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In the first part of the paper, following the works of Pehlivan et al. (2004), we study the set of all A-statistical cluster points of
sequences in m-dimensional spaces and make certain investigations on the set of all A-statistical cluster points of sequences in
m-dimensional spaces. In the second part of the paper, we apply this notion to study an asymptotic behaviour of optimal paths
and optimal controls in the problem of optimal control in discrete time and prove a general version of turnpike theorem in line of
the work of Mamedov and Pehlivan (2000). However, all results of this section are presented in terms of a more general notion of
I-cluster points.

1. Introduction and Background

Throughout this paper, let 𝐴 be a nonnegative regular matrix
and N will denote the set of all positive integers. Let𝑋 and 𝑌

be two sequence spaces and 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix.

If for each 𝑥 ∈ 𝑋 the series 𝐴
𝑛
(𝑥) = ∑

∞

𝑘=1
𝑎
𝑛𝑘
𝑥
𝑘
converges

for each 𝑛 and the sequence 𝐴𝑥 = {𝐴
𝑛
(𝑥)} ∈ 𝑌, we say that

A maps 𝑋 into 𝑌. By (𝑋, 𝑌) we denote the set of all matrices
which maps 𝑋 into 𝑌. In addition if the limit is preserved,
then we denote the class of such matrices by (𝑋, 𝑌)reg. A
matrix 𝐴 is called regular if 𝐴 ∈ (𝑐, 𝑐) and lim

𝑘→∞
𝐴
𝑘
(𝑥) =

lim
𝑘→∞

𝑥
𝑘
for all 𝑥 = {𝑥

𝑘
}
𝑘∈N ∈ 𝑐when 𝑐, as usual, stands for

the set of all convergent sequences. It is well known that the
necessary and sufficient condition for 𝐴 to be regular are

(a) ‖𝐴‖ = sup
𝑛
∑
𝑘
|𝑎
𝑛𝑘
| < ∞;

(b) lim
𝑛
𝑎
𝑛𝑘

= 0, for each 𝑘;
(c) lim

𝑛
∑
𝑘
𝑎
𝑛𝑘

= 1.

The idea of 𝐴-statistical convergence was introduced
by Kolk [1] using a nonnegative regular matrix 𝐴. For a
nonnegative regular matrix 𝐴 = (𝑎

𝑛𝑘
), a set 𝐾 ⊂ N will be

said to have 𝐴-density if 𝛿
𝐴
(𝐾) := lim

𝑛
∑
𝑘∈𝐾

𝑎
𝑛𝑘

exists. The

real number sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is said to be𝐴-statistically

convergent to 𝐿 provided that for every 𝜀 > 0 the set 𝐾(𝜀) :=

{𝑘 ∈ N : |𝑥
𝑘
− 𝐿| ≥ 𝜀} has 𝐴-density zero. Note that the

idea of𝐴-statistical convergence is an extension of the idea of
statistical convergence introduced by Fast [2] using the idea of
asymptotic density and later studied by Fridy [3, 4], Connor
[5], and Šalát [6] (see also [1, 7–11] for more references). Let
𝐾 = {𝑘(𝑗) : 𝑘(1) < 𝑘(2) < 𝑘(3) < ⋅ ⋅ ⋅ } ⊂ N and {𝑥}

𝐾
= {𝑥

𝑘(𝑗)
}

be a subsequence of 𝑥. If the set 𝐾 has 𝐴-density zero then
the subsequence {𝑥}

𝐾
of the sequence 𝑥 is called an 𝐴-thin

subsequence. If the set 𝐾 does not have 𝐴-density zero then
the subsequence {𝑥}

𝐾
is called an 𝐴-nonthin subsequence of

𝑥. The statement 𝛿
𝐴
(𝐾) ̸= 0 means that either 𝛿

𝐴
(𝐾) > 0 or

𝛿
𝐴
(𝐾) does not exist.
A family I ⊂ 2

𝑌 of subsets of a nonempty set 𝑌 is said
to be an ideal in 𝑌 if (i) 𝐴, 𝐵 ∈ I imply 𝐴 ∪ 𝐵 ∈ I;
(ii) 𝐴 ∈ I, 𝐵 ⊂ 𝐴 implies 𝐵 ∈ I, while an admissible ideal
I of 𝑌 further satisfies {𝑥} ∈ I for each 𝑥 ∈ 𝑌. If I is a
proper ideal in 𝑌 (i.e, 𝑌 ∉ I, 𝑌 ̸= 0), then the family of sets
𝐹(I) = {𝑀 ⊂ 𝑌 : there exists 𝐴 ∈ I : 𝑀 = 𝑌 \ 𝐴} is a
filter in 𝑌. It is called the filter associated with the ideal I.
Throughout I will stand for a proper nontrivial admissible
ideal of N. Let 𝐾 = {𝑘(𝑗) : 𝑘(1) < 𝑘(2) < 𝑘(3) < ⋅ ⋅ ⋅ } ⊂ N and
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{𝑥}
𝐾

= {𝑥
𝑘(𝑗)

} be a subsequence of 𝑥. If the set 𝐾 belongs to
I, then the subsequence {𝑥}

𝐾
of the sequence 𝑥 is called aI-

thin subsequence and if the set𝐾 does not belong toI, then
the subsequence {𝑥}

𝐾
is called a I-nonthin subsequence of

𝑥.
In this context, it should be mentioned that ideals were

first used to generalize the idea of statistical convergence by
Kostyrko et al. [12]. For more recent applications of ideals
one can see [1, 4, 13–21] where many more references can be
found.

The concept of statistical cluster points was introduced
by Fridy [4]. A real number 𝛾 is a statistical cluster point of
𝑥 if for every 𝜀 > 0; the set {𝑘 : |𝑥

𝑘
− 𝛾| < 𝜀} does not

have asymptotic density zero. It was shown that the set of all
statistical cluster points is nonempty and compact. Later the
notion of statistical cluster points was extended toI-cluster
points in [12] (see also [9]) and to𝐴-statistical cluster point by
Demirci [22] (see also [23]) and very recently to 𝜆-statistical
cluster point by Pehlivan et al. [24]. A number 𝛾 is said to
be an 𝐴-statistical cluster point of the number sequence 𝑥 =

{𝑥
𝑘
}
𝑘∈N provided that for every 𝜀 > 0, 𝛿

𝐴
(𝐾
𝜀
) ̸= 0, where

𝐾
𝜀
:= {𝑘 ∈ N : |𝑥

𝑘
− 𝛾| < 𝜀}. By Γ

𝐴
(𝑥), we denote the set

of all𝐴-statistical cluster points of 𝑥. Many interesting results
concerning statistical and thenI-cluster points were proved
in [8] and then in [25].

