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Fuzzy time series approaches have an important deficiency according to classical time series approaches. This deficiency comes
from the fact that all of the fuzzy time series models developed in the literature use autoregressive (AR) variables, without any
studies that also make use of moving averages (MAs) variables with the exception of only one study (Egrioglu et al. (2013)). In order
to eliminate this deficiency, it is necessary to have many of daily life time series be expressed with Autoregressive Moving Averages
(ARMAs) models that are based not only on the lagged values of the time series (AR variables) but also on the lagged values of the
error series (MA variables). To that end, a new first-order fuzzy ARMA(1,1) time series forecastingmethod solution algorithm based
on fuzzy logic group relation tables has been developed. The new method proposed has been compared against some methods in
the literature by applying them on Istanbul Stock Exchange national 100 index (IMKB) and Gold Prices time series in regards to
forecasting performance.

1. Introduction

Fuzzy time series approaches not necessitating many of the
limitations seen in classical time series approaches such
as linearity, stationarity, and number of observations have
increased the interest towards these approaches. Fuzzy time
series concept first mentioned in the literature by Song and
Chissom [1] was based on the fuzzy set theory of Zadeh
[2]. Song and Chissom [3, 4] divided fuzzy time series into
two groups, namely, time variant and time invariant. A vast
majority of the studies in the literature are methods proposed
for solving time invariant fuzzy time series. Because models
are significantly effective on the forecasting performances
during the determination of fuzzy relations stage, different
approaches have been proposed in the literature. In the
studies of Song andChissom [1, 3, 4], relations are determined
with complex matrix operations. In order to eliminate this
complexity, a new first-order fuzzy time series model has
been proposed where fuzzy logic group relation tables are
used in Chen’s [5] study with simplified operations not
necessitating complex matrix processes. This approach of
Chen [5] is used in many studies due to its positive effect

on forecasting performance. Therefore, Chen [6] developed
a new approach by using the fuzzy logic relation tables also
in high-order fuzzy time series models. Because the methods
proposed in the studies of Chen [5, 6] necessitate obtainment
of many fuzzy logic group relation tables, they require
numerous operations.Thus, studies where fuzzy relations are
determined with artificial neural networks are commonly
seen. Some Studies where artificial neural networks are used
for determining fuzzy relations may be listed as the studies of
Huarng and Yu [7], Aladag et al. [8], Yu and Huarng [9], and
Yolcu et al. [10].

In majority of the studies in the literature, interval
lengths are specified intuitively. In his study, Huarng [11]
has proposed two separate approaches based on average and
distribution to specify optimal interval length. The optimal
interval lengths determined by the approach of Huarng [11]
may be obtained to be very large values. Thus, Egrioglu et
al. [12] proposed approaches based on the optimisation of
interval length. Different from these studies, Huarng and
Yu [13] proposed an approach based on ratio with interval
length varying exponentially instead of determining a fixed
interval length in the solution of first-order fuzzy time series.
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Determining the ratio in the study of Huarng and Yu [13]
requires many complex calculations. Therefore, Yolcu et al.
[14] proposed a new approach that improves the approach of
Huarng and Yu [13], based on the optimisation of ratio.

There are 3 most commonly used models in the anal-
ysis of single variable time series in classical time series
approach. These are autoregressive (AR), moving averages
(MAs), and mixed autoregressive moving averages (ARMAs)
models. However, fuzzy time series methods developed in
the literature focus on the AR model of the classical time
series theory, without any study conducted on the utilisation
of MA and ARMA models except Uslu et al. [15], Alpaslan
et al. [16], and Aladag et al. [17]. These studies [15–17] on
the other hand are methods that have been proposed for the
solution of seasonal time series. No study has been made on
the inclusion of error variable to the model for nonseasonal
fuzzy time series with the exception of Egrioglu et al. [18]
study. This study [18] is the first study developed as first
order fuzzy ARMA type model based on particle swarm
optimization for the solution of nonseasonal time series in the
literature. All of the models in the literature have mentioned
issues such as the use of universe of discourse partitioning,
membership order, model order, and artificial intelligence
approaches. However, the fuzzy time series models proposed
in the literature only including AR variables which may lead
to a model specification error. In many modelling of the
real life time series, MA variables are also required. In this
sense, use of only AR variables for the solution of fuzzy time
series requiring also MA variables for modelling becomes
insufficient regarding the forecasting performance.

For the purpose of eliminating the adverse effects men-
tioned, a solution algorithm for a new first-order fuzzy
ARMA(1,1) time series forecast model where fuzzy relations
are determined based on fuzzy logic group relations has been
proposed in this study. The logic for determining fuzzy rela-
tions in the proposed method is an approach similar to that
of the study of Chen [5], aiming to show that the forecasting
performance can be significantly improved when the model
specification error in the method of Chen [5], accepted as a
fundamental approach in literature, is eliminated. For many
real life time series, performance can be increased through
the use of high-order fuzzy time series models due to the
ability to realise solution with more information. However,
because the proposed fuzzy ARMA(1,1) model uses a second
variable (error variable), it utilises more information to the
extent it eliminates the model error, and although just a first
order model, it occurs to have a better forecasting perfor-
mance than that of high order fuzzy time series methods.

In this paper, the time series which were used in applica-
tion are examined according to long-range dependence. Time
series can be classified short range or long-range dependence
time series. Many time series have long-range dependence.
The long-range dependence time series are forecasted differ-
ent methods like autoregressive fractionally integrated mov-
ing average (ARFIMA). ARFIMA models have fractionally
differencing parameter. First studies were concerned with
estimation of fractional differencing parameter in fractional
white noise processes. 𝑅/𝑆 statistic was proposed in Hurst
[19].The other important studies about fractional differenced

processes are Li and Zhao [20, 21], Li [22], Stanley et al. [23],
Werner [24], Beran [25], Ivanov et al. [26], Podobnik et al.
[27], Zevallos and Palma [28], and Bhansali and Kokoszka
[29].

In the second section of the study, basic definitions
regarding fuzzy time series have been provided. In the third
section, the proposed fuzzy time series forecasting model has
been defined and the solution algorithm has been provided.
In the fourth section, the proposed method has been applied
to Istanbul Stock Exchange (IMKB) national 100 index time
series and gold prices in 2009 taken from Turkish Republic
Central Bank (TCMB) website, comparing it to some other
methods in the literature regarding forecasting performance.
An in-depth comparison has beenmade in this section. In the
fifth section, the study has been summed up by discussing the
results obtained.

2. Definition of Fuzzy Time Series

Fuzzy time series concepts and definitions have been devel-
oped in accordance to the lagged variables of times series
(AR, autoregressive) in all studies conducted in the literature.
Main time series definitions developed usingAR variables are
listed below.

