. (3.4)

According to the proof of (3.23) in [4], we have

∣∣∣∣∣
∂vnj (x)

∂xi
Δtc

∣∣∣∣∣ ≤ Kh−1Δtc. (3.5)
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Since Δtc = o(hc), for hc sufficiently small, we see that

|det J1 − 1| ≤ c1Δtc. (3.6)

Following (3.6), we have

∥∥ϕ ◦Xn
E

∥∥2 =
∫
Ω
ϕ
(
Xn
E(x)

)2
dx =

∫
Ω
ϕ
(
y
)2(det J1)−1dy. (3.7)

We complete the proof.

Suppose that {Cn}Nn=0 ⊂ H1(Ω) and c̃ ∈ C0(L2) be given. We define linear formsAn+1/2
h

and Fn+1/2
h

onMhc for n = 0, . . . ,N − 1 by

〈
An+1/2

h
C, ϕ

〉
≡
(
φ
Cn+1 − Cn ◦Xn

RK

Δtc
, ϕ

)
+

(
D
∇Cn+1 + (∇Cn) ◦Xn

E

2
,∇ϕ

)

+
Δtc
2
(
D(Ln∇Cn) ◦Xn

E,∇ϕ
)
+
Δtc
2
(
(∇div v̂n ·D∇Cn) ◦Xn

E, ϕ
)

+
1
2

(
q̃n+1Cn+1 +

(
q̃nCn) ◦Xn

E, ϕ
)
,

〈
Fn+1/2
h

, ϕ
〉
≡ 1

2

(
q̃n+1c̃n+1 +

(
q̃nc̃n

)
◦Xn

E, ϕ
)
,

(3.8)

where ϕ ∈Mhc .

Lemma 3.2. Let {Cn}Nn=0 be a solution of (2.35a) and (2.35b). Then it holds that

〈
An+1/2

h C,Cn+1
〉
≥ DΔtc

(
1
2
‖Cn‖2φ +

Δtc
4

‖∇Cn‖2D +
Δtcq∗
4

‖Cn‖2
)

+
1

2Δtc

∥∥∥Cn+1 − Cn ◦Xn
RK

∥∥∥2

φ

+
1
4

∥∥∥∇Cn+1 +∇Cn ◦Xn
E

∥∥∥2

D
+

1
4q∗

∥∥∥q̃n+1Cn+1 +
(
q̃nCn) ◦Xn

E

∥∥∥2

−
{
c1
2
‖Cn‖2φ +

c1Δtc
4

‖∇Cn‖2D − q∗‖Cn‖2 + 1 + c1Δtc
q∗

∥∥q̃nCn
∥∥2

+
c1Δtc
2

(∥∥∥∇Cn+1
∥∥∥2

D
+ ‖∇Cn‖2D +

∥∥∥Cn+1
∥∥∥2

D

)}
,

(3.9)

where DΔtc is the forward difference operator defined by

DΔtcϕ
n =

(
ϕn+1 − ϕn

)
Δtc

. (3.10)
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Proof. Substituting ϕ = Cn+1 into (3.8), we have

〈
An+1/2

h C,Cn+1
〉
≡
(
φ
Cn+1 − Cn ◦Xn

RK

Δtc
, Cn+1

)
+

(
D
∇Cn+1 + (∇Cn) ◦Xn

E

2
,∇Cn+1

)

+
Δtc
2

(
D(Ln∇Cn) ◦Xn

E,∇C
n+1
)
+
Δtc
2

(
(∇div v̂n ·D∇Cn) ◦Xn

E, C
n+1
)

+
1
2

(
q̃n+1Cn+1 +

(
q̃nCn) ◦Xn

E, C
n+1
)

= I1 + I2 + I3 + I4 + I5.
(3.11)

Lemma 3.1 implies that

I1 =

(
φ
Cn+1 − Cn ◦Xn

RK

Δtc
,
Cn+1 + Cn ◦Xn

RK

2
+
Cn+1 − Cn ◦Xn

RK

2

)