In this paper, following the line of [26], we first investigate
certain properties of the set of 𝐴-statistical cluster points
in R𝑚 and the concept of Γ

𝐴-statistical convergence and
examine some of its consequences. Though some of our
results were proved in [25] for arbitrary ideals of N, we
present the results for a specific ideal consisting of 𝐴-density
zero sets with alternative methods of proofs. Finally, we
present an application by establishing a general version of
turnpike theorem in line of the results proved by Pehlivan and
Mamedov [27, 28], which appears to be valid for a special class
of ideals.

2. Characterization of Γ
𝐴
(𝑥)

In this section, we investigate some properties of the set of
all 𝐴-statistical cluster points in R𝑚 with usual norm ‖ ⋅ ‖.
Consider a sequence 𝑥 = {𝑥

𝑘
}
𝑘∈N, 𝑥𝑘 ∈ R𝑚 and a point 𝜁 ∈

R𝑚. Following [1], we consider the following definitions.

Definition 1. A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is 𝐴-statistically

convergent to 𝜁 if for every 𝜀 > 0

𝛿
𝐴
{𝑘 ∈ N :

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝜁
󵄩󵄩󵄩󵄩 ≥ 𝜀} = 0. (1)

Definition 2. A point 𝜁 is called an 𝐴-statistical cluster point
of the sequence 𝑥 = {𝑥

𝑘
}
𝑘∈N if for every 𝜀 > 0

𝛿
𝐴
{𝑘 ∈ N :

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝜁
󵄩󵄩󵄩󵄩 < 𝜀} ̸= 0. (2)

We denote the set of all 𝐴-statistical cluster points of the
sequence 𝑥 = {𝑥

𝑘
}
𝑘∈N by Γ

𝐴
(𝑥). Now from Definition 2 it

readily follows that

lim
𝑛

∑

𝑘∈𝐾
𝜀

𝑎
𝑛𝑘

̸= 0, (3)

where

𝐾
𝜀
:= {𝑘 ∈ N :

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝜁
󵄩󵄩󵄩󵄩 < 𝜀} . (4)

That is,

lim
𝑛

∞

∑

𝑘=1

𝑎
𝑛𝑘
𝜒
𝐾
𝜀

(𝑘) ̸= 0. (5)

Hence,

lim
𝑛

sup
∞

∑

𝑘=1

𝑎
𝑛𝑘
𝜒
𝐾
𝜀

(𝑘) > 0. (6)

Definition 3. A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is said to be

𝐴-statistically bounded if there exists a compact set 𝐵 such
that 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∉ 𝐵} = 0.

The above definitions can be generalized via ideals as
follows.

Definition 4 (see [9, 12]). A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is I-

convergent to 𝜁 if for any 𝜀 > 0, {𝑘 ∈ N : ‖𝑥
𝑘
− 𝜁‖ ≥ 𝜀} ∈ I.

Definition 5 (see [9, 12]). A point 𝜁 is called an I-cluster
point of the sequence 𝑥 = {𝑥

𝑘
}
𝑘∈N if for every 𝜀 > 0

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝜁

󵄩󵄩󵄩󵄩 < 𝜀} ∉ I. (7)

We denote the set of allI-cluster points by ΓI(𝑥).

Definition 6. A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is said to be I-

bounded if there exists a compact set 𝐵 such that {𝑘 : 𝑥
𝑘
∉

𝐵} ∈ I.

Let𝑑(𝐶, 𝜉) stand for the distance of a point 𝜉 from a closed
set 𝐶 and it is defined as 𝑑(𝐶, 𝜉) = inf

𝑦∈𝐶
‖𝑦 − 𝜉‖. Let 𝑆

𝜀
(𝐶) =

{𝑦 ∈ R𝑚 : 𝑑(𝐶, 𝑦) < 𝜀} be the open 𝜀-neighborhood of 𝐶.

Lemma 7. Let 𝐾 be a compact subset of R𝑚 such that 𝐾 ∩

Γ
𝐴
(𝑥) = 0. Then 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∈ 𝐾} = 0.

In [8, Lemma 2.1], Činčura et al. proved the ideal version
of the above lemma which also extends Lemma 1 [26].

In [26], it was shown that for the ideal I
𝑑
of density

zero sets, the above result is not true for open or unbounded
subsets of R𝑚; that is, the assumption of compactness is
essential. However, in [8], no such example was presented to
show the essentiality of compactness. Below we present two
examples which show that the assumption of compactness
is essential even if we take the ideal of subsets of N with 𝐴-
density zero.

Next we show that the compactness of 𝐾 is essential
for Lemma 7. The result may fail if one of closedness or
boundedness hypotheses is relaxed.
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Remark 8. Let 𝐾 be the unbounded closed set [1,∞).
Consider the following nonnegative regular matrix:

𝐴 =

(
(
(
(
(
(
(

(

1

22

1

22
0 0 0 0 0 0 ⋅ ⋅ ⋅

1

23

1

23

1

22

1

22
0 0 0 0 ⋅ ⋅ ⋅

1

24

1

24

1

23

1

23

1

22

1

22
0 0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

)
)
)
)
)
)
)

)

. (8)

Now for the sequence 𝑥 = {0, 1, 0, 2, 0, 3, . . .}, Γ
𝐴
(𝑥) = {0} as

𝛿
𝐴
{𝑘 : ‖𝑥

𝑘
−0‖ < 𝜀} = 1/2 ̸= 0. In this case, we have𝐾∩Γ

𝐴
(𝑥) =

0 but 𝛿
𝐴
{𝑘 : 𝑥

𝑘
∈ 𝐾} = 𝛿

𝐴
{2, 4, 6, . . .} = 1/2 ̸= 0.