Definition 1. Let 𝑋(𝑡) (𝑡 = . . . , 0, 1, 2, . . .), a subset of real
numbers, be the universe of discourse on which fuzzy sets
𝑓𝑗(𝑡) are defined. If 𝐹(𝑡) is a collection of 𝑓1(𝑡), 𝑓2(𝑡), . . . then
𝐹(𝑡) is called a fuzzy time series defined on 𝑋(𝑡) [1, 3, 4].

Definition 2. Let us consider the fuzzy relation between
𝑅(𝑡, 𝑡 − 1), 𝐹(𝑡 − 1), and 𝐹(𝑡). For any 𝑡 value, if 𝑅(𝑡, 𝑡 − 1)

is independent from 𝑡, then 𝑅(𝑡, 𝑡 − 1) = 𝑅(𝑡 − 1, 𝑡 − 2). In this
case, 𝐹(𝑡) is called the time invariant fuzzy time series, while
otherwise called as time variant fuzzy time series [1].

Definition 3. If the 𝐹(𝑡) fuzzy time series is only affected by
one lagged 𝐹(𝑡 − 1) fuzzy time series, then the fuzzy relation
between 𝐹(𝑡 − 1) and 𝐹(𝑡) is expressed as

𝐹 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) . (1)

This is called as a first-order fuzzy time series forecasting
model. Then this relation can be expressed as

𝐹 (𝑡) = 𝐹 (𝑡 − 1) ∘ 𝑅 (𝑡, 𝑡 − 1) . (2)

The “∘” operator in (2) had been determined as the max-min
operator by Song and Chissom [1, 3, 4].

Definition 4. If 𝐹(𝑡) fuzzy time series is affected by the lagged
fuzzy time series of 𝐹(𝑡 − 1), 𝐹(𝑡 − 2), . . . , 𝐹(𝑡 − 𝑝), then the
fuzzy relation between𝐹(𝑡) fuzzy time series and𝐹(𝑡−1), 𝐹(𝑡−

2), . . . , 𝐹(𝑡 − 𝑝) fuzzy time series may be expressed as

𝐹 (𝑡 − 𝑝) , . . . , 𝐹 (𝑡 − 2) , 𝐹 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) (3)

and is called the𝑝th order fuzzy time series forecastingmodel
[6].
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3. The Proposed Method

Based on the definition of fuzzy AR(1) given in Definition 3,
the definition of the main fuzzy time series to represent the
fuzzy ARMA(1,1) model is expressed as follows.

Definition 5. Let 𝐹(𝑡) be a fuzzy time series and let 𝜀(𝑡) be the
fuzzy error series obtained from 𝐹(𝑡) fuzzy time series. If 𝐹(𝑡)
is affected by one lagged 𝐹(𝑡−1) and one lagged 𝜀(𝑡−1) fuzzy
time series, then the relationship can be expressed as

𝐹 (𝑡 − 1) , 𝜀 (𝑡 − 1) 󳨀→ 𝐹 (𝑡) . (4)

This is called as first-order fuzzy autoregressive moving
averages (ARMA(1,1)) time series forecasting model [18].

In this study, an algorithm has been proposed for solving
the ARMA(1,1) fuzzy time series forecasting model defined
in (4). In the algorithm proposed, initially the AR(1) fuzzy
time series model defined in (1) is estimated. Later on, errors
are calculated by taking the differences between the observed
values of the times series and the forecasts obtained through
the solution of fuzzy AR(1). By using these errors, the fuzzy
ARMA(1,1) model defined in (4) is estimated. The algorithm
of the proposed approach is given below.

Algorithm 6. The proposed method’s algorithm.

Step 1 (the universe of discourse (𝑈) and subintervals
(𝑢𝑖, 𝑖 = 1, 2, . . . 𝑏) are defined). Thebeginning and the ending
points of the universe of discourse for time series are
determined.Then𝑈 is divided into subintervals according to
appropriate interval length. Definition of interval length is up
to the researcher. It should not be forgotten that the interval
length to be determined affects the number of subintervals.
If the smallest value of the time series is taken as 𝑋min, the
largest value as𝑋max, and two arbitrary values as𝐷1 and𝐷2,
the universal set may be defined as the closed interval of

𝑈 = [𝑋min − 𝐷1, 𝑋max + 𝐷2] . (5)

𝑢𝑖 subintervals determined for 𝑖 = 1, 2, . . . 𝑏 are the subinter-
vals of the universal set 𝑈, which is defined as

𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑏} . (6)

For example, for𝑋min = 43 and𝑋max = 96when𝑈 is selected
as [40, 100] and interval length is selected as 10, subintervals
are specified as 𝑢1 = [40, 50], 𝑢2 = [50, 60], 𝑢3 = [60, 70],
𝑢4 = [70, 80], 𝑢5 = [80, 90], and 𝑢6 = [90, 100].

Step 2. For the time series, fuzzy sets are defined according
to the universal set (𝑈) and the divisions of (𝑢𝑖). These fuzzy
sets are expressed as

𝐴 𝑖 =

𝑓𝐴𝑖
(𝑢1)

𝑢1

+

𝑓𝐴𝑖
(𝑢2)

𝑢2

+ ⋅ ⋅ ⋅ +

𝑓𝐴𝑖
(𝑢𝑏)

𝑢𝑏

,

for 𝑖 = 1, 2, . . . , 𝑏.

(7)

For 𝑖 = 1, 2, . . . 𝑏,

𝑓𝐴𝑖
(𝑢𝑖) =

{{

{{

{

1, 𝑘 = 𝑖

0.5, 𝑘 = 𝑖 − 1, 𝑖 + 1

0, otherwise.
(8)

For example, according to (7) and (8), the fuzzy set of𝐴3 can
be expressed as 0/𝑢1 + 0.5/𝑢2 + 1/𝑢3 + 0.5/𝑢4 + 0/𝑢5 + 0/𝑢6.

Step 3 (observations are fuzzified). Subintervals (𝑢𝑖) where
each observation occurs are defined. Then the fuzzy set 𝐴 𝑖

where the defined sub-interval has the highest membership
value is determined.The fuzzy value of the observation is this
𝐴 𝑖 fuzzy set defined.

Step 4. For the purpose of determining fuzzy relations, fuzzy
logic relations are identified and a fuzzy logic group relation
table is formed.

For example, where the fuzzy logic relations are as𝐴2 →

𝐴3, 𝐴2 → 𝐴3, 𝐴2 → 𝐴5, according to Chen method
[5], the fuzzy logic group relation for 𝐴2 fuzzy value is as
𝐴2 → 𝐴3, 𝐴5. In the proposed method, this relation occurs
to be as 𝐴2 → 𝐴3, 𝐴3, 𝐴5. Thus, a little improvement has
been realised in the fuzzy AR(1) model of Chen [5] with the
proposed method.

