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A new hybrid projection algorithm is considered for a finite family of λi-strict pseudocontractions.
Using the metric projection, some strong convergence theorems of common elements are obtained
in a uniformly convex and 2-uniformly smooth Banach space. The results presented in this paper
improve and extend the corresponding results of Matsushita and Takahshi, 2008, Kang and Wang,
2011, and many others.

1. Introduction

Let E be a real Banach space and let E∗ be the dual spaces of E. Assume that J is the
normalized duality mapping from E into 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 is the generalized duality pairing between E and E∗.
Let C be a closed convex subset of a real Banach space E. A mapping T : C → C is

said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, (1.2)
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for all x, y ∈ C. Also a mapping T : C → C is called a λ-strict pseudocontraction if there
exists a constant λ ∈ (0, 1) such that for every x, y ∈ C and for some j(x − y) ∈ J(x − y), the
following holds:

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2 − λ

∥∥(I − T)x − (I − T)y
∥∥2. (1.3)

From (1.3) we can prove that if T is λ-strict pseudo-contractive, then T is Lipschitz
continuous with the Lipschitz constant L = (1 + λ)/λ.

It is well-known that the classes of nonexpansive mappings and pseudocontractions
are two kinds important nonlinear mappings, which have been studied extensively by many
authors (see [1–8]).

In [9] Reich considered the Mann iterative scheme {xn}

xn+1 = (1 − αn)xn + αnTxn, x1 ∈ C (1.4)

for nonexpansive mappings, where {αn} is a sequence in (0, 1). Under suitable conditions,
the author proved that {xn} converges weakly to a fixed point of T . In 2005, Kim and Xu
[10] proved a strong convergence theorem for nonexpansive mappings by modified Mann
iteration. In 2008, Zhou [11] extended and improved the main results of Kim and Xu to the
more broad 2-uniformly smooth Banach spaces for λ-strict pseudocontractive mappings.

On the other hand, by using metric projection, Nakajo and Takahashi [12] introduced
the following iterative algorithms for the nonexpansive mapping T in the framework of
Hilbert spaces:

x0 = x ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, . . . ,

(1.5)

where {αn} ⊂ [0, α], α ∈ [0, 1), and PCn∩Qn is the metric projection from a Hilbert spaceH onto
Cn ∩Qn. They proved that {xn} generated by (1.5) converges strongly to a fixed point of T .

In 2006, Xu [13] extended Nakajo and Takahashi’s theorem to Banach spaces by using
the generalized projection.

In 2008, Matsushita and Takahashi [14] presented the following iterative algorithms
for the nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C,

Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n = 0, 1, 2, . . . ,

(1.6)
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where coC denotes the convex closure of the set C, J is normalized duality mapping, {tn} is a
sequence in (0, 1)with tn → 0, and PCn∩Dn is the metric projection from E onto Cn ∩Dn. Then,
they proved that {xn} generated by (1.6) converges strongly to a fixed point of nonexpansive
mapping T .

Recently, Kang and Wang [15] introduced the following hybrid projection algorithm
for a pair of nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C,

yn = αnT1xn + (1 − αn)T2xn,

Cn = co
{
z ∈ C : ‖z − T1z‖ + ‖z − T2z‖ ≤ tn

∥∥xn − yn

∥∥},
xn+1 = PCnx, n = 0, 1, 2, . . . ,

(1.7)

where coC denotes the convex closure of the set C, {αn} is a sequence in [0, 1], {tn} is a
sequence in (0,1) with tn → 0, and PCn is the metric projection from E onto Cn. Then, they
proved that {xn} generated by (1.7) converges strongly to a fixed point of two nonexpansive
mappings T1 and T2.

In this paper, motivated by the research work going on in this direction, we introduce
the following iterative for finding fixed points of a finite family of λi-strict pseudocontractions
in a uniformly convex and 2-uniformly smooth Banach space:

x0 = x ∈ C,

yn =
N∑
i=1

αn,iTixn,

Cn = co

{
z ∈ C :

N∑
i=1

‖z − Tiz‖ ≤ tn
∥∥xn − yn

∥∥
}
,

xn+1 = PCnx, n = 1, 2, . . . ,

(1.8)

where coC denotes the convex closure of the set C, {αn,i} is N sequences in [0,1] and∑N
i=1 αn,i = 1 for each n ≥ 0, {tn} is a sequence in (0,1) with tn → 0, and PCn is the metric

projection from E onto Cn. we prove defined by (1.8) converges strongly to a common fixed
point of a finite family of λi-strictly pseudocontractions, the main results of Kang and Wang
is extended and improved to strictly pseudocontractions.