Remark 9. Let𝐾 be the bounded open set (0, 1). Consider the
nonnegative regular matrix:

𝐴 =

(
(
(
(
(
(
(
(
(
(
(
(

(

1

2
0 0 0 0 0 0 ⋅ ⋅ ⋅

1

22
0

1

2
0 0 0 0 ⋅ ⋅ ⋅

1

23
0

1

22
0

1

2
0 0 ⋅ ⋅ ⋅

1

24
0

1

23
0

1

22
0

1

2
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

)
)
)
)
)
)
)
)
)
)
)
)

)

. (9)

Clearly for the sequence 𝑥 = {1/𝑘}
𝑘∈N, we have Γ𝐴(𝑥) = {0}.

In this case also, we have 𝐾 ∩ Γ
𝐴
(𝑥) = 0, but we have 𝛿

𝐴
{𝑘 :

𝑥
𝑘
∈ 𝐾} = 𝛿

𝐴
{2, 3, 4, . . .} = 1 ̸= 0.

Lemma 10. If a sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N has a bounded 𝐴-

nonthin subsequence then the set Γ
𝐴
(𝑥) is nonempty and closed.

Lemma 11. If 𝑥 = {𝑥
𝑘
}
𝑘∈N is 𝐴-statistically bounded, then the

set Γ
𝐴
(𝑥) is nonempty and compact.

Letavaj [25] proved the ideal version of the above lemma.
Next we prove the following interesting theorem.

Theorem 12. If 𝑥 = {𝑥
𝑘
}
𝑘∈N is an 𝐴-statistically bounded

sequence then for every 𝜀 > 0,

𝛿
𝐴
{𝑘 : 𝑑 (Γ

𝐴
(𝑥) , 𝑥

𝑘
) ≥ 𝜀} = 0. (10)

Proof. Since 𝑥 is an 𝐴-statistically bounded sequence, there
exists a compact set 𝐵 such that 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∉ 𝐵} = 0. Now

Γ
𝐴
(𝑥) is nonempty and Γ

𝐴
(𝑥) ⊂ 𝐵 by Lemma 11. Suppose that

𝛿
𝐴
{𝑘 : 𝑑(Γ

𝐴
(𝑥), 𝑥

𝑘
) ≥ 𝜀} ̸= 0. Then there exists a number 𝜀 >

0, such that lim
𝑛
sup∑∞

𝑘=1
𝑎
𝑛𝑘
𝜒
𝐾
𝜀

(𝑘) > 0, where 𝐾
𝜀
:= {𝑘 :

𝑑(Γ
𝐴
(𝑥), 𝑥

𝑘
) ≥ 𝜀}. Define 𝑆

𝜀
(Γ
𝐴
(𝑥)) = {𝑦 : 𝑑(Γ

𝐴
(𝑥), 𝑦) <

𝜀} and let 𝐷 = 𝐵 \ 𝑆
𝜀
(Γ
𝐴
(𝑥)). Consequently, 𝐷 is compact

and contains an 𝐴-nonthin subsequence of 𝑥. Hence, from
Lemma 7 it follows that 𝐷 ∩ Γ

𝐴
(𝑥) ̸= 0. Therefore 𝐷 contains

an 𝐴-statistical cluster point which is a contradiction. This
proves the result.

Remark 13. If we take the sequence 𝑥 = {1, 0, 2, 0, 3, 0, . . .}

and consider the matrix 𝐴 given in Remark 8, then we get
Γ
𝐴
(𝑥) = {0}, but 𝛿

𝐴
{𝑘 : 𝑑(Γ

𝐴
(𝑥), 𝑥

𝑘
) ≥ 𝜀} = 1/2 ̸= 0. Hence,

we can conclude that if the sequence 𝑥 is not bounded then
Theorem 12 need not be true.

3. Γ𝐴-Statistical Convergence to a Set

Definition 14. Let 𝐶 ⊂ R𝑚 be a closed set satisfying the
property

𝛿
𝐴
{𝑘 : 𝑑 (𝐶, 𝑥

𝑘
) ≥ 𝜀} = 0 for every 𝜀 > 0. (11)

Then set 𝐶 is said to be an 𝐴-minimal closed set if for every
closed set 𝐶󸀠 ⊂ 𝐶 (𝐶 \ 𝐶

󸀠

̸= 0), there exists a number 𝜀󸀠 > 0

such that

𝛿
𝐴
{𝑘 : 𝑑 (𝐶

󸀠

, 𝑥
𝑘
) ≥ 𝜀

󸀠

} ̸= 0. (12)

Definition 15. A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is said to be Γ

𝐴-
statistically convergent to the set 𝐶 if 𝐶 is a nonempty 𝐴-
minimal closed set.

Generalizing the above concepts using ideals we can have
the following defintion.

Definition 16. Let 𝐶 ⊂ R𝑚 be a closed set satisfying the
property

{𝑘 : 𝑑 (𝐶, 𝑥
𝑘
) ≥ 𝜀} ∈ I, for every 𝜀 > 0. (13)

Then set 𝐶 is said to be anI-minimal closed set if for every
closed set 𝐶󸀠 ⊂ 𝐶 (𝐶 \ 𝐶

󸀠

̸= 0), there exists a number 𝜀󸀠 > 0

such that

{𝑘 : 𝑑 (𝐶
󸀠

, 𝑥
𝑘
) ≥ 𝜀

󸀠

} ∉ I. (14)

A sequence 𝑥 = {𝑥
𝑘
}
𝑘∈N is called Γ

I-convergent to the set 𝐶
if 𝐶 is a nonemptyI-minimal closed set.

Following the line of Theorem 4 in [26], we now give the
following theorem.

Theorem 17. If 𝑥 = {𝑥
𝑘
}
𝑘∈N is 𝐴-statistically bounded then it

is Γ𝐴-statistically convergent to the set Γ
𝐴
(𝑥).

Proof. From Lemma 11 andTheorem 12, Γ
𝐴
(𝑥) is a nonempty

compact set and 𝛿
𝐴
{𝑘 : 𝑑(Γ

𝐴
(𝑥), 𝑥

𝑘
) ≥ 𝜀} = 0, for every 𝜀 > 0.

We need to show that Γ
𝐴
(𝑥) is an 𝐴-minimal set.

On the contrary, suppose that Γ
𝐴
(𝑥) is not 𝐴-minimal.