Step 5 (fuzzy forecasts are obtained). As 𝐹(𝑡 − 1) = 𝐴 𝑖

and 𝐹(𝑡) = 𝐴𝑗, 3 possible situations regarding forecast
obtainment are as follows.

Situation 1. If a relation of 𝐴 𝑖 → 𝐴𝑗, . . . , 𝐴𝑗 is valid on the
fuzzy group relation table where 𝐴 𝑖 affects only 𝑎 pieces of
𝐴𝑗, then the fuzzy forecast is 𝐴𝑗. For example, if the group
relation for 𝐴1 is as 𝐴1 → 𝐴2 that this relation is repeated a
few times in the time series, then the fuzzy forecast is specified
as 𝐴2.

Situation 2. If a relation of 𝐴 𝑖 → 𝐴𝑗, . . . , 𝐴𝑗, 𝐴𝑘, . . . , 𝐴𝑘,
𝐴 𝑙, . . . , 𝐴 𝑙 is valid on the fuzzy group relation table where
𝐴 𝑖 affects 𝑎 pieces of 𝐴𝑗, 𝑏pieces 𝐴𝑘 and 𝑐 pieces 𝐴 𝑙,
then the fuzzy forecast is 𝐴𝑗, . . . , 𝐴𝑗, 𝐴𝑘, . . . , 𝐴𝑘, 𝐴 𝑙, . . . , 𝐴 𝑙,
comprising of 𝑎 + 𝑏 + 𝑐 pieces of fuzzy values. For example; if
the group relation for𝐴2 is as𝐴2 → 𝐴2, 𝐴3, 𝐴3, 𝐴5, 𝐴5, 𝐴5,
then the fuzzy forecast is specified as 𝐴2, 𝐴3, 𝐴3, 𝐴5, 𝐴5, 𝐴5.

Situation 3. If𝐴 𝑖 → 𝑒𝑚𝑝𝑡𝑦 on the fuzzy group relation table,
the fuzzy forecast occurs to be 𝐴 𝑖. For example, if the group
relation for𝐴3 is𝐴3 → 𝑒𝑚𝑝𝑡𝑦, then the fuzzy forecast is𝐴3.

Step 6 (defuzzification process is executed). In this step,
centralisation method is used. When the fuzzy forecast for
Situation 1 and Situation 3 defined in Step 5 is 𝐴𝑗, then the
defuzzy forecast should be the middle point of the 𝑢𝑗 sub-
interval that has the highest membership value within the
fuzzy set𝐴𝑗. For Situation 2, the defuzzy forecast is calculated
with theweighted average formula below, by using themiddle
points (𝑚𝑗, 𝑚𝑘, . . . , 𝑚𝑙) of the 𝑢𝑗, 𝑢𝑘, . . . , 𝑢𝑙 intervals that have
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Table 1: An example to the fuzzy AR(1) solution of the proposed method.

Years Data Fuzzy value Fuzzy forecast
1 ——
1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

2 1 1 1 2

3 3 3

2 2 2

3 3 3

2 2 2

Defuzzy forecast

the highest membership value of each of the 𝐴𝑗, 𝐴𝑘, . . . , 𝐴 𝑙

fuzzy sets. Consider

𝑥 (𝑡) =

𝑎 × 𝑚𝑗 + 𝑏 × 𝑚𝑘 + 𝑐 × 𝑚𝑙

𝑎 + 𝑏 + 𝑐
. (9)

On an example time series, when solutions are made accord-
ing to the proposed method from Step 1 to Step 6 as per the
determined subintervals of 𝑢1 = [40, 50], 𝑢2 = [50, 60], and
𝑢3 = [60, 70], the solutions displayed in Table 1 are obtained.

Step 7. Errors are calculated by taking the differences between
the observed time series values and the defuzzified forecast
values obtained in Step 6. Real values of the time series are
𝑥(𝑡) and the defuzzified forecast values obtained in Step 6 are
𝑥(𝑡); the error series 𝑒(𝑡) is calculated as follows:

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (10)

Step 8. For the errors, the universe of discourse set is defined
as (𝑉) and subintervals are defined as (V𝑖, 𝑖 = 1, 2, . . . 𝑏).
The same partition of the universe of discourse processes
done in Step 1 is made for the error series.

Step 9. Fuzzy sets based on the universal set (𝑉) and
partitions (V𝑖) are defined for the errors. The fuzzy sets are
expressed as

𝐵𝑗 =

𝑓𝐵𝑗
(V1)

V1
+

𝑓𝐵𝑗
(V2)

V2
+ ⋅ ⋅ ⋅ +

𝑓𝐵𝑗
(V𝑐)

V𝑐
,

for 𝑗 = 1, 2, . . . , 𝑐.

(11)

For 𝑗 = 1, 2, . . . 𝑐,

𝑓𝐵𝑗
(V𝑗) =

{{

{{

{

1, 𝑘 = 𝑗

0.5, 𝑘 = 𝑗 − 1, 𝑗 + 1

0, otherwise.
(12)

For example, according to (11) and (12), the fuzzy set of𝐵3 can
be specified as 0/V1 + 0.5/V2 + 1/V3 + 0.5/V4 + 0.5/V5.

Step 10 (error series 𝑒(𝑡) is fuzzified). Subintervals (V𝑗) for
each observation are determined.Then the fuzzy set𝐵𝑗 where
the determined sub-interval has the highest membership
value is defined. The fuzzy value of the observation is this
fuzzy set 𝐵𝑗.

Step 11 (fuzzy relations are determined and fuzzy logic group
relation table is formed). The fuzzy value 𝐴 𝑖 of the fuzzy
relations time series and the fuzzy value 𝐵𝑗 of the error series
are determined by taking the fuzzy values into consideration
together. For the one lagged fuzzy value of the 𝑡th observation
being𝐹(𝑡−1) = 𝐴 𝑖, one lagged error value being 𝜀(𝑡−1) = 𝐵𝑗,
and the fuzzy value being 𝐹(𝑡) = 𝐴𝑘, the fuzzy relation given
in (4) occurs to be (𝐴𝑖, 𝐵𝑗) → 𝐴𝑘. Thus, the fuzzy values are
formed of (𝐴𝑖, 𝐵𝑗) ordered pairs, and a relation in themanner
of one lagged time series and error affecting the time series is
mentionable. For example, when the fuzzy logic relations are
as (𝐴2, 𝐵3) → 𝐴2, (𝐴2, 𝐵3) → 𝐴2, (𝐴2, 𝐵3) → 𝐴4, the
fuzzy logic group relation for (𝐴2, 𝐵3) fuzzy value occurs to
be (𝐴2, 𝐵3) → 𝐴2, 𝐴2, 𝐴4.