2. Preliminaries

In this section, we recall the well-known concepts and results which will be needed to prove
our main results. Throughout this paper, we assume that E is a real Banach space and C is a
nonempty subset of E. When {xn} is a sequence in E, we denote strong convergence of {xn}
to x ∈ E by xn → x and weak convergence by xn ⇀ x. We also assume that E∗ is the dual
space of E, and J : E → 2E

∗
is the normalized duality mapping. Some properties of duality

mapping have been given in [16].
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A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ U = {z ∈
E : ‖z‖ = 1} with x /=y. E is said to be uniformly convex if for each ε > 0 there is a δ > 0 such
that for x, y ∈ E with ||x||, ||y|| ≤ 1 and ||x − y|| ≥ ε, ||x + y|| ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{
1 −
∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖,∥∥y∥∥ ≤ 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.1)

E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U. The modulus of smoothness of E is defined by

ρE(t) = sup
{
1
2
(∥∥x + y

∥∥ + ∥∥x − y
∥∥) − 1 : ‖x‖ ≤ 1,

∥∥y∥∥ ≤ t

}
. (2.3)

A Banach space E is said to be uniformly smooth if ρE(t)/t → 0 as t → 0. A Banach space E is
said to be q-uniformly smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq.

If E is a reflexive, strictly convex, and smooth Banach space, then for any x ∈ E, there
exists a unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

∥∥y − x
∥∥. (2.4)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
Let x ∈ E and u ∈ C. Then it is known that u = PCx if and only if

〈
u − y, J(x − u)

〉 ≥ 0, ∀y ∈ C. (2.5)

For the details on the metric projection, refer to [17–20].
In the sequel, we make use the following lemmas for our main results.

Lemma 2.1 (see [21]). Let E be a real 2-uniformly smooth Banach space with the best smooth
constant K. Then the following inequality holds

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, J(x)

〉
+ 2
∥∥Ky

∥∥2 (2.6)

for any x, y ∈ E.

Lemma 2.2 (see [11]). Let C be a nonempty subset of a real 2-uniformly smooth Banach space E
with the best smooth constant K > 0 and let T : C → C be a λ-strict pseudocontraction. For
α ∈ (0, 1)∩ (0, λ/K2], we define Tαx = (1−α)x +αTx. Then Tα : C → E is nonexpansive such that
F(Tα) = F(T).
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Lemma 2.3 (demiclosed principle, see [22]). Let E be a real uniformly convex Banach space, let
C be a nonempty closed convex subset of E, and let T : C → C be a continuous pseudocontractive
mapping. Then, I − T is demiclosed at zero.

Lemma 2.4 (see [23]). Let C be a closed convex subset of a uniformly convex Banach space. Then for
each r > 0, there exists a strictly increasing convex continuous function γ : [0,∞) → [0,∞) such
that γ(0) = 0 and

γ

⎛
⎝
∥∥∥∥∥∥
T

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTzj

∥∥∥∥∥∥

⎞
⎠ ≤ max

0≤j<k≤m
(∥∥zj − zk

∥∥ − ∥∥Tzj − Tzk
∥∥), (2.7)

for all m ≥ 1, {μj}mj=0 ∈ Δm, {zj}mj=0 ⊂ C ∩ Br , and T ∈ Lip(C, 1), where Δm = {{μ0, μ1, . . . , μm} :
0 ≤ μj (0 ≤ j ≤ m) and

∑m
j=0 μj = 1}, Br = {x ∈ E : ||x|| ≤ r}, and Lip(C, 1) is the set of all

nonexpansive mappings from C into E.

3. Main Results

Now we are ready to give our main results in this paper.