Then there exists a closed set 𝐶 ⊂ Γ
𝐴
(𝑥)(Γ

𝐴
(𝑥) \ 𝐶 ̸= 0) with

𝛿A{𝑘 : 𝑑(𝐶, 𝑥
𝑘
) ≥ 𝜀} = 0. Hence, there is a point 𝜁 ∈ Γ

𝐴
(𝑥)

such that 𝜁 ∉ 𝐶 and so there exists a number 𝜀 > 0 such
that 𝑆

𝜀
(𝜁) ∩ 𝑆

𝜀
(𝐶) = 0. Now since 𝜁 is an 𝐴-statistical cluster

point so lim
𝑛
sup∑

𝑘∈𝐾
𝜀(𝜁)

𝑎
𝑛𝑘
𝜒
𝐾
𝜀(𝜁)

(𝑘) > 0, where 𝐾
𝜀(𝜁)

:= {𝑘 :

𝑑(Γ
𝐴
(𝑥), 𝑥

𝑘
) ≥ 𝜀}. Since 𝑆

𝜀
(𝜁) ∩ 𝑆

𝜀
(𝐶) = 0,

{𝑘 : 𝑥
𝑘
∈ 𝑆
𝜀
(𝜁)} ⊂ {𝑘 : 𝑥

𝑘
∉ 𝑆
𝜀
(𝐶)} . (15)

Therefore lim
𝑛
sup∑

𝑘∈𝐾
𝜀(𝐶)

𝑎
𝑛𝑘
𝜒
𝐾
𝜀(𝐶)

(𝑘) > 0, where 𝐾
𝜀(𝐶)

:=

{𝑘 : 𝑥
𝑘
∉ 𝑆
𝜀
(𝐶)} which is a contradiction. This completes the

proof.
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Remark 18. Define the sequence 𝑥 by

𝑥
𝑘
= 𝑝, where 𝑘 = 2

𝑝−1

(2𝑞 + 1) ; (16)

that is, 𝑝 − 1 is the number of factors of 2 in the prime
factorization of 𝑘. If we consider the matrix 𝐴 given in
Remark 8, then we can show that the sequence is not 𝐴-
statistically bounded. Here Γ

𝐴
(𝑥) = {1, 2, 3, . . .} and the

sequence 𝑥 is Γ𝐴-statistically convergent to Γ
𝐴
(𝑥).

Next we study the uniqueness of the𝐴-limit set.We prove
the following theorem in line of Theorem 5 in [26].

Theorem 19. If 𝑥 is Γ
𝐴-statistically convergent to the set 𝐶,

then 𝐶 = Γ
𝐴
(𝑥).

Proof. We show that Γ
𝐴
(𝑥) ⊂ 𝐶. On the contrary, let there be a

point 𝜁 ∈ Γ
𝐴
(𝑥) such that 𝜁 ∉ 𝐶. Now closedness of 𝐶 implies

that there exists a number 𝜀 > 0 for which 𝑆
𝜀
(𝜁) ∩ 𝑆

𝜀
(𝐶) = 0

which consequently implies that

{𝑘 : 𝑥
𝑘
∈ 𝑆
𝜀
(𝜁)} ⊂ {𝑘 : 𝑥

𝑘
∉ 𝑆
𝜀
(𝐶)} . (17)

Now since 𝛿
𝐴
{𝑘 : 𝑥

𝑘
∉ 𝑆

𝜀
(𝐶)} = 0, so we get 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∈

𝑆
𝜀
(𝜁)} = 0. This implies that 𝜁 ∈ Γ

𝐴
(𝑥), a contradiction.

Hence, Γ
𝐴
(𝑥) ⊂ 𝐶.

Now we show that 𝐶 ⊂ Γ
𝐴
(𝑥). Suppose 𝜁 ∈ 𝐶, but 𝜁 ∉

Γ
𝐴
(𝑥). Then there is a number 𝜀󸀠 > 0 such that 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∈

𝑆
𝜀
(𝜁)} = 0 for every 𝜀 ≤ 𝜀

󸀠. Now point 𝜁 may be an isolated
point or a limit point of𝐶. So we consider the following cases.

Case 1. Let 𝜁 be an isolated point 𝐶. Then there is a number
𝜀 ≤ 𝜀

󸀠 such that 𝑆
𝜀
(𝜁) ∩ 𝑆

𝜀
(𝐶 \ {𝜁}) = 0. This implies that

𝑆
𝜀
(𝐶) = 𝑆

𝜀
(𝜁) ∪ 𝑆

𝜀
(𝐶 \ {𝜁}). Hence,

{𝑘 : 𝑥
𝑘
∉ 𝑆
𝜀
(𝐶 \ {𝜁})} = {𝑘 : 𝑥

𝑘
∈ 𝑆
𝜀
(𝜁)} ∪ {𝑘 : 𝑥

𝑘
∉ 𝑆
𝜀
(𝐶)} .

(18)

Therefore

lim
𝑛

∑

𝑘∈𝑃

𝑎
𝑛𝑘
𝜒
𝑃
(𝑘) = lim

𝑛

∑

𝑘∈𝑄

𝑎
𝑛𝑘
𝜒
𝑄
(𝑘)

+ lim
𝑛

∑

𝑘∈𝑅

𝑎
𝑛𝑘
𝜒
𝑅
(𝑘) ,

(19)

where 𝑃 = {𝑘 : 𝑥
𝑘

∉ 𝑆
𝜀
(𝐶 \ {𝜁})}, 𝑄 = {𝑘 : 𝑥

𝑘
∈ 𝑆

𝜀
(𝜁)}

and 𝑅 = {𝑘 : 𝑥
𝑘

∉ 𝑆
𝜀
(𝐶)}. It now readily follows that

lim
𝑛
∑
𝑘∈𝑃

𝑎
𝑛𝑘
𝜒
𝑃
(𝑘) = 0 and so 𝛿

𝐴
{𝑘 : 𝑥

𝑘
∉ 𝑆
𝜀
(𝐶 \ {𝜁})} = 0.

This shows that 𝐶 is not an 𝐴-minimal set, a contradiction.