Step 12 (fuzzy forecasts are obtained). As 𝐹(𝑡 − 1) = 𝐴 𝑖 ve
𝜀(𝑡 − 1) = 𝐵𝑗 and 𝐹(𝑡) = 𝐴𝑘, 3 possible situations regarding
forecast obtainment are as follows.

Situation 1. If a relation of (𝐴𝑖, 𝐵𝑗) → 𝐴𝑘, . . . , 𝐴𝑘 is valid
on the fuzzy group relation table where (𝐴𝑖, 𝐵𝑗) affects only
𝑎 pieces of 𝐴𝑘, then the fuzzy forecast is 𝐴𝑘. For example, if
the group relation for (𝐴1, 𝐵2) is as (𝐴1, 𝐵2) → 𝐴2 that this
relation is repeated within a few times in the time series, then
the fuzzy forecast is determined as 𝐴2.

Situation 2. If a relation of (𝐴 𝑖, 𝐵𝑗) → 𝐴𝑘, . . . , 𝐴𝑘, 𝐴 𝑙, . . . , 𝐴 𝑙,
𝐴𝑚, . . . , 𝐴𝑚 is valid on the fuzzy group relation table where
(𝐴𝑖, 𝐵𝑗) affects 𝑎 pieces of 𝐴𝑘, 𝑏 pieces 𝐴 𝑙 and 𝑐 pieces 𝐴𝑚,
then the fuzzy forecast is𝐴𝑘, . . . , 𝐴𝑘, 𝐴 𝑙, . . . , 𝐴 𝑙, 𝐴𝑚, . . . , 𝐴𝑚,
comprising of 𝑎 + 𝑏 + 𝑐 pieces of fuzzy values. For example,
if the group relation for (𝐴1, 𝐵2) is as (𝐴1, 𝐵2) → 𝐴2, 𝐴3,
𝐴3, 𝐴5, 𝐴5, 𝐴5, then the fuzzy forecast is determined as
𝐴2, 𝐴3, 𝐴3, 𝐴5, 𝐴5, 𝐴5.

Situation 3. If (𝐴𝑖, 𝐵𝑗) → 𝑒𝑚𝑝𝑡𝑦 on the fuzzy group relation
table, the fuzzy forecast occurs to be 𝐴 𝑖. For example, if the
group relation for (𝐴1, 𝐵2) is (𝐴1, 𝐵2) → 𝑒𝑚𝑝𝑡𝑦, then the
fuzzy forecast is 𝐴1.

Step 13 (defuzzification process ismade). In this step, central-
isation method is used. When the fuzzy forecast for Situation
1 and Situation 3 defined in Step 5 is 𝐴𝑗, then the defuzzy
forecast should be the middle point of the 𝑢𝑗 sub-interval
that has the highest membership value within the fuzzy set
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Table 2: An application of the proposed method on an example time series.

Years Data Error Fuzzy value Fuzzy forecas Defuzzy forecast
1 2) ——

− 1 1 1

− 1 1 1 1 2

− 1 1 1 1 2

2 3 1 1 2

3 2 3

2 2 2

− 3 1 3

− 2 1 2

𝐴𝑗. For Situation 2, the defuzzy forecast is calculated with the
weighted average formula given in (9).

On an example time series, when solutions are made
according to the proposed method as per the determined
time series subintervals of 𝑢1 = [40, 50], 𝑢2 = [50, 60], and
𝑢3 = [60, 70] and error series subintervals of V1 = [−5, 0],
V2 = [0, 5], and V3 = [5, 10], solutions displayed in Table 2 are
obtained.

4. Application

The performance indicators of the root mean square error
(RMSE), mean average percentage error (MAPE), and direc-
tion accuracy (DA) values used for comparison of the results
obtained are as follows:

RMSE =
√

∑
𝑛
𝑡=1 (𝑌𝑡 − 𝑌̂𝑡)

2

𝑛
,

MAPE =
1

𝑛

𝑛

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑌𝑡 − 𝑌̂𝑡

𝑌𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

DA =
1

𝑛 − 1

𝑛−1

∑

𝑡=1

{
1, (𝑌𝑡+1 − 𝑌𝑡) (𝑌̂𝑡+1 − 𝑌𝑡) > 0,

0, otherwise.

(13)

Data is divided into two within the applications, assigning
the first part as training set and the second part as test set
obtained through taking the last observations into consid-
eration of which number was predetermined. By looking
up the fuzzy relation table obtained for the training set as
per the Steps 5 and 12 of the proposed method, the fuzzy
forecast of the test set and from there the defuzzy forecasts
of the test set are calculated by utilizing Steps 6 and 13.
After, the RMSE, MAPE, and DA values for the test set
are calculated. Therefore, the future performances of the
methods are determined. As the forecasts with the lowest
RMSE value calculated for the test set provide the best result
of the used method, the future performances of the forecasts
are obtained along with the aid of MAPE and DA values.

Solution of vast majority of some fuzzy forecasting
methods in the literature is realised according to the specified
number of fuzzy sets, and some are realised according to
interval lengths. For the purpose of maintaining consistency

during the comparison of forecast performances, the interval
length to be used at fuzzification stage is determined as to
have the number of fuzzy sets 5 as the lowest and 35 as
the highest for each application data and for all methods.
Therefore, in case the universal set division is realised in
accordance to interval length, the interval lengths to be tried
have been specified by calculation with the formula below:

Interval Length =
max (data) −min (data)
Number of Fuzzy Sets

. (14)

The operations below have been realised when making
solution via the proposed method.

(i) The last 𝑘 number of data has been specified as test
set, aiming to increase the future performances.

(ii) During the fuzzification of time series stage of
the proposed method, different time series interval
lengths for the division of universal set 𝑈 have been
tried. Data have been solved from Step 1 to Step 6
according to these intervals lengths. And so, a lot of
forecasts have been obtained.The test set forecast with
the smallest RMSE value among these forecasts has
been determined as the best result of the fuzzy AR(1)
model.

(iii) The error value of the first observation of data has
been assumed as 0, while the error values of other
observations have been calculated with the formula
(9) by using the training set and test set forecasts
obtained through the best result of the fuzzy AR(1)
model. Thus the error series has been obtained.

(iv) Different time series interval lengths and different
error series interval lengths have been tried by solving
data fromStep 1 to Step 13. Among these trials, the test
set forecast with the smallest RMSE value has been
determined as the best result of the fuzzy ARMA(1,1)
model.

For the purpose of comparing the proposed method
with the other fuzzy time series methods in the literature, 2
different data sets comprising of less observations (smaller
sample size) and more observations (larger sample size)
have been used. One of these data sets is the IMKB time
series seen in Figure 1 comprising of 53 observations between
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Figure 1: Graph of IMKB time series.
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Figure 2: Graph of gold prices.

the dates of 01.10.2010 and 23.12.2010. The second data set
is the gold prices time series seen in Figure 2 comprising
of 248 observations received from Turkish Republic Central
Bank (TCMB) website between the dates of 02.01.2009 and
31.12.2009.