≥ DΔtc

(
1
2

∥∥∥Cn+1
∥∥∥2

φ

)
− c1

2
‖Cn‖2φ +

1
2Δtc

∥∥∥Cn+1 − Cn ◦Xn
RK

∥∥∥2

φ
,

(3.12)

I2 =

(
D
∇Cn+1 + (∇Cn) ◦Xn

E

2
,
∇Cn+1 + (∇Cn) ◦Xn

E

2
+
∇Cn+1 − (∇Cn) ◦Xn

E

2

)

≥ DΔtc

(
Δtc
4

‖∇Cn‖2D
)
− c1Δtc

4
‖∇Cn‖2D +

1
4

∥∥∥∇Cn+1 + (∇Cn) ◦Xn
E

∥∥∥2

D
.

(3.13)

Next, by using c1Δtc < 1, we obtain

I3 =
Δtc
2

(
D(Ln∇Cn) ◦Xn

E,∇C
n+1
)

≤ Δtc
2

√
1 + c1Δtc‖Ln∇Cn‖D

∥∥∥∇Cn+1
∥∥∥
D

≤ c1Δtc
2

{
‖∇Cn‖2D +

∥∥∥∇Cn+1
∥∥∥2

D

}
.

(3.14)

Then when I3 ≥ 0 and I3 < 0, we have

I3 ≥ −c1Δtc
2

{
‖∇Cn‖2D +

∥∥∥∇Cn+1
∥∥∥2

D

}
. (3.15)

Similarly, for I4, we obtain the estimate

I4 ≥ −c1Δtc
2

{
‖∇Cn‖2D +

∥∥∥Cn+1
∥∥∥2

D

}
. (3.16)
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Analogous computations to term I2 give

I5 =

(
q̃n+1Cn+1 +

(
q̃nCn

)
◦Xn

1

2
,
q̃n+1Cn+1 +

(
q̃nCn

)
◦Xn

1

2q̃n+1
+
q̃n+1Cn+1 −

(
q̃nCn

)
◦Xn

1

2q̃n+1

)

≥ 1
4

(
q∗
∥∥∥Cn+1

∥∥∥2
− 1
q∗

∥∥(q̃nCn) ◦Xn
1

∥∥2
)
+

1
4q∗

∥∥∥q̃n+1Cn+1 +
(
q̃nCn) ◦Xn

1

∥∥∥2

≥ DΔtc

(
Δtcq∗
4

‖Cn‖2
)
+
q∗
4
‖Cn‖2 − 1 + c1Δtc

q∗

∥∥q̃nCn
∥∥2 +

1
4q∗

∥∥∥q̃n+1Cn+1 +
(
q̃nCn) ◦Xn

E

∥∥∥2

≥ DΔtc

(
Δtcq∗
4

‖Cn‖2
)
+
q∗
4
‖Cn‖2 − 2

q∗

∥∥q̃nCn
∥∥2 +

1
4q∗

∥∥∥q̃n+1Cn+1 +
(
q̃nCn) ◦Xn

E

∥∥∥2
,

(3.17)

which completes the proof.

From Lemma 3.1, we have

〈
Fn+1/2
h

, Cn+1
〉
=

1
2

(
q̃n+1c̃n+1 +

(
q̃nc̃n

)
◦Xn

E, C
n+1
)

≤ 1
2φ

∥∥∥Cn+1
∥∥∥2

φ
+
1
2

{∥∥∥q̃n+1c̃n+1∥∥∥2
+ (1 + c1Δtc)

∥∥q̃nc̃n∥∥2
}
.

(3.18)

Combining (3.18) with (3.8), we get

DΔtc

(
1
2
‖Cn‖2φ +

Δtc
4

‖∇Cn‖2D +
Δtcq∗
4

‖Cn‖2
)
+

1
2Δtc

∥∥∥Cn+1 − Cn ◦Xn
RK

∥∥∥2

φ

+
1
4

∥∥∥∇Cn+1 +∇Cn ◦Xn
E

∥∥∥2

D
+

1
4q∗

∥∥∥q̃n+1Cn+1 +
(
q̃nCn) ◦Xn

E

∥∥∥2
+ q∗‖Cn‖2

≤ c1
2
‖Cn‖2φ +

c1Δtc
4

‖∇Cn‖2D +
2
q∗

∥∥q̃nCn
∥∥2

+
c1Δtc
2

(∥∥∥∇Cn+1
∥∥∥2

D
+ ‖∇Cn‖2D +

∥∥∥Cn+1
∥∥∥2

D

)
+

1
2φ

∥∥∥Cn+1
∥∥∥2

φ

+
1
2

{∥∥∥q̃n+1c̃n+1
∥∥∥2

+ (1 + c1Δtc)
∥∥q̃nc̃n∥∥2

}
,

(3.19)