Case 2. If 𝜁 is a limit point of the set𝐶 then there is a sequence
{𝜁
𝑚
}
𝑚∈N in 𝐶 such that {𝜁

𝑚
}
𝑚∈N converges to 𝜁 and 𝜁

𝑗
̸= 𝜁
𝑖
for

𝑖 ̸= 𝑗. Let 𝜀 > 0 be given. Choose 𝜁󸀠 = 𝜁
𝑚
such that ‖𝜁−𝜁󸀠‖ = 2𝛿

with 4𝛿 < 𝜀.
We claim that 𝑆

𝛿
(𝐶) ⊂ 𝑆

𝜀
(𝐶 \ 𝑆

𝛿
(𝜁)). Let 𝑥 ∈ 𝑆

𝛿
(𝐶) and

𝑥
󸀠

∈ 𝐶 be such that ‖𝑥 − 𝑥
󸀠

‖ < 𝛿. If 𝑥󸀠 ∉ 𝑆
𝛿
(𝜁) then 𝑥

󸀠

∈

𝐶 \ 𝑆
𝛿
(𝜁) and so 𝑥 ∈ 𝑆

𝛿
(𝐶 \ 𝑆

𝛿
(𝜁)) ⊂ 𝑆

𝜀
(𝐶 \ 𝑆

𝛿
(𝜁)). Again if

𝑥
󸀠

∈ 𝑆
𝛿
(𝜁) then ‖𝑥−𝜁‖ ≤ ‖𝑥−𝑥

󸀠

‖+‖𝑥
󸀠

−𝜁‖+‖𝜁−𝜁
󸀠

‖ < 4𝛿 < 𝜀.

But ‖𝜁−𝜁󸀠‖ = 2𝛿 and so 𝜁󸀠 ∈ 𝐶\𝑆
𝛿
(𝜁). Hence 𝑥 ∈ 𝑆

𝜀
(𝐶\𝑆

𝛿
(𝜁))

and so 𝑆
𝛿
(𝐶) ⊂ 𝑆

𝜀
(𝐶 \ 𝑆

𝛿
(𝜁)) which implies that

{𝑘 : 𝑥
𝑘
∉ 𝑆
𝜀
(𝐶 \ 𝑆

𝛿
(𝜁))} ⊆ {𝑘 : 𝑥

𝑘
∉ 𝑆
𝛿
(𝐶)} . (20)

Hence, 𝛿
𝐴
{𝑘 : 𝑥

𝑘
∉ 𝑆

𝜀
(𝐶 \ 𝑆

𝛿
(𝜁))} = 0 and so 𝐶 is not the

𝐴-minimal set. This completes the proof of the theorem.

4. An Application to Turnpike Theorem

We consider the following system:

𝑥
𝑘+1

= 𝑓 (𝑥
𝑘
, 𝑢
𝑘
) , 𝑥

1
= 𝜁
0

, (21)

where 𝜁0 ∈ R𝑚 is the assigned initial point, function 𝑓(𝑥, 𝑢) :

R𝑚 × R𝑟 → R𝑚 is continuous, 𝑢 ∈ 𝑈, and 𝑈 ⊂ R𝑟 is a
compact set.The sequences𝑥 = {𝑥

𝑘
}
𝑘∈N and𝑢 = {𝑢

𝑘
}
𝑘∈N(𝑢𝑘 ∈

𝑈, for every 𝑘) are called, a path and a control respectively,
if (21) is satisfied for every 𝑘 ∈ N. The pair (𝑢, 𝑥) is called
a process. We assume that there exists a bounded closed set
𝐶 ⊂ R𝑚 such that 𝑥

𝑘
∈ 𝐶 for every path 𝑥 = {𝑥

𝑘
}
𝑘∈N that is

I-bounded. The point 𝜁 ∈ R𝑚 is called a stationary point if
there exists 𝑢 ∈ 𝑈 such that 𝑓(𝜁, 𝑢) = 𝜁. We denote the set
of all stationary points by𝑀. It is clear that𝑀 is a closed set.
Let 𝜙 : R𝑚 → R be a given continuous function by which
we shall define a functional.

Let 𝛼 = (𝛼
𝑘
)
𝑘∈N be a I-bounded number sequence and

let ΓI(𝛼) be the set of I-cluster points of this sequence. We
denote byC − lim inf

𝑘→∞
𝛼
𝑘
the minimal element in ΓI(𝛼).

If 𝑥 = {𝑥
𝑘
}
𝑘∈N is a path to (21) then 𝜙 = 𝜙(𝑥

𝑘
) is aI-bounded

number sequence. So on the paths to (21), we can consider the
problem in line of [27]:

𝐽 (𝑥) = C − lim inf
𝑘→∞

𝜙 (𝑥
𝑘
) 󳨀→ max . (22)

First we prove the following lemma.

Lemma 20. Let 𝜙 : R𝑚 → R be a continuous function. Then
the functional 𝐽(𝑥)may be expressed in the form

𝐽 (𝑥) = min
𝜁∈ΓI(𝑥)

𝜙 (𝜁) . (23)

Proof. Since the path 𝑥 = {𝑥
𝑘
}
𝑘∈N is I-bounded, so ΓI(𝑥)

is nonempty and compact. Again since the function 𝜙 is
continuous, so there exists a point 𝜁∗ ∈ ΓI(𝑥) such that
𝜙
∗

= 𝜙(𝜁
∗

) = min
𝜁∈ΓI(𝑥)

𝜙(𝜁).
Let ΓI(𝜙) denote the set of I-cluster points of the

sequence {𝜙(𝑥
𝑘
)}
𝑘∈N. Nowwe will show that min ΓI(𝜙) = 𝜙

∗.
Since 𝜁∗ ∈ ΓI(𝑥), for every 𝛿 > 0, {𝑛 ∈ N : ‖𝑥

𝑘
− 𝜁
∗

‖ < 𝛿} ∉

I. Let 𝜀 > 0 be given. Then there exists 𝛿 = 𝛿(𝜀) > 0 such
that |𝜙(𝜁) − 𝜙(𝜁

∗

)| < 𝜀 for every 𝜁, ‖𝜁 − 𝜁
∗

‖ < 𝛿. Therefore
{𝑘 ∈ N : |𝜙(𝑥

𝑘
) − 𝜙(𝜁

∗

)| < 𝜀} ⊃ {𝑘 ∈ N : ‖𝑥
𝑘
− 𝜁
∗

‖ < 𝛿}

which implies that {𝑘 ∈ N : |𝜙(𝑥
𝑘
) − 𝜙(𝜁

∗

)| < 𝜀} ∉ I and so
{𝑘 ∈ N : |𝜙(𝑥

𝑘
) − 𝜙

∗

| < 𝜀} ∉ I that is, 𝜙∗ ∈ ΓI(𝜙). Hence
min ΓI(𝜙) ≤ 𝜙

∗.
Now assume that 𝜙󸀠 ∈ ΓI(𝜙) and 𝜙

󸀠

≤ 𝜙
∗. Let 𝜀 =

(𝜙
∗

−𝜙
󸀠

)/2. Since 𝜙 is continuous, there exists 𝛿 > 0 such that
min

𝜁∈𝑆
𝛿
(ΓI(𝑥))