In the solution of the IMKB data given in Figure 1 via the
methods in the literature by taking the last 7 observations and
the last 15 observations as test set, one has the following.

(i) During the fuzzification stage of the Song and
Chissom [1] first-order fuzzy time series method,
among the 31 different results obtained from increas-
ing the fuzzy set number between 5 and 35, the test set
forecast that has the minimum RMSE value has been
determined as the best result of the method from this
results.

(ii) For each of the 2nd-, 3rd-, 4th-, and 5th-order
models of Chen [5] first-order fuzzy time series
forecast method, Chen [6] high order fuzzy time
series forecast method, and Aladag et al. [8] high
order fuzzy time series forecast method, the RMSE
values have been found for different intervals lengths
being increased 100 units between 300 and 2300. The
test set forecasts that have theminimumRMSE values
among these 21 trials have been determined as the best
results of the methods.

(iii) By using the optimal interval lengths calculated with
the distribution-based approach of Huarng [11] and
the average-based approaches, solution has been exe-
cuted as per the first-order fuzzy time series forecast
method of Chen [5]. Thus, the best results of the
test set from the distribution based approach and the
average-based approaches have been obtained via a
single trial.

(iv) In the application of the ratio-based approach of
Huarng and Yu [13], alpha parameter has been taken
as 0.50, obtaining the best result for the test set of the
method in one trial.

In the solution of the IMKB time series seen in Figure 1
via the proposed method by taking the number of test sets 7
and 15, one has the following.

(i) The division of universal set 𝑈 have been taken dif-
ferent values as increasing the interval length between
300 and 2300 by 100 units and different forecasts have
been obtained by solving from Step 1 to Step 6. The
test set forecast with the smallest RMSE value among
these forecasts has been determined as the best result
of the fuzzy AR(1) model.The best fuzzy AR(1) results
have been obtained when the interval length is 300
for 7 as the number of test sets and when the interval
length is 900 for 15 as the number of test sets.

(ii) The error value of the first observation of data has
been assumed as 0, while the error values of other
observations have been calculated via the formula (9)
by utilising data and forecasts obtained through the
best result of the fuzzy AR(1) model. Thus the error
series has been obtained for 53 observations.

(iii) Different trials have been made by increasing the
interval length between 300 and 2300 by 100 units for
the time series and by increasing the interval length
between 300 and 2100 by 100 units for the error series
by solving from Step 1 to Step 13. Among these trials,
the test set forecast with the smallest RMSE value
has been determined as the best result of the fuzzy
ARMA(1,1) model.

During the application of the proposed method and
the methods in the literature on IMKB time series, the
parameters with which the forecasts with the best test set
performance for 7 and 15 numbers of test sets occurred to be

(i) for the application of Song and Chissom [1] method,
when the number of fuzzy sets is 9 for 7 and 20 for 15,

(ii) for the application of Chen [5] method, when the
interval length is 300 for 7 and 900 for 15,

(iii) for the application of distribution-based Huarng [11]
approach, when the interval length is 1000, and for
the application of average based approach, when the
interval length is 200,

(iv) for the application of ratio-based Huarng and Yu [13]
approach, when the sample percentile alpha = 0.5,
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Table 3: The best results obtained for 7-observation test set of IMKB data.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

15.12.2010 65499 65356 66550 65900.0 67400 66500 66784.7 67300 66266.7
16.12.2010 64429 65356 66250 65900.0 65400 66300 66178.0 64900 63700.0
17.12.2010 63524 65975 64450 64800.0 65900 64500 65878.7 64900 63700.0
20.12.2010 63502 64737 63550 64066.7 64900 63500 63514.3 64300 63700.0
21.12.2010 64820 64737 63550 63700.0 64900 63500 63514.3 63700 65900.0
22.12.2010 65440 65975 65800 64800.0 65900 65500 65878.7 65500 65900.0
23.12.2010 66219 65356 66250 65900.0 65400 66300 66178.0 66700 66266.7

RMSE 1161.91 1001.70 928.70 1365.14 1014.73 1317.77 1034.06 606.07
MAPE 0.01387 0.01217 0.01283 0.01773 0.01175 0.01593 0.01350 0.00762
DA 0.50000 0.50000 0.33333 0.50000 0.50000 0.66667 0.66667 0.83333

∗The best situation.

(v) for the application of Chen [6] method, when the
interval length is 2200 in 3rd-order model for 7 and
1400 in 2nd-order model for 15,

(vi) For the application of Aladag et al. [8] method, when
the interval length is 600 on 2nd-degree model and
unit number of artificial neural network hidden layers
is 5 for 7, and when the interval length is 1500 on 2nd-
degree model and unit number of artificial neural
network hidden layers is 6 for 15,

(vii) For the application of the proposed fuzzy ARMA(1,1)
method, when the interval length of time series is
2200 and the interval length of error series is 1400 for
7, and when the interval length of time series is 1400
and the interval length of error series is 400 for 15.

Best forecasts and forecast performances of all methods
in result of IMKB time series solution for 7 observation test
set are summarised in Table 3.

When Table 3 is analyzed, it is seen in result of the
solution of IMKB time series for 7 observation test set that the
proposedmethod produced the best forecasting performance
with a minimum RMSE value of 606.07, minimum MAPE
value of 0.762%, andmaximum direction accuracy of 83.33%.
The graphs of the last 7 observations of IMKB time series
along with the 7-observation test set forecasts obtained with
the proposed method are shown together in Figure 3.

Best forecasts and forecast performances of all methods
in result of IMKB time series solution for 15-observation test
set are summarised in Table 4.

When Table 4 is analyzed, it is seen that the proposed
method produced the best forecasting performance with a
minimum RMSE value of 865.28, minimum MAPE value of
1.029%, and maximum direction accuracy of 71.43% in result
of the solution of IMKB time series for 15-observation test set.
The graphs of the last 15 observations of IMKB time series
along with the 15-observation test set forecasts obtained with
the proposed method are shown together in Figure 4.

In result of the solutions of IMKB time series, it has been
observed that the proposed method significantly increased
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Figure 3:The graphs of the 7-observation test set of IMKB data and
the forecasts of the test set obtained with the proposed method.

the future forecasting performance compared to other meth-
ods. Also in the graphs within Figures 3 and 4, the results of
the proposed method are seen to be considerably similar to
the test set values.

In the solution of the gold prices data given in Figure 2
via the methods in the literature by taking the last 30
observations and the last 45 observations as test set, one has
the following.