which completes the proof of the stability by virtue of Gronwall’s inequality.
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Theorem 3.3 (stability). Let {Cn}Nn=0 be the solution of (2.35a) and (2.35b) subject to the initial
value C0. Then there exists a positive constant c1 = c1(‖EU‖l∞(W1,∞)) independent of hc and Δtc such
that

‖C‖l∞(L2) +
√
Δtc‖∇C‖l∞(L2) +

√
Δtc‖C‖l∞(L2) + ‖C‖′

l2(H1)

≤ c1
{∥∥∥C0

∥∥∥ +
√
Δtc

∥∥∥∇C0
∥∥∥2

+
∥∥q̃c̃∥∥l2(L2)

}
.

(3.20)

4. Error Estimate Theorem

Now, we turn to derive an optimal priori error estimate in L2-norm for the concentration of
approximation (2.35a) and (2.35b). In order to state error estimates, we need the following
Lagrange interpolation operator [15] Πh : C0(Ω) → Mhc .

Lemma 4.1. There exists a positive integer k such that

‖Πhc − c‖s ≤ Khk+1−s‖c‖k+1, s = 0, 1, ∀c ∈ Hk+1(Ω) ∩ C0
(
Ω
)
. (4.1)

Let en = Cn −Πhc
n and ηn = cn −Πhc

n. By Lemma 4.1, it holds that

∥∥ηn∥∥1 ≤ Kh
k‖cn‖k+1,

∥∥DΔtcη
n
∥∥ ≤ Khk√

Δtc

∥∥∥∥∂c∂t
∥∥∥∥
L2((tn,tn+1);Hk)

. (4.2)

Let c ∈ C1(L2)∩C0(H2), u ∈ C0(L∞), and q̃ ∈ C0(L2) be given. Corresponding toAn+1/2
h

and Fn+1/2
h

, we introduce linear forms An+1/2 and Fn+1/2 on (H1(Ω))′ for n = 0, . . . ,N − 1 by
(2.25) as follows:

〈
An+1/2c, ϕ

〉
≡
(
φ

(
dc

dt

)n+(1/2)

◦Xn+(1/2)
e , ϕ

)
+
((

F
n+(1/2)
e

)−1(
D∇cn+(1/2)

)
◦Xn+(1/2)

e ,∇ϕ
)

+
(
div

(
F
n+(1/2)
e

)−T(
D∇cn+(1/2)

)
◦Xn+(1/2)

e , ϕ

)

+
((
q̃n+(1/2)cn+(1/2)

)
◦Xn+(1/2)

e , ϕ
)
,

〈
Fn+1/2, ϕ

〉
≡
((
q̃n+(1/2)c̃n+(1/2)

)
◦Xn+(1/2)

e , ϕ
)
, ∀ϕ ∈ H1(Ω).

(4.3)

If c is the solution of (1.1a)–(1.1d), we have for n = 0, . . . ,N − 1

(
An+(1/2)c, ϕ

)
=
(
Fn+(1/2), ϕ

)
, ∀ϕ ∈ H1(Ω). (4.4)
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We decompose e as

An+(1/2)
h e =

(
Fn+(1/2)
h − Fn+(1/2)

)
+
(
An+(1/2) −An+(1/2)

h

)
c +An+(1/2)

h η. (4.5)

In order to estimate the terms of the right-hand side of (4.5), we need the following lemmas.