Lemma 3.1. Let C be a closed convex subset of a uniformly convex and 2-uniformly smooth Banach
space E with the best smooth constant K > 0, and T : C → C be a λ-strict pseudocontraction. Then
for each r > 0, there exists a strictly increasing convex continuous function γ : [0,∞) → [0,∞) such
that γ(0) = 0 and

γ

⎛
⎝α

∥∥∥∥∥∥
T

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTzj

∥∥∥∥∥∥

⎞
⎠ ≤ α max

0≤j<k≤m
(∥∥zj − Tzj

∥∥ + ‖zk − Tzk‖
)
, (3.1)

for all m ≥ 1, {μj}mj=0 ∈ Δm, {zj}mj=0 ⊂ C ∩ Br , where α ∈ (0, 1) ∩ (0, λ/K2], Δm =
{{μ0, μ1, . . . , μm} : 0 ≤ μj (0 ≤ j ≤ m) and

∑m
j=0 μj = 1}, Br = {x ∈ E : ||x|| ≤ r}.

Proof. Define the mapping Tα : C → C as Tαx = (1 − α)x + αTx, for all x ∈ C. Then Tα is
nonexpansive. From Lemma 2.4, there exists a strictly increasing convex continuous function
γ : [0,∞) → [0,∞) with γ(0) = 0 and such that

γ

⎛
⎝
∥∥∥∥∥∥
Tα

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTαzj

∥∥∥∥∥∥

⎞
⎠ ≤ max

0≤j<k≤m
(∥∥zj − zk

∥∥ − ∥∥Tαzj − Tαzk
∥∥). (3.2)
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Hence

γ

⎛
⎝α

∥∥∥∥∥∥
T

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTzj

∥∥∥∥∥∥

⎞
⎠ = γ

⎛
⎝
∥∥∥∥∥∥
Tα

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTαzj

∥∥∥∥∥∥

⎞
⎠

≤ max
0≤j<k≤m

(∥∥zj − zk
∥∥ − ∥∥Tαzj − Tαzk

∥∥)

≤ max
0≤j<k≤m

(∥∥zj − Tαzj
∥∥ + ‖zk − Tαzk‖

)

= α max
0≤j<k≤m

(∥∥zj − Tzj
∥∥ + ‖zk − Tzk‖

)
.

(3.3)

This completes the proof.

Theorem 3.2. Let C be a nonempty closed subset of a uniformly convex and 2-uniformly smooth
Banach space E with the best smooth constant K > 0, assume that for each i (i = 1, 2, . . . ,N), Ti :
C → C is a λi-strict pseudocontraction for some 0 < λi < 1 such that F = ∩N

i=1F(Ti)/= ∅. Let {αn,i}
beN sequences in [0,1] with

∑N
i=1 αn,i = 1 for each n ≥ 0 and {tn} be a sequence in (0,1) with tn → 0.

Let {xn} be a sequence generated by (1.8), where co{z ∈ C :
∑N

i=1 ||z − Tiz|| ≤ tn||xn − yn||} denotes
the convex closure of the set {z ∈ C :

∑N
i=1 ||z − Tiz|| ≤ tn||xn − yn||} and PCn is the metric projection

from E onto Cn. Then {xn} converges strongly to PFx.

Proof. (I) First we prove that {xn} is well defined and bounded.
It is easy to check that Cn is closed and convex and F ⊂ Cn for all n ≥ 0. Therefore {xn}

is well defined.
Put p = PFx. Since F ⊂ Cn and xn+1 = PCnx, we have that

‖xn+1 − x‖ ≤ ∥∥p − x
∥∥ (3.4)

for all n ≥ 0. Hence {xn} is bounded.
(II) Now we prove that ||xn − Tixn|| → 0 as n → ∞ for all i ∈ {1, 2, . . . ,N}.
Since xn+1 ∈ Cn, there exist some positive integer m ∈ N (N denotes the set of all

positive integers), {μi} ∈ Δm and {zi}mi=0 ⊂ C such that

∥∥∥∥∥∥
xn+1 −

m∑
j=0

μjzj

∥∥∥∥∥∥
< tn, (3.5)

N∑
i=1

∥∥zj − Tizj
∥∥ ≤ tn

∥∥xn − yn

∥∥ (3.6)
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for all j ∈ {0, 1, . . . , m}. Put r0 = supn≥1||xn − p|| and λ = min1≤i≤N{λi}. Take α ∈ (0, 1) ∩
(0, λ/K2]. It follows from Lemma 2.2 and (3.5) that

