Scientific Programming 15 (2007) 137-155
10S Press

137

Mixed task and data parallel executionsin

general linear methods

Thomas Rauber®* and Gudula Riinger®
aUniversity Bayreuth, Germany

PChemnitz University of Technology, Germany
E-mail: ruenger@informatik.tu-chemnitz.de

Abstract. On many parallel target platforms it can be advantageous to implement parallel applications as a collection of
multiprocessor tasksthat are concurrently executed and are internally implemented with fine-grain SPMD parallelism. A class of
applications which can benefit from this programming style are methods for solving systems of ordinary differential equations.
Many recent solvers have been designed with an additional potential of method parallelism, but the actual effectiveness of mixed
task and data parallelism depends on the specific communication and computation requirements imposed by the equation to be
solved. In this paper we study mixed task and data parallel implementations for general linear methods realized using alibrary
for multiprocessor task programming. Experiments on a number of different platforms show good efficiency results.

Keywords: General linear methods, ordinary differential equations, task parallelism, data parallelism, orthogonal structures of

communication

1. Introduction

Scalability problems associated with large parallél
systems can often be avoided by exploiting mixed task
and data paralelism with multiprocessor tasks (M-
tasks). For animplementation using M-tasksthe appli-
cation program is split into modules which are realized
as M-Tasks and which can be executed concurrently.
Internally M-tasks can also be executed in parallel: this
can be done in a fine-grained SPMD or data parallel
way and also in amore general way.

M-task parallelism ontop of fine-grained parallelism
often results in improved efficiency in cases where col-
lective communication is required for global data ex-
change; in this case a pure data parallel implementa-
tion often imposes alarge communi cation overhead for
larger numbers of processors, whereas the mixed task
and data parallel implementation restricts communica-

*Corresponding author. University Bayreuth, Angewandte Infor-
matik 11, 95440 Bayreuth, Germany. Tel.: +49 921 555100; Fax:
+49 921 555102; E-mail: rauber@uni-bayreuth.de.

tion to a subset of the processors. The improvement
of the communication in M-task programming results
from the restriction of the communication to smaller
groups of processors. This can be achieved when sev-
era independent tasks work, independently, on subsets
of the entire set of processors; thus collective commu-
nication inside an M-task is performed on a smaller
set of processors, while the entire application uses the
entire set of processors. The reason for this behavior
isthat the cost of communication depends on the num-
ber of participating processorsin a linear or logarith-
mic way. The actua effect of exploiting mixed par-
alelism on performance improvements, however, de-
pends on the specific application problem and the spe-
cific communication behavior of the target machine. A
class of applicationswhich can benefit from mixed par-
alelism are methods for solving ordinary differential
equations (ODEs). One-step ODE solvers perform a
series of time steps which have to be executed sequen-
tially due to data dependencies. Potential parallelism
inside each time step arises when systems of ODEs are
solved and collective communication is required when

I SSN 1058-9244/07/$17.00 U 2007 — 10S Press and the authors. All rights reserved

138 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

exploitingthisfine-grain parallelism. Insuch situations
it is worthwhile considering M-task parallelism.

For the integration of initial value problems for
first-order ODES, several new parallel solution meth-
ods have been proposed which offer the potential for
method parallelism in each time step. Many of these
ODE solvers are based on multistage methods, offer-
ing potential for method parallelism in the stage vec-
tor computation. Method parallelism alows the par-
allel execution of the solution method using a number
of processors coincident with the number of stagesin
the methods — usually fewer than ten. In the case of
systems of ODEs there is an additional source of sys-
tem parallelism in each stage vector computation cor-
responding to the size of the system. The exploitation
of this source of parallelism allows the employment of
alarger number of processorsand improves scal ability.
Examples are iterated Runge-Kutta (RK) methods [17,
24] and diagonal-implicitly iterated Runge-Kutta (DI -
IRK) methods [18,25]. The efficiency of iterated RK
solvers is heavily affected by communication since a
global exchangeis necessary after eachiteration step of
the stage vector computation and strongly depends on
the characteristics of the ODE system to be solved: for
sparse ODE systems, the communication bandwidth of
the target platform may limit performance. Experi-
mentson different target platformsal so show that apure
data parallel execution often resultsin lower execution
times than parallel execution that exploits method par-
alelism[19]. On the other hand, parallel DIIRK meth-
ods for solving stiff ODEs show good efficiency for
sparse and dense ODE systems on a wide variety of
target platforms. Moreover, on most platforms, method
parallelismresultsin significantly faster execution than
pure data parallel implementations.