Lemma 4.2 (see [13]). Assume the above Hypotheses hold, and that the coefficients of the problem
(1.1a)–(1.1d) satisfy v ∈ C0(W3,∞(Ω)) ∩ C1(W2,∞(Ω)), q ∈ W2,∞(Ω), and ‖v̂‖C0(W1,∞(Ω))Δtc <
1/2. Let the solution of (4.4) satisfy c ∈ Z3, ∇c ∈ Z3. Then, for each n = 0, 1, . . . ,N − 1, there exists
function ξn+(1/2)A : Ω → R, such that

〈(
An+(1/2) −An+(1/2)

h

)
c, ϕ

〉
=
(
ξ
n+(1/2)
A , ϕ

)
, ϕ ∈ H1(Ω). (4.6)

Moreover, ξn+(1/2)A ∈ L2(Ω) and the following estimate holds:

∥∥∥ξn+(1/2)A

∥∥∥
0
≤ c̃1(Δtc)2(‖c‖Z3 + ‖∇c‖Z3), (4.7)

where c̃ denotes a constant independent of Δtc.

Lemma 4.3 (see [13]). Assume the above Hypotheses hold, and that the coefficients of the problem
(1.1a)–(1.1d) satisfy v ∈ C0(W2,∞(Ω)) ∩ C1(W1,∞(Ω)), q ∈ W2,∞(Ω), and ‖v̂‖C0(W1,∞(Ω))Δtc <
1/2. Let the solution of (4.4) satisfy c ∈ Z3, ∇c ∈ Z3. Then, for each n = 0, 1, . . . ,N − 1, there exists
function ξn+(1/2)

f
: Ω → R, such that

〈(
Fn+(1/2) − Fn+(1/2)

h
, ϕ
〉
=
(
ξ
n+(1/2)
f

, ϕ
)
, ϕ ∈ H1(Ω). (4.8)

Moreover, ξn+(1/2)f ∈ L2(Ω) and the following estimate holds:

∥∥∥ξn+(1/2)f

∥∥∥
0
≤ c̃1(Δtc)2

∥∥q̃c̃∥∥Z2 , (4.9)

where c̃1 denotes a constant independent of Δtc.
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Lemma 4.4. Let η = c −Πhc. There exists

〈
An+1/2

h
η, en+1

〉
≤ 1

8

∥∥∥∇en+1 +∇en ◦Xn
E

∥∥∥2

+
1
2

{(
D∇ηn+1,∇en+1

)
−
(
D∇ηn,∇en

)}

+ c1

{
h2k

(
1
Δtc

∥∥∥∥∂c∂t
∥∥∥∥
2

L2(tn,tn+1;Hk)
+ ‖c‖2

C0(Hk+1)

)

+h2k+2‖c‖2
C0(Hk+1) + Δtc

(
‖∇en‖2 +

∥∥∥∇en+1
∥∥∥2
)}

.

(4.10)

Proof. From the definition of An+1/2
h

, we have

〈
An+1/2

h η, en+1
〉
≡
(
φ
ηn+1 − ηn ◦Xn

RK

Δtc
, en+1

)
+

(
D
∇ηn+1 +

(
∇ηn

)
◦Xn

E

2
,∇en+1

)

+
Δtc
2

(
D
(
Ln∇ηn

)
◦Xn

E,∇e
n+1
)
+
Δtc
2

((
∇divvn ·D∇ηn

)
◦Xn

E, e
n+1
)

+
1
2

(
q̃n+1ηn+1 +

(
q̃nηn

)
◦Xn

E, e
n+1
)

= I1 + I2 + I3 + I4 + I5.
(4.11)

Since it holds that

∥∥∥∥∥φ
ηn+1 − ηn ◦Xn

RK

Δtc

∥∥∥∥∥ ≤ c1√
Δtc

{∥∥∥∥∂η∂t
∥∥∥∥
L2(tn,tn+1;L2)

+
∥∥η∥∥L2(tn,tn+1;H1)

}
, (4.12)

we have

I1 ≤
(1 + c1Δtc)(1 + 2c1)2K2h2k

2Δtc

(∥∥∥∥∂c∂t
∥∥∥∥
2

L2(tn,tn+1;Hk)
+ ‖c‖2

L2(tn,tn+1;Hk+1)

)
+
1
2

∥∥∥en+1∥∥∥2
. (4.13)

To estimate I2, we divide it into three parts as

I2 =
1
2

[(
D∇ηn+1,∇en+1

)
−
(
D∇ηn,∇en

)]
+ I21 + I22, (4.14)
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where

I21 =
1
2

[((
D∇ηn

)
◦Xn

E,∇e
n+1 +∇en ◦Xn

E

)]
,

I22 =
1
2
[(
D∇ηn,∇en

)
−
((
D∇ηn

)
◦Xn

E,∇e
n ◦Xn

E

)]
.