‖xn − Tixn‖ =
1
α

∥∥(Tiαxn − p
)
+
(
p − xn

)∥∥ ≤ 2r0
α

, (3.7)

∥∥∥∥∥∥
Ti

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Tixn+1

∥∥∥∥∥∥
≤ 1

α

⎛
⎝
∥∥∥∥∥∥
Tiα

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Tiαxn+1

∥∥∥∥∥∥
+ (1 − α)

∥∥∥∥∥∥
m∑
j=0

μjzj − xn+1

∥∥∥∥∥∥

⎞
⎠

≤
(
2
α
− 1
)∥∥∥∥∥∥

m∑
j=0

μjzj − xn+1

∥∥∥∥∥∥

≤
(
2
α
− 1
)
tn

(3.8)

for all i ∈ {1, 2, . . . ,N}. Moreover, (3.7) implies

∥∥xn − yn

∥∥ ≤ 2r0
α

. (3.9)

It follows from Lemma 3.1, (3.5)–(3.9) that

N∑
i=1

‖xn+1 − Tixn+1‖ ≤
N∑
i=1

⎛
⎝
∥∥∥∥∥∥
xn+1 −

m∑
j=0

μjzj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
m∑
j=0

μj

(
zj − Tizj

)
∥∥∥∥∥∥

+

∥∥∥∥∥∥
m∑
j=0

μjTizj − Ti

⎛
⎝

m∑
j=0

μjzj

⎞
⎠
∥∥∥∥∥∥
+

∥∥∥∥∥∥
Ti

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Tixn+1

∥∥∥∥∥∥

⎞
⎠

≤ 2N
α

∥∥∥∥∥∥
xn+1 −

m∑
j=0

μjzj

∥∥∥∥∥∥
+

m∑
j=0

μj

(
N∑
i=1

∥∥zj − Tizj
∥∥
)

+
N∑
i=1

∥∥∥∥∥∥
m∑
j=0

μjTizj − Ti

⎛
⎝

m∑
j=0

μjzj

⎞
⎠
∥∥∥∥∥∥

≤ 2N
α

tn + tn
∥∥yn − xn

∥∥ +
N∑
i=1

1
α
γ−1
(
α max
0≤k<j≤m

(‖zk − Tizk‖ +
∥∥zj − Tizj

∥∥)
)

≤ 2N + 2r0
α

tn +
N

α
γ−1(4r0tn) −→ 0 as n −→ ∞.

(3.10)

This shows that
‖xn − Tixn‖ −→ 0 as n −→ ∞ (3.11)

for all i ∈ {1, 2, . . . ,N}.
(III) Finally, we prove that xn → p = PFx.
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It follows from the boundedness of {xn} that there exists {xni} ⊂ {xn} such that xni ⇀
v as i → ∞. Since for each i ∈ {0, 1, . . . ,N}, Ti is a λi-strict pseudocontraction, then Ti is
demiclosed. one has v ∈ F.

From the weakly lower semicontinuity of the norm and (3.4), we have

∥∥p − x
∥∥ ≤ ||v − x|| ≤ lim inf

i→∞
‖xni‖ − x

≤ lim sup
i→∞

‖xni − x‖ ≤ ∥∥p − x
∥∥.

(3.12)

This shows p = v and hence xni ⇀ p as i → ∞. Therefore, we obtain xn ⇀ p. Further, we
have that

lim
n→∞

‖xn − x‖ =
∥∥p − x

∥∥. (3.13)

Since E is uniformly convex, we have xn−x → p−x. This shows that xn → p. This completes
the proof.

Corollary 3.3. Let C be a nonempty closed subset of a uniformly convex and 2-uniformly smooth
Banach space E with the best smooth constant K > 0, assume that T : C → C is a λ-strict
pseudocontraction for some 0 < λ < 1 such that F(T)/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C,

Cn = co{z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||},
xn+1 = PCnx, n = 0, 1, 2, . . . ,

(3.14)

where {tn} is a sequence in (0,1) with tn → 0. co{z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||} denotes the
convex closure of the set {z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||} and PCn is the metric projection from E
onto Cn. Then {xn} converges strongly to PF(T)x.

