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The cathodoluminescence properties of rare-earth (RE = Ce, Eu, Tb) doped nanocrystalline phosphors (Y2O3, Y3A15O12) were
investigated. Their structure and morphology were determined and correlated with optical properties. The effect of grain sizes on
emission yield of RE doped nanophosphors has been investigated. A possibility of application of RE doped nanophosphors for
efficient field emission display (FED) devices has been discussed.
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1. INTRODUCTION

Phosphors are efficient luminescent materials and irreplace-
able components of light-emitting devices like cathode ray
tubes (CRTs), plasma display panels (PDPs), and field emis-
sion displays (FEDs). The last ones have gained a great inter-
est [1] and have been recognized as one of the most promis-
ing technologies in the flat panel displays (FPDs) market [2–
6] due to their most important features like great brightness,
wide horizontal and vertical view angles, good contrast ra-
tio, high efficiency with a low power consumption, short re-
sponse time, and wide work temperature range. The PDPs
in contrast to the liquid crystal displays (LCDs) [7] are char-
acterized by low contrast ratio, low view angle, and narrow
operating temperature range, but they have low efficiency
and high power consumption resulting in overwarming dur-
ing work [6, 8, 9]. Such behaviors do not appear in FEDs
at all. Additionally, FEDs have high brightness (3000 cd/m2)
and very high efficiency (2 W/10.4′′). The only problem that
appears in FEDs is that the operating time is shorter than
in the case of other described technologies. This problem is
connected with progressive degradation of vacuum level in
the display space [10–13]. There are three main sources of
gasses in FEDs. The first one is the gas emitted during de-
vice encapsulation process [11]. The second source of gasses
is the employment of inappropriate materials (e.g., porous
glasses) in the device construction [10, 13]. The third and
most important source of gasses is improper type of phos-
phors [6, 10, 12, 13]. Examples of that class of phosphors

are semiconductors and insulators containing sulfur in the
host material composition [10, 14–20], for example, ZnS,
ZnSO4, and Y(La,Gd)2O2S. The example of the abovemen-
tioned influence of SO2 and other gasses on FED operation
has been presented in detail and discussed in work [12]. For
the same reasons CdS, PbS, and Zn(Cd)S phosphors or even
CdSe/ZnS quantum dots composites need to be eliminate
[6, 21]. Besides, they consist of harmful cadmium and lead
which classified those materials as dangerous and disquali-
fied from commercial application.

Other problem is a decrease of cathodoluminescence effi-
ciency by negative loading of grain surface in phosphor layer.
That is why the electrical conductivity of phosphors should
be high enough to avoid charge accumulation [18, 22, 23].

The above considerations lead to a conclusion that new
class of phosphors needs to be applied in field emission dis-
plays. One of the most promising solutions is rare-earth
(RE) doped garnets, oxides, silicates, and some perovskites
[14, 18–20, 24–26]. Unfortunately, most of them are insu-
lators. This disadvantage could be neutralized by modula-
tion of phosphor grain size. At present, a large majority of
efforts concentrate on application of nano- and eventually
submicron-size particle phosphors [27–36]. Some experi-
mental [36, 37] and theoretical considerations [38] promote
as the most efficient phosphors with submicron grain size
of spherical shape [39]. However, nanoparticle phosphors
could be appropriate for low voltage FED application [38].
Besides, they have a lot of other advantages and create new
possibilities [16, 17, 39, 40]. In some cases, the preparation
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of nanocrystalline phosphors requires much less tempera-
ture and time in comparison with conventional micro- or
submicro-size grains [16, 39, 40]. Application of small grains
close to spherical shape influences the efficiency of the phos-
phor layer and the quality of the displayed picture [39]. The
employment of such materials allowed for optimal packag-
ing of grains, avoids cutting of the picture spot and decreases
scattering of emitted light in the layer [39]. Moreover, appli-
cation of nanocrystalline luminescent powders allowed the
fabrication of very thin light emitting film and fundamen-
tally decreased the total resistance of phosphor layer. The
thickness of the layer is connected with lower amount of
gasses bound between the phosphor grains [40]. The effluent
of those gasses during device operation can affect degrada-
tion of vacuum level and seriously shorten the display oper-
ating time [12, 13].

Another potential benefit connected with application of
nanocrystals is a possibility of increasing conductivity of
phosphors by mixing them with transparent, conductive
naonocrystalline powders [41–43].