(i) Gold prices solution of Song andChissom [1], Huarng
[11], and Huarng and Yu [13] methods has been
conducted just as previously done on the abovemen-
tioned IMKB time series.

(ii) For each of the 2nd-, 3rd-, 4th-, and 5th-ordermodels
of Chen [5] first-order fuzzy time series forecast
method, Chen [6] high-order fuzzy time series fore-
cast method, and Aladag et al. [8] high order fuzzy
time series forecast method, the RMSE values have
been found for different lengths being increased 100
units between 500 and 3500. The test set forecasts
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Table 4: The best results obtained for 15-observation test set of IMKB data.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

01.12.2010 66156 65695.5 66250 64833.3 65900.0 65300 66328.8 65650 66000
02.12.2010 66939 66438.2 65800 66700.0 65566.7 64100 66164.2 67150 67633
03.12.2010 66860 67088.0 67450 66700.0 67233.3 66700 67143.8 67150 66700
08.12.2010 67705 67088.0 67450 66700.0 67233.3 66700 67143.8 67150 66700
09.12.2010 65914 66252.5 66250 67633.3 65900.0 67700 66328.8 67150 68100
10.12.2010 64759 65695.5 65800 66233.3 65566.7 65900 65791.4 64150 65300
13.12.2010 66380 65695.5 65350 66700.0 65900.0 64700 65258.3 65650 65300
14.12.2010 66510 66438.2 65800 66700.0 65566.7 67100 66164.2 65650 66700
15.12.2010 65499 66438.2 65800 66700.0 67233.3 66500 66164.2 67150 66700
16.12.2010 64429 65695.5 66250 65766.7 65566.7 66300 66328.8 64150 65300
17.12.2010 63524 65695.5 65350 64366.7 65900.0 64500 65258.3 65650 63900
20.12.2010 63502 65138.5 63550 63900.0 64900.0 63500 63684.8 65650 63900
21.12.2010 64820 65138.5 63550 63900.0 64900.0 63500 63684.8 65650 63900
22.12.2010 65440 65695.5 65350 64833.3 65900.0 65500 65258.3 65650 65300
23.12.2010 66219 65695.5 66250 66700.0 65566.7 66300 66328.8 65650 66000

RMSE 919.47 925.42 954.17 1052.90 1283.18 896.96 1060.12 865.28
MAPE 0.01124 0.01081 0.01245 0.01285 0.01558 0.01085 0.01312 0.01029
DA 0.71429 0.57143 0.64286 0.50000 0.57143 0.64286 0.64286 0.71429

∗The best result.
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Figure 4:The graphs of the 15-observation test set of IMKBdata and
forecasts of the test set obtained with the proposed method.

that have the minimum RMSE values among these 31
trials have been determined as the best results of the
methods.

In the solution of the gold prices data given in Figure 2 via
the proposed method by taking the last 30 observations and
the last 45 observations as test set, one has the following.

(i) During the fuzzification of time series of the proposed
method, interval lengths of 𝑈 have been tried as
increasing the interval length between 500 and 3500
by 100 units by solving from Steps 1 and 6.The test set

forecast with the smallest RMSE value among these
forecasts has been determined as the best result of the
fuzzy AR(1) model.

(ii) The error series have been obtained via the formula
(9) for 248 observations with the same calculation
made previously in the application of IMKB data.

(iii) Different trials have been made by increasing the
interval length between 500 and 3500 by 100 units for
the time series and by increasing the interval length
between 100 and 1100 by 50 units for the error series
by solving from Step 1 to Step 13. Among these trials,
the test set forecast with the smallest RMSE value
has been determined as the best result of the fuzzy
ARMA(1,1) model.

During the application of the proposed method and the
methods in the literature on gold prices time series, the
parameters with which the forecasts with the best test set
performance for 30 and 45 test sets occurred to be the
following:

(i) for the application of Song and Chissom [1] method,
when the number of fuzzy sets is 10 for both 30 and
45 test sets,

(ii) for the application of Chen [5] method, when the
interval length is 600 for 30 and 1700 for 45,

(iii) for the application of distribution-based Huarng
approach [11], when the interval length is 400, and for
the application of average based approach, when the
interval length is 200,
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Table 5: The best results obtained for 30-observation test set of gold prices.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

17.11.2009 53935 53157 53300 53000.0 53200 53200 53356.4 53300 53400
18.11.2009 54550 53157 53900 53666.7 54000 53900 53894.0 53900 54200
19.11.2009 54495 53157 52400 54066.7 52400 51500 51715.7 54500 54200
20.11.2009 54830 53157 52400 54200.0 52400 51500 51715.7 53900 54200
23.11.2009 55950 53157 55100 54600.0 54800 54900 55017.3 54500 55000
24.11.2009 56285 52294 55700 55266.7 56000 55900 55779.2 55100 55800
25.11.2009 56430 52294 56300 56066.7 56400 56300 56164.1 55700 56600
01.12.2009 57635 52294 56300 56466.7 56400 56500 56551.6 55100 56600
02.12.2009 58330 53157 57500 57000.0 57600 57700 57730.3 55700 57400
03.12.2009 58150 53157 58100 57666.7 58400 58300 58529.8 56300 58200
04.12.2009 56630 53157 58100 58066.7 58000 58100 58128.7 56300 58200
07.12.2009 54820 53157 56900 57400.0 56800 56700 56551.6 55100 56600
08.12.2009 55660 53157 55100 56066.7 54800 54900 51715.7 55100 55000
09.12.2009 55110 52294 55700 55666.7 55600 55700 55779.2 55100 55800
10.12.2009 54180 52294 55100 55266.7 55200 55100 55017.3 54500 55000
11.12.2009 54580 53157 53900 54733.3 54000 54100 53157.9 53900 54200
14.12.2009 54190 53157 52400 54333.3 52400 51500 51715.7 54500 54200
15.12.2009 54120 53157 53900 54200.0 54000 54100 53157.9 53300 54200
16.12.2009 54855 53157 53900 54200.0 54000 54100 53157.9 53900 54200
17.12.2009 54430 53157 55100 54600.0 54800 54900 55017.3 54500 55000
18.12.2009 53750 53157 52400 54466.7 52400 51500 53157.9 54500 54200
21.12.2009 54570 53157 53900 53933.3 53200 53700 53894.0 53300 53400
22.12.2009 53400 53157 52400 53933.3 52400 51500 51715.7 54500 54200
23.12.2009 52990 53157 53300 53666.7 53200 53200 53356.4 53300 53400
24.12.2009 53575 52294 53150 53133.3 53200 53200 53524.7 52700 53400
25.12.2009 53450 53157 53300 53133.3 53200 53200 53356.4 53300 53400
28.12.2009 53795 53157 53300 53266.7 53200 53200 53356.4 53300 53400
29.12.2009 53515 53157 53900 53400.0 53200 53700 53894.0 53900 53400
30.12.2009 53095 53157 53300 53400.0 53200 53200 53356.4 52700 53400
31.12.2009 52920 52294 53300 53400.0 53600 53100 53524.7 53300 53400

RMSE 2410.96 1031.12 857.34 1045.23 1288.80 1412.66 1003.50 707.71
MAPE 0.03339 0.01512 0.01245 0.01530 0.01713 0.01935 0.01382 0.01028
DA 0.55172 0.55172 0.51724 0.55172 0.62069 0.55172 0.48276 0.62069

∗The best result.