(4.15)

The term I21 is estimated as

I21 ≤
1
8

∥∥∥∇en+1 +∇en ◦Xn
E

∥∥∥2
+ 2

∥∥(D∇ηn
)
◦Xn

E

∥∥2

≤ 1
8

∥∥∥∇en+1 +∇en ◦Xn
E

∥∥∥2
+ (1 + c1Δtc)K(d∗)2h2k‖cn‖2Hk+1 .

(4.16)

Using the transformation y = Xn
E(x), we have

I22 =
1
2

∫
Ω
D∇ηn · ∇en

{
1 − det

(
∂y

∂x

)−1
dy

}
dx

≤ c1(d∗)2Δtc
4

(
K2h2k‖cn‖2Hk+1 + ‖∇en‖2

)
.

(4.17)

It is clear that

I3 ≤
(1 + c1Δtc)c21(d

∗)2ΔtcK2h2k

4
‖cn‖2Hk+1 +

1
4

∥∥∥∇en+1∥∥∥2
, (4.18)

I4 ≤
(1 + c1Δtc)c21(d

∗)2ΔtcK2h2k

4
‖cn‖2Hk+1 +

1
4

∥∥∥∇en+1∥∥∥2
. (4.19)

Term I5 can be divided it into three parts like term I2 as

I5 = I51 + I52 + I53, (4.20)

where

I51 =
1
2

[(√
q̃n+1ηn+1,

√
q̃n+1en+1

)
−
(√

q̃nηn,
√
q̃nen

)]
,

I52 =
1
2

[((√
q̃nηn

)
◦Xn

E,
√
q̃n ◦Xn

E

(
en+1 + en ◦Xn

E

))]
,

I53 =
1
2

[(√
q̃nηn,

√
q̃nen

)
−
((√

q̃nηn
)
◦Xn

E,

(√
q̃nen

)
◦Xn

E

)]
.

(4.21)
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Thus, the same kind of computations used for I2 leads to the following estimate:

I5 ≤ I51 +
(
c1c3Δtc

4
+ (1 + c1Δtc)c3

)
K2h2k‖cn‖2Hk+1

+

(
2c1 + c21Δtc

)
c3Δtc

8

(∥∥∥∥
√
q̃nηn

∥∥∥∥
2

+
∥∥∥∥
√
q̃n+1ηn+1

∥∥∥∥
2
)

+
1
8

∥∥∥∥
√
q̃n+1ηn+1 +

(√
q̃nηn

)
◦Xn

E

∥∥∥∥
2

.

(4.22)

Gathering (4.11)–(4.19) together, we complete the proof.

We now turn to estimate en. From the definition of An+(1/2)
h

and An+(1/2), we see

〈
An+(1/2)

h
e, en+1

〉
=
〈
An+(1/2)

h
η, en+1

〉
+
〈(

An+(1/2) −An+(1/2)
h

)
c, en+1

〉

+
〈(

Fn+(1/2)
h

− Fn+(1/2)
)
, en+1

〉
.