𝜙(𝜁) ≥ 𝜙
∗

− 𝜀. Put 𝐵 = {𝑘 ∈ N : 𝑑(ΓI(𝑥), 𝑥
𝑘
) ≥

𝛿}. Obviously 𝐵 ∈ I. Then 𝑑(ΓI(𝑥), 𝑥
𝑘
) < 𝛿 forall N \ B,
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that is, 𝑥
𝑘
∈ 𝑆
𝛿
(ΓI(𝑥)) and so 𝜙(𝑥

𝑘
) ≥ 𝜙

∗

−𝜀 forall k ∈ N \B.
Again 𝜀 = (𝜙

∗

− 𝜙
󸀠

)/2 implies 𝜙∗ − 𝜀 = 𝜙
󸀠

+ 𝜀. Therefore
𝜙(𝑥

𝑘
) ≥ 𝜙

󸀠

−𝜀 forall k ∈ N\B.This shows that |𝜙(𝑥
𝑘
)−𝜙

󸀠

| < 𝜀

can not be satisfied for 𝑘 ∈ N \ 𝐵. Hence {𝑘 ∈ N : |𝜙(𝑥
𝑘
) −

𝜙
󸀠

| < 𝜀} ⊂ 𝐵 ∈ I which implies that 𝜙󸀠 ∉ ΓI(𝑥). Hence
min ΓI(𝜙) ≥ 𝜙

∗. Therefore min ΓI(𝜙) = 𝜙
∗.

Now we will establish a general version of the Turnpike
Theorem (see [27, 29–33] for more details and history) which
turns out to be valid for a special class of ideals, namely those
ideals which are invariant under translation.

Before we proceed further, we recall the following basic
facts about analytic 𝑃-ideals (see [34, 35]).

A map 𝜓 : 𝑃(N) → [0,∞] is a submeasure on N if

(i) 𝜓(0) = 0,

(ii) 𝜓(𝐴) ≤ 𝜓(𝐴 ∪ 𝐵) ≤ 𝜓(𝐴) + 𝜓(𝐵), for all 𝐴, 𝐵 ⊂ N.

It is lower semicontinuous if for all 𝐴 ⊂ N, we have 𝜓(𝐴) =

lim
𝑛→∞

𝜓(𝐴 \ 𝑛), where 𝐴 \ 𝑛 = 𝐴 \ {1, 2, 3, . . . , 𝑛}. For every
lower semicontinuous submeasure on N, let ‖ ⋅ ‖

𝜓
: 𝑃(N) →

[0,∞] be the submeasure defined by

‖𝐴‖
𝜓
= lim sup
𝑛→∞

𝜓 (𝐴 \ 𝑛)

= lim
𝑛→∞

𝜓 (𝐴 \ 𝑛) .

(24)

Let I = 𝐸𝑥ℎ(𝜓) = {𝐴 ⊂ N : ‖𝐴‖
𝜓

= 0}. It is clear that
𝐸𝑥ℎ(𝜓) is an ideal for an arbitrary submeasure 𝜓. An ideal
I on N is an analytic 𝑃-ideal ifI = 𝐸𝑥ℎ(𝜓) for some lower
semicontinuous submeasure 𝜓 on N. Following [35], we say
that an idealI is invariant under translation if for each 𝐴 ∈

I, and 𝑛 ∈ Z, 𝐴 + 𝑛 ∈ I where 𝐴 + 𝑛 = {𝑎 + 𝑛 : 𝑎 ∈ 𝐴} ∩ N.
If ‖ ⋅ ‖

𝜓
is invariant under translations, then the ideal 𝐸𝑥ℎ(𝜓)

is invariant under translations.
Let 𝑓 : N → [0,∞) be such that ∑

∞

𝑖=0
𝑓(𝑖) =

+∞ and lim
𝑛→∞

(𝑓(𝑛)/∑
𝑖∈𝑛

𝑓(𝑖)) = 0. Then 𝜀℧
𝑓

=

{𝐴 ⊂ N : lim
𝑛→∞

(∑
𝑖∈𝐴∩𝑛

𝑓(𝑖)/∑
𝑖∈𝑛

𝑓(𝑖)) = 0} is
called an Erdös-Ulam ideal [35]. The ideal I

𝑑
consisting

of all sets with statistical density zero is an Erdös-Ulam
ideal (generated by any constant positive function 𝑓). Every
Erdös-Ulam ideal 𝜀℧

𝑓
is an analytic 𝑃-ideal of the form

𝐸𝑥ℎ(𝜓
𝑓
), where 𝜓

𝑓
(𝐴) = sup

𝑛∈N(∑𝑖∈𝐴∩𝑛 𝑓(𝑖)/∑𝑖∈𝑛 𝑓(𝑖)) and
‖𝐴‖

𝜓
𝑓

= lim sup
𝑛→∞

(∑
𝑖∈𝐴∩𝑛

𝑓(𝑖)/∑
𝑖∈𝑛

𝑓(𝑖)). Observe that
if lim

𝑛→∞
(∑
𝑖∈𝑛

|𝑓(𝑖 + 𝑘) − 𝑓(𝑖)|/ ∑
𝑖∈𝑛

𝑓(𝑖)) = 0 for every
𝑘 ∈ Z then ‖ ⋅ ‖

𝜓
𝑓

is invariant under translations. So Erdös-
Ulam ideals are examples of ideals which are invariant under
translation under certain conditions.

Following the line of [27] we now study the asymptotic
stability of optimal paths in the problem (21) and (22) and for
this we consider the main conditions as follows:

Condition 1 (in short C1). The maximum of the function 𝜙

on 𝑀 is reached at the unique stationary point 𝜁∗ such that
max

𝜁∈𝑀
𝜙(𝜁) = 𝜙(𝜁

∗

).