(iv) for the application of ratio-based Huarng and Yu [13]
approach, when the sample percentile alpha = 0.5,

(v) for the application of Chen method [6], when the
interval length is 1900 in 5th order model for 30 and
800 in 3rd-order model for 45,

(vi) for the application of Aladag et al. [8], when the
interval length is 600 on 5th-degree model and unit
number of artificial neural network hidden layers is
5 for 30, and when the interval length is 800 on 3rd
degree model and unit number of artificial neural
network hidden layers is 4 for 45,

(vii) for the application of the proposed fuzzy ARMA(1,1)
method, when the interval length of time series is 800
and the interval length of error series is 2500 for 30,
and when the interval length of time series is 900 and
the interval length of error series is 1000 for 45.

Best forecasts and forecast performances of all methods
in result of gold prices time series solution for 30-observation
test set are summarised in Table 5.

When Table 5 is observed, it is seen in result of the
solution of gold prices time series for 30 observation test set
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Table 6: The best results obtained for 45-observation test set of gold prices.

Date Test set Song and
Chissom [1] Chen [5] Chen [6]

Huarng [11]
distribution-

based
method

Huarng [11]
average-based

method

Huarng and Yu
[13]

rational-based
method

Aladag et al. [8] Proposed
method∗

17.10.2009 50162 50568 50350 49933.3 50800.0 50420.0 50829.1 50200 50450
18.10.2009 50355 50568 50350 50066.7 50800.0 51100.0 50829.1 50200 50450
19.10.2009 50020 50568 50350 50120.0 50000.0 49900.0 50051.5 50200 50450
20.10.2009 50030 50568 50350 51000.0 50800.0 51100.0 50829.1 50200 50450
23.11.2009 50700 50568 50350 51000.0 50800.0 51100.0 50829.1 50200 50450
24.11.2009 51230 50568 50350 51800.0 51066.7 51500.0 50824.1 51000 50450
25.11.2009 52490 50568 52050 50866.7 51200.0 51500.0 51128.5 51000 52250
01.11.2009 52150 52294 52050 51800.0 52666.7 54300.0 54499.6 52600 52550
02.11.2009 52125 52294 52050 51933.3 50600.0 52100.0 51916.0 51800 52550
03.11.2009 52500 52294 52050 51933.3 50600.0 52100.0 51916.0 51800 52550
04.11.2009 52165 52294 52050 52200.0 52666.7 54300.0 54499.6 52600 52550
07.11.2009 52560 52294 52050 52066.7 50600.0 52100.0 51916.0 51800 52550
08.11.2009 52972 52294 52050 52333.3 52666.7 54300.0 54499.6 52600 52550
09.11.2009 52800 52294 52900 52466.7 52800.0 52900.0 52867.3 52600 52250
10.11.2009 53500 52294 52050 54200.0 52800.0 52900.0 52867.3 52600 53150
17.11.2009 53935 53157 52900 53000.0 53200.0 53200.0 53205.5 53400 54950
18.11.2009 54550 53157 52900 53666.7 54000.0 53900.0 53840.7 53400 54050
19.11.2009 54495 53157 52900 54066.7 52400.0 51500.0 52393.3 54200 54950
20.11.2009 54830 53157 52900 54200.0 52400.0 51500.0 52393.3 54200 54050
23.11.2009 55950 53157 55450 54600.0 54800.0 54900.0 54832.0 54200 54950
24.11.2009 56285 52294 55450 55266.7 56000.0 55900.0 55841.6 54200 55850
25.11.2009 56430 52294 55450 56066.7 56400.0 56300.0 56182.2 55000 55850
01.12.2009 57635 52294 57150 56466.7 56400.0 56500.0 56524.9 55000 56750
02.12.2009 58330 53157 57150 57000.0 57600.0 57700.0 57565.6 55000 57650
03.12.2009 58150 53157 58850 57666.7 58400.0 58300.0 58270.1 55000 58550
04.12.2009 56630 53157 58850 58066.7 58000.0 58100.0 58270.1 55800 58550
07.12.2009 54820 53157 57150 57400.0 56800.0 56700.0 56524.9 55800 56750
08.12.2009 55660 53157 55450 56066.7 54800.0 54900.0 54832.0 55000 54950
09.12.2009 55110 52294 55450 55666.7 55600.0 55700.0 55503.0 54200 55850
10.12.2009 54180 52294 55450 55266.7 55200.0 55100.0 55166.5 54200 54950
11.12.2009 54580 53157 52900 54733.3 54000.0 54100.0 54169.1 54200 54050
14.12.2009 54190 53157 52900 54333.3 52400.0 51500.0 52393.3 54200 54950
15.12.2009 54120 53157 52900 54200.0 54000.0 54100.0 54169.1 54200 54050
16.12.2009 54855 53157 52900 54200.0 54000.0 54100.0 54169.1 54200 54050
17.12.2009 54430 53157 55450 54600.0 54800.0 54900.0 54832.0 54200 54950
18.12.2009 53750 53157 52900 54466.7 52400.0 51500.0 52393.3 54200 54050
21.12.2009 54570 53157 52900 53933.3 53200.0 53700.0 53840.7 53400 54050
22.12.2009 53400 53157 52900 53933.3 52400.0 51500.0 52393.3 53400 54950
23.12.2009 52990 53157 52900 53666.7 53200.0 53200.0 53205.5 53400 53150
24.12.2009 53575 52294 52900 53133.3 52800.0 52900.0 52867.3 52600 53150
25.12.2009 53450 53157 52900 53133.3 53200.0 53200.0 53205.5 53400 52250
28.12.2009 53795 53157 52900 53266.7 53200.0 53200.0 53205.5 53400 53150
29.12.2009 53515 53157 52900 53400.0 53200.0 53700.0 53840.7 53400 54050
30.12.2009 53095 53157 52900 53400.0 53200.0 53200.0 53205.5 53400 53150
31.12.2009 52920 52294 52900 53400.0 53600.0 53100.0 53514.3 53400 53150

RMSE 2009.32 1028.39 787.71 1022.13 1200.24 1041.74 1068.71 719.69
MAPE 0.02556 0.01499 0.01146 0.01499 0.01628 0.01517 0.01328 0.01072
DA 0.54545 0.52273 0.54545 0.52273 0.61364 0.59091 0.54545 0.50000

∗The best result.
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Figure 5: The graphs of the 30-observation test set of gold prices
and forecasts of the test set obtained with the proposed method.
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Figure 6: The graphs of the 45-observation test set of gold prices
and forecasts of the test set obtained with the proposed method.

that the proposed method produced the best forecasting per-
formance with a minimum RMSE value of 707.71, minimum
MAPE value of 1.028%, and maximum direction accuracy of
62.07%. The graphs of the last 30 observations of gold prices
time series along with the 30-observation test set forecasts
obtained with the proposed method are shown together in
Figure 5.