In this paper, we explore another class of solution
methods which have different communication require-
ments. In particular, we consider a variant of gener-
al linear methods — the parallel Adams methods pro-
posed by van der Houwen and Messina in [23]. Par-
allel Adams methods have the advantage that the com-
putations in the parallel stages within each time step
are completely independent. Strong data dependencies
occur only at the end of each time step. We have im-
plemented this method using multiprocessor tasks (M-
tasks) for stage vector computations exploiting system
paralelism internally within each M-task. We investi-
gate the trade-off between reduced communication be-
tween M-tasksand increased communication after each
time step. The implementation is designed for arbi-
trary right hand sides of the ODE. Thus no application

specific characteristics are expl oited and the pure effect
of using M-tasks can be observed. As applications we
consider both dense and sparse ODE systems. Exper-
iments have been performed on a Cray T3E, two Be-
owulf clusterswith different interconnection networks,
and an IBM Regatta system.

M-task programs are implemented using the Tlib li-
brary, which can be used to hierarchically organize M-
task programs on top of SPMD modules[21]. The ad-
vantageisthat different parallel implementationscanbe
easily devel oped ontop of available stage vector SPMD
codes without incurring an additional overhead. Sev-
eral other models have been proposed for mixed task
and data parallel executions, see[2,22] for an overview
of systems and approaches and see [4] for a detailed
investigation of the benefits of combining task and data
parallel execution. Many environmentsfor mixed par-
alelism in scientific computing are extensions of the
HPF data parallel language — see [5] for an overview.
Examples are HPJava [26], LPARX [11], KeLP [14]
and NestStep [10].

The contribution of this paper is to present a paral-
lel programming model for mixed task and data par-
alelism as well as to investigate parallel implemen-
tations of parallel Adams methods using this model.
For the parallel Adams methods we show that the po-
tential parallelism within the method can be exploited
to achieve efficient parallel implementations. The de-
velopment of several parallel versions using different
programming models shows that a rigorous study of
parallelism can facilitate the construction of a program
version with good speedups for ODE solvers. On the
other hand, the parallel Adams method isagood exam-
plar for demonstrating the applicability of mixed task
and data parallelism. We advocate a specific parallel
programming model which uses cooperating multipro-
cessor tasks (M-tasks) to realize the coarse structure
of paralel applications. This programming model is
suitable for expressing the natural modular structure
of many numerical applications, since they are usualy
built from different cooperating methods. Also, effi-
ciency gains are observed which can be explained by
effects on collective communication when reducing the
number of participating processors. We also present an
approachto exploit orthogonal group arrangementsfor
communication. This approach can be exploited in all
numerical software which use several array data struc-
tures requiring a component-wise data exchange. The
parallel Adams methods in a task parallel version ex-
hibit this kind of data dependence and thus can benefit
from orthogonal communication structures.

Fig. 1. Illustration of the dependence structure of a PAB method with k = 3 stage values. For abscissae valuesa = (a, . . ., ag

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

lllustration of the dependencies of the PAB method for k=3

o Ner e

f(}’03) f(}’()]) f()’oz) f(y13) f(yl 1) f(ylz) f(}’23) f(Yz]) f(Yzz)
]
=
<
>
=
=]
k3t
=]
) \
fg Y03 Yo1 Yoo Y13 12 23 22
g next
g DOPRI8 DOPRIS8 time
B —_—
= step
E
%
e
a
=y
[+
i i 1
0.35 0.845 . Simulated Time
t t 2
’\/\/ _’_\/_/
stepsize h stepsize h

the stage values y,,;, correspond to the approximations of y(t,),n =0, 1,2,

139

)Wlth ap =1

The remainder of the paper introduces the parallel
Adams method in Section 2. Section 3 discusses the
implementation of the parallel Adams methods with
mixed parallelism and Section 4 introduces the Tlib
library. Section 5 presents runtime results, Section 6
discusses related work, and Section 7 comments on the
effectiveness of the proposed approach.