Recently, another approach towards increasing phosphor
conductivity is an application of more conductive host ma-
terials like RE doped stannous oxide nanopowders [44–46].
The electrical, structural, and optical properties of SnO2 [47–
49] have focused attention on similar phosphors.

According to the above assumptions, the RE doped nano-
crystalline oxides or garnets (Y2O3, SnO2, and Y3Al5O12)
[50] seem to be very promising candidates for FED phos-
phor application. The question is about their efficiency in
comparison with conventional, commercially available, mi-
crograin size phosphors. A very important question is also
the CIE (Commission Internacional d’Eclairage) coordinates
of the phosphors. The coordinates should be suitable for ap-
plication in field emission displays.

To answer these questions, we have performed the sys-
temic studies of the nanocrystalline RE doped oxides. In par-
ticular, we have been focusing on the grain size effect on ef-
ficiency of low-voltage cathodoluminescence. We expect that
the results and discussion presented in this work will con-
tribute to the application of RE doped nanocrystalline phos-
phors in FED devices.

2. EXPERIMENTAL

The following nanocrystalline RE doped oxides were chosen
for our studies: Eu3+:Y2O3, Tb3+:Y2O3, Tb3+:Y3Al5O12(Tb:
YAG), Ce3+:YAG, and Tb3+:YAG /Eu3+:YAG. The phosphors
have been synthesized by modified Pechini method [40, 51,
52]. The powders were sintered at different temperatures to
obtain a different grain size. The structures of fabricated ma-
terials were confirmed by X-ray diffraction (XRD) by means
of a stoe powder sensitive detector, filtered CuKα1 radiation.
The average grain sizes were estimated form broadening of
diffraction peaks, by using Scherrer equation [40, 51]. In this
work, we presented the results calculated only for europium
and terbium doped yttria samples (see Figure 1). The pow-
ders were then deposited by electrophoresis [53–55] on ITO
glass slides [56]. As a surfactant, magnesium nitride has been
used. In the last part of the procedure, the substrates were
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Figure 1: The XRD patterns of (a) Eu:Y2O3 and (b) Tb:Y2O3

nanocrystallites sintered in different temperatures.

hold in temperature of about 450◦C to consolidate the layer
by transforming MgOH+ into MgO. In the future attempts,
it is worth to replace Mg(NO3)2 by indium nitride or appro-
priate indium and tin salts.

The CL measurements [40] of the phosphor layers have
been done in the setup earlier described by us [57]. The con-
ditions of measurement device will simulate real carbon nan-
otubes field emission display (CNT-FED) environment. The
cold cathode was made of double walled carbon nanotubes
(DWNT) deposited on ITO glass slide. The emissive proper-
ties of the cathodes made in that manner were presented else-
where [40, 57–59]. The distance between phosphor’s covered
anode plate and cathode plate was 250 μm [56, 57]. The ex-
perimental conditions and procedure were similar to those
described in [40, 50]. The current density of 0.9 mA/cm2

for 3.2 V/μm was registered for a diode configuration. The



P. Psuja et al. 3

425 450 475 500 525 550 575 600 625 650 675 700 725

Wavelength (nm)

N
or

m
al

iz
ed

in
te

n
si

ty

5D4→7F5

5D4→7F6
5D4→7F4

5D4→7F3 5D4→7F1,0

Cathodoluminescence
Tb:YAG U = 600 V

Cathodoluminescence
Tb:Y2O3 U = 600 V

Figure 2: A comparison of low-voltage CL spectra registered for
Tb:YAG and Tb:Y2O3 nanocrystallites.
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Figure 3: A comparison of low-voltage CL spectra registered for
Eu:SnO2 and Eu:Y2O3 nanocrystallites.

vacuum level in the device was determined to be 1×10−6

Torr. The low-voltage CL spectra (see Figures 2–5) were reg-
istered using CCD handy fiber spectrophotometer Avantes
350 with a 1000 nm spectral range and a 0.35 nm resolution.