Best forecasts and forecast performances of all methods
in result of gold prices time series solution for 45-observation
test set are summarised in Table 6. Furthermore, the graphs
of the last 45 observations of gold prices time series along
with the 45-observation test set forecasts obtained with the
proposed method are shown together in Figure 6.

When Table 6 is evaluated, it is seen in result of the
solution of gold prices time series for 45 observation test set
that the proposed method produced the best forecasting per-
formance with a minimum RMSE value of 719.69, minimum
MAPE value of 1.072%.

In result of the solutions of gold prices time series, it
has been observed that the proposed method significantly
increased the future forecasting performance compared to

Table 7: 𝑅/𝑆 test results.

Data 𝑅/𝑆 statistics 𝑃 < 0.01

IMKB 1.6523 No
Gold price 1.9560 No

other methods. Also in the graphs within Figures 5 and 6, the
results of the proposed method are seen to be considerably
similar to the test set values.

5. Discussion and Conclusion

MAvariables are not included in the fuzzy time series forecast
models proposed in the literature whereas real life time series
are also influenced from MA variables in addition to AR
variables. Therefore, redefining fuzzy times series methods
as models including also MA variables are a more realistic
act. In this study, a solution algorithm for a new first-order
fuzzy ARMA(1,1) time series forecast model containing not
only AR but also MA variables is proposed based on group
relation tables. The method proposed is a basic algorithm
similar to Chen [5] approach, aiming at eliminating the
model specification error formed due to the exclusion of
MA variables. In conclusion of the applications, it has been
observed that the proposed method has higher forecasting
performance than many of the fuzzy time series forecasting
methods commonly used in the literature. It is an impor-
tant finding that although the proposed method is a basic
method based on group relation tables, it may have a higher
forecasting performance even than the high order fuzzy time
seriesmethods based on artificial neural networks.Therefore,
it is obvious that forecasting performance is going to increase
significantly when fuzzy ARMAmodels are developed where
fuzzy relations are specified with artificial neural networks
and artificial intelligence methods or where membership
values are used for specification of fuzzy relations. Thus, the
proposed method may be provided with a more systematic
structure and higher forecasting performance with improve-
ments that may be done on various stages of the method
during future studies. Moreover, there is no linear model
assumption in the proposed fuzzy time series method. Thus,
the proposed method and other fuzzy time series methods
can be applied to nonlinear time series. In the application,
proposed method is applied to short range dependent time
series. In the future studies, it will be researched about
the performance of the proposed method for long range
dependent time series.

Appendix

The 𝑅/𝑆 test was applied to two time series which are used
in the application. 𝑅/𝑆 test was applied by using “FinMetrics
module of S-PLUSpackage program”.Theobtained results are
shown in Table 7. It is obtained that both of time series have
short range dependence.
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hybrid approach for forecasting a seasonal fuzzy time series,” in
Proceedings of the International Symposium Computing Science
and Engineering Proceeding Book, pp. 1152–1158, 2010.

[16] F. Alpaslan, O. Cagcag, C. H. Aladag, U. Yolcu, and E. Egrioglu,
“A novel seasonal fuzzy time series method,” Hacettepe Journal
of Mathematics and Statistics, vol. 41, no. 3, pp. 375–385, 2012.

[17] S. Aladag, C. H. Aladag, T. Mentes, and E. Egrioglu, “A new
seasonal fuzzy time series method based on the multiplicative
neuronmodel and SARIMA,”Hacettepe Journal of Mathematics
and Statistics, vol. 41, no. 3, pp. 337–345, 2012.

[18] E. Egrioglu, U. Yolcu, C. H. Aladag, and C. Kocak, “An ARMA
type fuzzy time series forecasting method based on particle
swarm optimization,” Mathematical Problems in Engineering,
vol. 2013, Article ID 935815, 12 pages, 2013.

[19] H. E. Hurst, “Long-term storage capacity of reservoirs,” Trans-
actions of the American Society of Civil Engineers, vol. 116, pp.
770–779, 1951.

[20] M. Li and W. Zhao, “On 1/𝑓 noise,” Mathematical Problems in
Engineering, vol. 2012, Article ID 673648, 22 pages, 2012.

[21] M. Li and W. Zhao, “Visiting power laws in cyber-physical
networking systems,” Mathematical Problems in Engineering,
vol. 2012, Article ID 302786, 13 pages, 2012.

[22] M. Li, “Fractal time series: a tutorial review,” Mathematical
Problems in Engineering, vol. 2010, Article ID 157264, 26 pages,
2010.

[23] H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K.
Peng, and M. Simons, “Long-range power-law correlations in
condensed matter physics and biophysics,” Physica A, vol. 200,
no. 1 4, pp. 4–24, 1993.

[24] G. Werner, “Fractals in the nervous system: conceptual impli-
cations for theoretical neuroscience,” Frontiers in Fractal Physi-
ology, vol. 1, article 15, 28 pages, 2010.

[25] J. Beran, “Statistical methods for data with long-range depen-
dence,” Statisticla Science, vol. 7, no. 4, pp. 404–416, 1992.

[26] P. C. Ivanov, L. A. Nunes Amaral, A. L. Goldberger et al., “From
1/f noise tomultifractal cascades in heartbeat dynamics,”Chaos,
vol. 11, no. 3, pp. 641–652, 2001.

[27] B. Podobnik, D. Horvatic, A. L. Ng, H. E. Stanley, and P.
Ch. Ivanov, “Modeling long-range cross-correlations in two-
component ARFIMA and FIARCH processes,” Physica A, vol.
387, no. 15, pp. 3954–3959, 2008.

[28] M. Zevallos and W. Palma, “Minimum distance estimation of
ARFIMA processes,” Computational Statistics & Data Analysis,
vol. 58, pp. 242–256, 2013.

[29] R. J. Bhansali and P. S. Kokoszka, “Prediction of long-memory
time series: a tutorial review,” in Processes With Long-Range
Correlations, vol. 621 of Lecture Notes in Physics, pp. 3–21, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