Condition 2 (in short C2).There exists a process (𝑢∗, 𝑥∗) such
that 𝑥

𝑘

∗

→ 𝜁
∗ as 𝑘 → ∞.

Condition 3 (in short C3).There exists a vector 𝑝 ∈ R𝑚, ‖𝑝‖ =

1 such that 𝑝𝑓(𝑥, 𝑢) < 𝑝𝑥 for every 𝑥 ∈ 𝐵, 𝑥 ̸= 𝜁
∗ and 𝑢 ∈ 𝑈

where 𝐵 = {𝜁 ∈ 𝐶 : 𝜙(𝜁) ≥ 𝜙(𝜁
∗

)}.

Theorem 21 (TurnpikeTheorem). Let conditions C1, C2, and
C3 hold and let (𝑢, 𝑥) be an optimal process in the problems
(21) and (22). Then has ΓI(𝑥) = {𝜁

∗

}, where the ideal I is
invariant under translation.

Proof. By C2 for the process (𝑢
∗

, 𝑥
∗

) = (𝑢
∗

𝑘
, 𝑥
∗

𝑘
) we have

ΓI(𝑥
∗

) = {𝜁
∗

}. Hence 𝐽(𝑥∗) = min
𝜁∈ΓI(𝑥

∗
)
𝜙(𝜁) = 𝜙(𝜁

∗

) from
Lemma 20. Therefore the maximal quantity of the functional
(22) is not less than 𝜙(𝜁

∗

). As (𝑢, 𝑥) is an optimal process, so
𝐽(𝑥) = min

𝜁∈ΓI(𝑥)
𝜙(𝜁) ≥ 𝜙(𝜁

∗

). Thus ΓI(𝑥) ⊂ 𝐵.
Define the function𝐹(𝜁) = max

𝑢∈𝑈
𝑝𝑓(𝜁, 𝑢)−𝑝𝜁. It is clear

that 𝐹(𝜁) is a continuous function. FromC3 it follows that for
every 𝜁 ∈ ΓI(𝑥), 𝜁 ̸= 𝜁

∗, the inequality 𝐹(𝜁) < 0 is satisfied
and at the point 𝜁∗ we have 𝐹(𝜁∗) = 0.

Claim. ΓI(𝑥) = {𝜁
∗

}.

Case 1. Suppose that there is a point 𝜁
1

∈ ΓI(𝑥) such that
𝜁
1

̸= 𝜁
∗ and min

𝜁∈ΓI(𝑥)
𝑝𝜁 = 𝑝𝜁

1
. We have 𝐹(𝜁

1
) < 0. Since

𝐹(𝜁) is continuous, so there exists a number 𝛾 > 0 such that

𝐹 (𝜁) < −4𝛾 for every 𝜁 ∈ 𝑆
𝛾
(𝜁
1
) , (25)

where 𝑆
𝛾
(𝐴) = {𝜁 ∈ R𝑚 : 𝑑(𝜁, 𝐴) ≤ 𝛾}.

Let 𝑥
𝑘

∈ 𝑆
𝛾
(𝜁
1
). Then from (25), 𝐹(𝑥

𝑘
) < −4𝛾 or

𝑝𝑓(𝑥
𝑘
, 𝑢) − 𝑝𝑥

𝑘
< −4𝛾 for every 𝑢 ∈ 𝑈. In particular for

the point 𝑢
𝑘
∈ 𝑈 we have 𝑝𝑥

𝑘+1
= 𝑝𝑓(𝑥

𝑘
, 𝑢
𝑘
) < 𝑝𝑥

𝑘
− 4𝛾.

As ‖𝑝‖ = 1 and 𝑥
𝑘
∈ 𝑆

𝛾
(𝜁
1
), so we obtain 𝑝𝑥

𝑘
≤ 𝑝𝜁

1
+ 𝛾.

Thus 𝑝𝑥
𝑘+1

< 𝑝𝜁
1
−3𝛾. On the other hand for every point 𝜁 ∈

𝑆
𝛾
(ΓI(𝑥)), 𝑝𝜁 ≥ min

𝑦∈ΓI(𝑥)
𝑝𝑦−𝛾 = 𝑝𝜁

1
−𝛾 > 𝑝𝜁

1
− 3𝛾. Then

𝑥
𝑘+1

∉ 𝑆
𝛾
(ΓI(𝑥)). Thus if 𝑥

𝑘
∈ 𝑆
𝛾
(𝜁
1
) then 𝑥

𝑘+1
∉ 𝑆
𝛾
(ΓI(𝑥)).

Let 𝐾
𝛾

= {𝑘 ∈ N : ‖𝑥
𝑘
− 𝜁
1
‖ < 𝛾} = {𝑘

1
, 𝑘
2
, 𝑘
3
, . . .},

𝑍 = {𝑘 ∈ N : 𝑑(ΓI(𝑥), 𝑥
𝑘
) ≥ 𝛾} and consider the set 𝐴 =

{𝑘
1
+1, 𝑘

2
+1, 𝑘

3
+1, . . .}. As 𝜁

1
is aI-cluster point so𝐾

𝛾
∉ I.

Since I is assumed to be invariant under translation so we
have 𝐴 ∉ I. But 𝐴 ⊂ 𝑍 and so 𝑍 ∉ I, a contradiction. Thus
𝜁
∗ is a uniqueI-cluster point for which 𝑝𝜁

∗

= min
𝜁∈ΓI(𝑥)

𝑝𝜁,
that is; 𝑝𝜁∗ < 𝑝𝜁 for every 𝜁 ∈ ΓI(𝑥), 𝜁 ̸= 𝜁

∗.