In the second phase of the experiment, the nanopowders
(Eu3+:Y2O3, Tb3+:Y2O3) were sintered at different tempera-
tures (500◦C, 600◦C, 700◦C, 800◦C, 900◦C). Then, they were
mechanically mixed with a ZnS:Ag micrograin size phosphor
(Phosphor Technology) and with micrograins size Cr:Al2O3.
The micrograin size phosphors were chosen as the refer-
ence light emitting materials to study the effect of size of
nanograins on output light intensity. The mass ratio of ZnS:
Ag to Eu:Y2O3 was taken as 2:1, and in the case of Cr:Al2O3

to Tb:Y2O3, it is 4:1. The aim of this experiment was to ex-
amine the influence of grain sizes of nanopowders on in-
tensity of luminescence by reference to the peaks connected
with radiative transitions in ZnS:Ag (450 nm) and Cr:Al2O3
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Figure 4: The low-voltage CL spectra of Eu:YAG/Tb:YAG blend
proposed as white light emitting phosphor.

450 500 550 600 650 700 750

Wavelength (nm)

0

500

1000

1500

2000

2500

3000

3500

4000

In
te

n
si

ty
(a

.u
.)

400 V
500 V

600 V
700 V

800 V
900 V

1000 V

1100 V

1200 V

1300 V

1400 V

Ce:YAG cathodoluminescence

Figure 5: The dependence of CL spectra of Ce:YAG nanocrystals on
applied voltage.

(694,1 nm). This method allowed measuring the photo- and
cathodoluminescence properties. The grains size effect on
photoluminescence was examined for ZnS:Ag/Eu:Y2O3 sam-
ples. To compare the intensity of powders with different size
of nanograins, the samples with the microcrystalline pow-
der of Eu:Y2O3 (Phosphor Technology) as a reference have
been prepared. The medium grain size in this sample has
been specified by the supplier to be 3.5 μm. The samples
were excited using λexc= 266 nm of Nd:YAG laser system.
The high voltage cathodoluminescence (accelerating volt-
age U = 90 kV) has been measured in specially adopted BS
500 TESLA TEM microscope chamber on Cr:Al2O3/Tb:Y2O3

electrophoretically deposited layers. The results of both ex-
periments are depicted in Figures 6 and 7.
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Figure 6: The CL time stability measured for Ce:YAG nanocrystals.

450 500 550 600 650 700 750

Wavelength (nm)

N
or

m
al

iz
ed

in
te

n
si

ty

Tb:Y2O3/Cr:Al2O3Cathodoluminescence (90 kV)

44 nm
24 nm

16 nm
8 nm

10 20 30 40
Averaged grain size (nm)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

in
te

n
si

ty

Cr:Al2O3
Normalized peak, I = 1
694.7 nm

Figure 7: A comparison of cathodoluminescence (90 kV) of
Tb:Y2O3/Cr:Al2O3 blend with different sizes of Tb:Y2O3 nanocrys-
tallites.

3. RESULTS AND DISCUSSION

3.1. Structure

The XRD patterns of Tb:Y2O3 and Eu:Y2O3 nanocrystalline
powders shown in Figures 1 and 2 were measured for the
samples sintered at different temperatures. Following the
Scherrer formula, we have determined the average grain sizes
varying since 9 nm for 500◦C to 46 nm for 900◦C in the case
of Eu:Y2O3 (see Figure 1(a)), and since 10 nm to 50 nm in the
case of Tb:Y2O3 (see Figure 1(b)).

3.2. Cathodoluminescence

All the samples under investigation have demonstrated the
low-voltage cathodoluminescent properties. The intensity of
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Figure 8: A comparison of photoluminescence (λexc= 266 nm) of
Eu:Y2O3/ZnS:Ag blend with different sizes of Eu:Y2O3 nanocrystal-
lites. A comparison of Eu:Y2O3 intensity has been presented in the
middle of the figure.

emitted light has increased with increasing applied volt-
age (see Figure 5). The mixed Tb:YAG (green) and Eu:YAG
(red) powders have emitted the yellowish-white light (see
Figure 4). The spectra of nanophosphors were grouped and
depicted regarding colors to compare the spectra (see Figures
2 and 3).

3.3. Time stability

The time stability measurements on nanophosphors sub-
jected to cathodoluminescence process have been carried out
for the Ce:YAG nanophosphor. It was observed that after first
switch on light, the cathodoluminescence intensity stabilizes
after 50 minutes; the time stability of emitted light measured
in the next 50-minute period was satisfying (see Figure 6).
Following our earlier studies, we could suggest that this de-
lay is connected with time needed for cold cathode activa-
tion. Some residual contaminations should be removed from
CNT-ITO cathode surface.