Proof. Set T1 = T, Tk = I for all 2 ≤ k ≤ N, and αn,1 = 1, αn,k = 0 for all 2 ≤ k ≤ N in
Theorem 3.2. The desired result can be obtained directly from Theorem 3.2.

Remark 3.4. At the end of the paper, we would like to point out that concerning the
convergence problem of iterative sequences for strictly pseudocontractive mappings has been
considered and studied by many authors. It can be consulted the references [24–37].

Acknowledgment

The authors would like to express their thanks to the referees for their valuable suggestions
and comments. This work is supported by the Scientific Research Fund of Sichuan Provincial
Education Department (11ZA221) and the Scientific Research Fund of Science Technology
Department of Sichuan Province 2011JYZ010.



Journal of Applied Mathematics 9

References

[1] F. E. Browder and W. V. Petryshyn, “Construction of fixed points of nonlinear mappings in Hilbert
spaces,” Journal of Mathematical Analysis and Applications, vol. 20, pp. 197–228, 1967.

[2] F. E. Browder, “Fixed-point theorems for noncompact mappings in Hilbert space,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 53, pp. 1272–1276, 1965.

[3] F. E. Browder, “Convergence of approximants to fixed points of nonexpansive nonlinear mappings in
Banach spaces,” Archive for Rational Mechanics and Analysis, vol. 24, pp. 82–90, 1967.

[4] R. E. Bruck,, “Nonexpansive projections on subsets of Banach spaces,” Pacific Journal of Mathematics,
vol. 47, pp. 341–355, 1973.

[5] C. E. Chidume and S. A. Mutangadura, “An example on the Mann iteration method for Lipschitz
pseudo-contractions,” Proceedings of the American Mathematical Society, vol. 129, pp. 2359–2363, 2001.

[6] K. Deimling, “Zeros of accretive operators,” Manuscripta Mathematica, vol. 13, pp. 365–374, 1974.
[7] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel

Dekker, New York, NY, USA, 1984.
[8] J. P. Gossez and E. L. Dozo, “Some geometric properties related to the fixed point theory for

nonexpansive mappings,” Pacific Journal of Mathematics, vol. 40, pp. 565–573, 1972.
[9] S. Reich, “Weak convergence theorems for nonexpansive mappings in Banach spaces,” Journal of

Mathematical Analysis and Applications, vol. 67, no. 2, pp. 274–276, 1979.
[10] T.-H. Kim and H.-K. Xu, “Strong convergence of modified Mann iterations,” Nonlinear Analysis.

Theory, Methods & Applications, vol. 61, no. 1-2, pp. 51–60, 2005.
[11] H. Zhou, “Convergence theorems for λi-strict pseudo-contractions in 2-uniformly smooth Banach

spaces,” Nonlinear Anal, vol. 69, pp. 3160–3173, 2008.
[12] K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and

nonexpansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372–
379, 2003.

[13] H.-K. Xu, “Strong convergence of approximating fixed point sequences for nonexpansive mappings,”
Bulletin of the Australian Mathematical Society, vol. 74, no. 1, pp. 143–151, 2006.

[14] S.-y. Matsushita and W. Takahashi, “Approximating fixed points of nonexpansive mappings in a
Banach space by metric projections,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 422–
425, 2008.

[15] S. M. Kang and S. Wang, “New hybrid algorithms for nonexpansive mappings in Banach spaces,”
International Journal of Mathematical Analysis, vol. 5, no. 9-12, pp. 433–440, 2011.

[16] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrechtm The Netherlands, 1990.

[17] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and
applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol.
178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Marcel Dekker, New York, NY, USA,
1996.

[18] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications, Yokohama
Publishers, Yokohama, Japan, 2000.

[19] F. E. Browder, “Convergence theorems for sequences of nonlinear operators in Banach spaces,”
Mathematische Zeitschrift, vol. 100, pp. 201–225, 1967.

[20] D. Pascali and S. Sburlan,Nonlinear Mappings of Monotone Type, Noordhoff, Leyden, The Netherlands,
1978.

[21] H. K. Xu, “Inequalities in Banach spaces with applications,”Nonlinear Analysis, vol. 16, pp. 1127–1138,
1991.