Case 2. Let now 𝜁
2

∈ ΓI(𝑥) be such that 𝜁
2

̸= 𝜁
∗ and

max
𝜁∈ΓI(𝑥)

𝑝𝜁 = 𝑝𝜁
2
. Let 𝑝𝜁

2
− 𝑝𝜁

∗

= 4𝑎(𝑎 > 0). Now C1
implies that 𝐹(𝜁∗) = 0. As 𝐹(𝜁) is continuous, for the number
𝑎 we can find a number 0 < 𝛿 < 𝑎 such that 𝐹(𝜁) < 𝑎 for
every 𝜁 ∈ 𝑆

𝛿
(𝜁
∗

).
Let𝑥

𝑘
∈ 𝑆
𝛿
(𝜁
∗

).Then𝐹(𝑥
𝑘
) < 𝑎 or𝑝𝑓(𝑥

𝑘
, 𝑢)−𝑝𝑥

𝑘
< 𝑎 for

every 𝑢 ∈ 𝑈. In particular for the point 𝑢
𝑘
∈ 𝑈,𝑝𝑥

𝑘+1
< 𝑝𝑥

𝑘
+

𝑎. But 𝑝𝑥
𝑘
≤ 𝑝𝜁

∗

+ 𝛿 < 𝑝𝜁
∗

+ 𝑎. Therefore 𝑝𝑥
𝑘+1

< 𝑝𝜁
∗

+ 2𝑎.
On the other hand for every point 𝜁 ∈ 𝑆

𝑎
(𝜁
2
) we can write

𝑝𝜁 ≥ 𝑝𝜁
2
− 𝑎 = (𝑝𝜁

∗

+ 4𝑎) − 𝑎 = 𝑝𝜁
∗

+ 3𝑎 > 𝑝𝜁
∗

+ 2𝑎. Thus
𝑥
𝑘+1

∉ 𝑆
𝑎
(𝜁
2
) if 𝑥

𝑘
∈ 𝑆
𝛿
(𝜁
∗

).
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Consider the set Δ
1
= {𝜁 ∈ ΓI(𝑥) : ‖𝜁 − 𝜁

∗

‖ ≤ 𝛿/2}.
Obviously 𝑆

𝛿/2
(Δ
1
) ⊂ 𝑆

𝛿
(𝜁
∗

) and therefore we obtain that

if 𝑥
𝑘
∈ 𝑆
𝛿/2

(Δ
1
) then 𝑥

𝑘+1
∉ 𝑆
𝑎
(𝜁
2
) . (26)

Again ifΔ
2
= {𝜁 ∈ ΓI(𝑥) : ‖𝜁−𝜁

∗

‖ ≥ 𝛿/2}, then it is clear that
Δ
2
is compact, Δ

2
⊂ 𝐵 and 𝜁

∗

∉ Δ
2
. By C3, we have 𝐹(𝜁) < 0

for every 𝜁 ∈ Δ
2
. As 𝐹(𝑥) is continuous there exists a number

𝛾 > 0 such that 𝐹(𝜁) < −4𝛾 for every 𝜁 ∈ 𝑆
𝛾
(Δ
2
).

Let 𝑥
𝑘
∈ 𝑆
𝛾
(Δ
2
). Then 𝐹(𝑥

𝑘
) = max

𝑢∈𝑈
𝑝𝑓(𝑥

𝑘
, 𝑢) − 𝑝𝑥

𝑘
<

−4𝛾 and in particular for the point 𝑢
𝑘
∈ 𝑈, 𝑝𝑥

𝑘+1
< 𝑝𝑥

𝑘
−4𝛾.

It is clear that 𝑝𝑥
𝑘
≤ max

𝜁∈𝑆
𝛿
(Δ
2
)
𝑝𝜁 + 𝛾 = 𝑝𝜁

2
+ 𝛾. Therefore

𝑝𝑥
𝑘+1

< 𝑝𝜁
2
− 3𝛾. On the other hand for every 𝜁 ∈ 𝑆

𝛾
(𝜁
2
),

𝑝𝜁 ≥ 𝑝𝜁
2
− 𝛾 > 𝑝𝜁

2
− 3𝛾. Then 𝑥

𝑘+1
∉ 𝑆
𝛾
(𝜁
2
). Thus we obtain

that

if 𝑥
𝑘
∈ 𝑆
𝛾
(Δ
2
) then 𝑥

𝑘+1
∉ 𝑆
𝛾
(𝜁
2
) . (27)

Now let 𝜀 = min(𝛿/2, 𝑎, 𝛾). It is clear that ΓI(𝑥) = Δ
1
∪Δ
2

and therefore 𝑆
𝜀
(ΓI(𝑥)) = 𝑆

𝜀
(Δ
1
) ∪ 𝑆

𝜀
(Δ
2
). Then from (26)

and (27) it follows if 𝑥
𝑘
∈ 𝑆
𝜀
(ΓI(𝑥)), then 𝑥

𝑘+1
∈ 𝑆
𝜀
(𝜁
2
)which

implies that if 𝑥
𝑘
∈ 𝑆
𝜀
(𝜁
2
), then 𝑥

𝑘−1
∉ 𝑆
𝜀
(ΓI(𝑥)).

Let 𝐾
𝜀
:= {𝑘 ∈ N : ‖𝑥

𝑘
− 𝜁
2
‖ < 𝜀} = {𝑘

1
, 𝑘
2
, 𝑘
3
, . . .}, 𝑍 =

{𝑘 ∈ N : 𝑑(ΓI(𝑥), 𝑥
𝑘
) ≥ 𝜀} and 𝐴 = {𝑘

1
− 1, 𝑘

2
− 1, 𝑘

3
− 1, . . .}.

As 𝜁
2
is a I-cluster point so 𝐾

𝜀
∉ I which consequently

implies 𝐴 ∉ I. Again 𝐴 ⊂ 𝑍 and so 𝑍 ∉ I, a contradiction.
Thus ΓI(𝑥) = {𝜁

∗

} that is, the path {𝑥
𝑘
}
𝑘∈N is I-convergent

to 𝜁
∗.

Remark 22. We consider the system

𝑥
𝑘+1

∈ 𝑥
𝑘
+ 𝑎 (𝑥

𝑘
) , 𝑥

1
= 𝜁
0

, 𝑘 ∈ N, (28)

where 𝜁
0

∈ R𝑚 is a given initial point and 𝑎 : R𝑚 →

R𝑚 is a multivalued mapping having compact images and is
continuous in the Hausdorff metric.

Now, following the line of Mamedov and Pehlivan [32],
we can show the following.

Theorem 23 (TurnpikeTheorem). Let conditions C1, C2, and
C3 hold and let 𝑥 = {𝑥

𝑘
}
𝑘∈N be an asymptotical optimal path

satisfying the conditions of the systems (28) and (22). Then has
ΓI(𝑥) = {𝜁

∗

}, where the idealI is invariant under translation.
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