3.4. CIE chromatic coordinates

The CIE chromatic coordinates were analyzed on example of
red light emitting phosphors. It is commonly known that the
coordinates and luminescent spectra depend strongly upon
doped ion and host [18]. Both Ce3+ and Eu3+ could by very
good examples as an experimental confirmation of this the-
sis. What is shown in this work analysis is focused on Eu3+

ion. The features of Pr3+ doped CaTiO3 has been also pre-
sented and compared to Eu:SnO2, Eu:Y2O3, Eu:Y2O2S (see
Figure 9). The emitted color transforms from deep bloody
red for Pr:CaTiO3 by fire red for Eu:Y2O2S and Eu:Y2O3 to
orange-red for Eu:SnO2. However, all examined phosphors
are able to use as red phosphors in FEDs and as component
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of white light emitting phosphor for light source. Moreover,
the Eu:SnO2/Pr:CaTiO3 and Eu:Y2O3/SnO2 may be mechan-
ically mixed with different mass ratios in order to tune the
CIE coordinates of phosphor.

3.5. Size effects

The dependences of Cr:Al2O3/Tb:Y2O3 cathodolumines-
cence and ZnS:Ag/Eu:Y2O3 photoluminescence on the grain
size are shown in Figures 7 and 8. The spectra were compared
and normalized to the peak connected with the Cr:Al2O3

phosphorescence for cathodoluminescence measurements
and to the peak connected with the ZnS:Ag luminescence
in the case of photoluminescence. It is seen that in the
nanophosphors, the light intensity increases with increas-
ing average grain size. Moreover, a comparison of the pho-
toluminescence spectra of micro- and nanograin sizes of
ZnS:Ag/Eu:Y2O3 blend has demonstrated that the intensity
of 3.5 μm grain size powder of Eu:Y2O3 (Phosphor Technol-
ogy) was about 70% of intensity of 46 nm grain size of eu-
ropium doped yttria nanocrystallites synthesized by modi-
fied Pechini method [25, 27, 40, 51, 52]. An enhancement
of the emission with grain size which is related to sintering
temperature could be rationalized by a concept of the effec-
tive refractive index. It is well know that the radiative pro-
cesses in nanocrystals of oxides doped with rare-earth ions
strongly depend on the size, shape, and refractive indices of
their surroundings [60–62]. The influence of the grains sizes
on the luminescence lifetimes of Nd3+ doped YAG particles
was earlier observed by Christensen et al. [60]. The emis-
sion intensity I is directly related with the Einstein coeffi-
cient for spontaneous emission A according to I = hυAN ,
where N is the population of centers emitting the energy
hυ. The Einstein coefficient A is simply related to the ef-
fective refractive index neff by the relation A ∝ χ S, where

χ = (neff

(
neff

2 + 2
)2

)/9 and S is the dipole strength. Follow-
ing the model of Meltzer [61], we may assume that the effec-
tive refractive index neff(X) = x ngrain + (1− x)nsurr is related
to the filling factor x which shows the fraction of the sample

volume occupied by nanocrystals (ngrain is the refractive in-
dex of the material of the grain, nsurr is the refractive index of
the medium surrounding the nanograins). Since for the same
mass of powders with the same concentration of luminescent
ions the filling factor is less for nanosize grains compared to
microsize grains, the effective refractive index will be bigger
for nanophosphors.

4. CONCLUSIONS

The results of present work clearly indicate that the nano-
crystalline RE doped phosphors may effectively replace the
microsize phosphors in FED devices. It is obvious that the
layer made of nanocrystallites can be much thinner com-
pared to the layer made of microsize phosphor grains. That
has an impact both on total resistivity of the layer and
amount of residual gasses bounded between the grains. Both
these factors influence the efficiency of the light source, long
time stability of the intensity of emitted light, and device
lifetime. The light intensity of examined phosphors was sta-
ble during measurements. The emitted light intensity had
increased with increasing applied voltage. A comparison of
photo- and cathodoluminescent intensities of the layers and
powders allows concluding that in the nanorange, the emit-
ted light efficiency increases with increasing grain size. The
second observation was that Eu:Y2O3 nanopowder (900◦C,
46 nm) was more efficient than commercially available mi-
crograin size phosphor (3.5 μm). The CIE chromatic coordi-
nates did not change with phosphor grain sizes.
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