[22] H. Zhou, “Convergence theorems of common fixed points for a finite family of Lipschitz pseudo-
contractions in Banach spaces,” Nonlinear Analysis: Theory, Methods and Applications, vol. 68, no. 10,
pp. 2977–2983, 2008.

[23] R. E. Bruck, “On the convex approximation property and the asymptotic behavior of nonlinear
contractions in Banach spaces,” Israel Journal of Mathematics, vol. 38, no. 4, pp. 304–314, 1981.

[24] Y. Su, M. Li, and H. Zhang, “New monotone hybrid algorithm for hemi-relatively nonexpansive
mappings and maximal monotone operators,” Applied Mathematics and Computation, vol. 217, no. 12,
pp. 5458–5465, 2011.

[25] S. S. Chang, H. W. J. Lee, C. K. Chan, and J. K. Kim, “Approximating solutions of variational
inequalities for asymptotically nonexpansive mappings,” Applied Mathematics and Computation, vol.
212, no. 1, pp. 51–59, 2009.



10 Journal of Applied Mathematics

[26] H. Zegeye and N. Shahzad, “Convergence of Mann’s type iteration method for generalized
asymptotically nonexpansive mappings,” Computers & Mathematics with Applications, vol. 62, no. 11,
pp. 4007–4014, 2011.

[27] X. Qin, S. Huang, and T. Wang, “On the convergence of hybrid projection algorithms for
asymptotically quasi-nonexpansive mappings,” Computers & Mathematics with Applications, vol. 61,
no. 4, pp. 851–859, 2011.

[28] S.-s. Chang, L. Wang, Y.-K. Tang, B. Wang, and L.-J. Qin, “Strong convergence theorems for a
countable family of quasi-φ-asymptotically nonexpansive nonself mappings,” Applied Mathematics
and Computation, vol. 218, no. 15, pp. 7864–7870, 2012.

[29] W. Nilsrakoo, “Halpern-type iterations for strongly relatively nonexpansive mappings in Banach
spaces,” Computers & Mathematics with Applications, vol. 62, no. 12, pp. 4656–4666, 2011.

[30] S.-S. Chang, H. W. J. Lee, C. K. Chan, and J. A. Liu, “Strong convergence theorems for countable
families of asymptotically relatively nonexpansive mappings with applications,” Applied Mathematics
and Computation, vol. 218, no. 7, pp. 3187–3198, 2011.

[31] W. Nilsrakoo and S. Saejung, “Strong convergence theorems by Halpern-Mann iterations for
relatively nonexpansive mappings in Banach spaces,” Applied Mathematics and Computation, vol. 217,
no. 14, pp. 6577–6586, 2011.

[32] S. Suantai, W. Cholamjiak, and P. Cholamjiak, “An implicit iteration process for solving a fixed point
problem of a finite family of multi-valued mappings in Banach spaces,” Applied Mathematics Letters,
vol. 25, no. 11, pp. 1656–1660, 2012.

[33] S. S. Chang, K. K. Tan, H. W. J. Lee, and C. K. Chan, “On the convergence of implicit iteration process
with error for a finite family of asymptotically nonexpansive mappings,” Journal of Mathematical
Analysis and Applications, vol. 313, no. 1, pp. 273–283, 2006.

[34] S. S. Chang, H. W. J. Lee, C. K. Chan, and W. B. Zhang, “A modified halpern-type iteration algorithm
for totally quasi-φ-asymptotically nonexpansive mappings with applications,” Applied Mathematics
and Computation, vol. 218, no. 11, pp. 6489–6497, 2012.

[35] X. Qin, S. Y. Cho, and S. M. Kang, “Strong convergence of shrinking projection methods for quasi-φ-
nonexpansivemappings and equilibrium problems,” Journal of Computational and AppliedMathematics,
vol. 234, no. 3, pp. 750–760, 2010.

[36] D. Wu, S.-s. Chang, and G. X. Yuan, “Approximation of common fixed points for a family of finite
nonexpansive mappings in Banach space,” Nonlinear Analysis. Theory, Methods & Applications, vol. 63,
no. 5–7, pp. 987–999, 2005.

[37] C. Zhang, J. Li, and B. Liu, “Strong convergence theorems for equilibrium problems and relatively
nonexpansive mappings in Banach spaces,” Computers & Mathematics with Applications, vol. 61, no. 2,
pp. 262–276, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