(4.23)

From Lemmas 4.2, 4.3 and 4.4, we obtain

DΔtc

(
1
2

∥∥∥en+1
∥∥∥2

φ
+
Δtc
4

‖∇en‖2D +
Δtc
4

‖en‖2q
)
+

1
2Δtc

∥∥∥en+1 − en ◦Xn
RK

∥∥∥2

+
1
8

∥∥∥∇en+1 +∇en ◦Xn
E

∥∥∥2

D
+
1
4

∥∥∥q̃n+1en+1 + q̃nen ◦Xn
E

∥∥∥2

≤ c1
{∥∥∥en+1

∥∥∥2
+ Δtc

∥∥∥∇en+1∥∥∥2

D
+ ‖en‖2 + Δtc‖∇en‖2D + Δtc‖en‖2q

}

+
1
2

{(
D∇ηn+1,∇en+1

)
−
(
D∇ηn,∇en

)}

+ c2

{
h2k

(
1
Δtc

∥∥∥∥∂c∂t
∥∥∥∥
2

L2(tn,tn+1;Hk)
+ ‖c‖2

C0(Hk+1)

)
+ h2k+2‖c‖2

C0(Hk+1)

+(Δtc)4
(
‖|∇c|‖23 + ‖|c|‖23

)}
.

(4.24)
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Summing up the above equation about time from t = 0 to tn, we get

an+1 + Δtc
n∑
j=0

bj ≤ c1Δtc
n∑
j=0

aj +
Δtc
2

{(
D∇ηn+1,∇en+1

)
−
(
D∇η0,∇e0

)}

+ c2

{
h2k

(
1
Δtc

∥∥∥∥∂c∂t
∥∥∥∥
2

L2(tn,tn+1;Hk)
+ ‖c‖2

C0(Hk+1)

)
+ h2k+2‖c‖2

C0(Hk+1)

+(Δtc)4
(
‖|∇c|‖23 + ‖|c|‖23

)}
,

(4.25)

where

aj =
1
2

∥∥∥ej
∥∥∥2

φ
+
Δtc
4

∥∥∥∇ej
∥∥∥2

D
+
Δtc
4

∥∥∥ej
∥∥∥2

q
,

bj =
1

2Δtc

∥∥∥ej+1 − ej ◦Xj

RK

∥∥∥2
+
1
8

∥∥∥∇ej+1 +∇ej ◦Xj

E

∥∥∥2

D
+
1
4

∥∥∥q̃j+1ej+1 + q̃jej ◦Xj

E

∥∥∥2
.

(4.26)

Using the estimates

Δtc
2

(
D∇ηj ,∇ej

)
≤ Δtc

8

∥∥∥∇ej
∥∥∥2

+ c1Δtch2k
∥∥∥cj∥∥∥2

k+1
(4.27)

for j = 0 and n + 1, and Gronwall’s inequality, we derive the following error estimate.

Theorem 4.5 (error estimate). Let {Cn}Nn=0 be the solution of (2.35a) and (2.35b) subject to the
initial value C0. Then there exists a positive constant c1 = c1(‖EU‖C0(W1,∞)) independent of hc and
Δtc such that

‖c − C‖l∞(L2) +
√
Δtc‖∇(c − C)‖l∞(L2) +

√
Δtc‖c − C‖l∞(L2) + ‖c − C‖′

l2(H1)

≤ c2

{
hk
(∥∥∥∥∂c∂t

∥∥∥∥
L2(hk)

+ ‖c‖C0(Hk+1)

)
+ (Δtc)2

(
‖|Δc|‖23 + ‖|c|‖3

)}
.

(4.28)

5. Conclusions

We have presented an approximation scheme for incompressible miscible displacement in
porous media. This scheme was constructed by two methods. This paper is our sequential
research work. Cubic Hermite finite element method for the pressure equation was used to
ensure the higher regularity of the approximation velocity U. A second order characteristic
finite element method was presented to handle the material derivative term of the
concentration equation. We analyzed the stability of the approximation scheme and derived
the optimal-order L2-norm error estimates for the scalar concentration. They are of second
order accuracy in time increment, symmetric, and unconditionally stable.

In the paper, the matrix Fe of the gradient of the characteristic line Xe and the inverse
matrix F−1

e were used to approximate the diffusion term. The properties of these matrices
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were very important and derived by the complicated theoretical analysis. This paper is the
first step of our sequential research work. At current stage, we consider a simple case only
for the theoretical aim, which was not related with actual petroleum applications. So, we
consider the diffusion coefficient independent of the velocity u only in this paper. We will
consider the more actual model in petroleum applications later.
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