2. Parallel Adams method

We consider a system of initia-value problems
(IVPs) of first order differential equations (ODES)

y'(t) =1t y(t), vy(to) =yo @)

withinitial vectory at starttimet,, systemsized > 1

and right hand side function f : R x R? — R¢. One-
step methods for solving ODE systems of the form (1)
start with y, and generate a sequence of approxima-
tionsy,,n =1,2,...,forthesolutiony(¢,,) attimet,,
n = 1,2,.... Paralelism can only be exploited with-
in the computations of each time step, since the time
steps depend on each other. This can be realized by
distributing the computation of componentsof y ,, or by

exploiting specific characteristics of potential method
parallelism.

In recent years solvers have been designed that addi-
tionally provide a higher degree of method parallelism
while guaranteeing good numerical properties. Many
of these are based on classical implicit Runge-Kutta
methodsinwhichtheimplicit equationishandled using
apredictor-corrector approach or fixed point iterations.
These computations include the evaluation of several
stage vectors for which method parallelism can be ex-
ploited. However, several interactions between differ-
ent computation parts are required. Another class of
parallel solversishbased onimplicit multistage methods
which are already parallel in the stage vector computa-
tion and which can be described by the class of general
linear methods [3]. In each time step, general linear
methods compute several stage valuesy ,,; (vectors of
size d) corresponding to numerical approximation of
y(t, + a;h) with abscissavector (a;),i = 1,...,kand
stepsize h = t,, — t,—1. The stage values of onetime
step are combined inthe vector Y,, = (Yn1,- .-, Ynk)
of length d - k& and the computationin each step isgiven

by:

140 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

lllustration of the dependencies of the PABM method for k=3

N

|

§ f(Y()j,) f(Yo) f(Yoz)

S

>

=

g

S

=]

2

Z

8

g Y03 Yo1 Y02

=]

g

= DOPRI8 DOPRI8

£

[

: \

¥ \
|

stepsize h

[I | Simulated Time

stepsize h

Fig. 2. Illustration of the dependence structure of a PABM method with k = 3 stage values. Thestagevalue v,;,7 = 1, ..., k, computed by the
PAB method is used as starting vector for the fixed point iteration of the PABM method. For each stage value, an additional vector 4; is needed
which constitutes the constant part of the right hand side of the fixed point iteration. The computation of ,; issimilar to the computation of y,,;,

but with adifferent matrix S.

Fsepdocode FAR — one time sieg:

i1y forg =i i<k; i++)

i2p for fesdbe< dipett

i3 Py, - ulf Tt i

(4 for{ =i ek i)

i) fior fe=e < dipe++

{6l B 1ilf] = 37 [T D L TR (1
(7 :"\.-,'|i..lI:_-r||.'-\.'|-Ii1|'||-li-.'lil'\-i|-|":'_-.._| 11 by mewlti-broadeasipad’pl;

Fig. 3. Pseudocode for one time step of the PAB method implemented in a data parallel way.

Y1 =RaDY, +h(S@DF(Y,)

2
FA(TRDF(Yos1), n=12,...

ThematricesR, Sand T have dimension k& x k and
R ®1, for example, denotesthe Kronecker tensor prod-
uct,i.e.thed - k x d - k dimensional block matrix with
d x d blocksr;; - Ifori,j =1,...,k. | denotesthe
d x d unit matrix. Typical vauesfor k liein the range
2t08.

In this paper, we consider a variant of this method,
theparallel Adamsmethod proposedin[23]. Thename
was chosen because of a similarity of the stage equa-
tions with classical Adams formulae. In this paper
different computation schemes are realized and evalu-
ated using both system and method parallelism. The
method is executed on different collections of proces-
sors and the parallel efficiency of the implementations
isinvestigated.

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods 141

Feewlocoade FPABM — one data paralbel iime step:

(h Ko =i ik i)

120 compute |4/ p| clemenly of gagr, = ST o) =

[e v £ T S R * AR prodicior *

(i} compute [/ p] elements of g™ | =Y rileg e T Sy as1s
(], exchange local compoments of y,, | ; by malti-hroadvastpdpl

{ek fiow (ie=il i< iz dpdt) | * PAM comecior #

(7 compute | d) p| elemenls r-I'..-__"_ ',.. (LT ' A

(&} compute [d)p] elements o g7 =yl s+ hed o pltt Y

el exchange components of i ' by muiti-broodeasip,d/p);

(|

L

Fig. 4. Pseudocode for one time step of the PABM method implemented in a data parallel way.

The parallel Adams methods result from (2) by dif-
ferent choices for R, Sand T. A diagonal matrix T
yields an implicit equation system to be solved by
fixed point iteration giving the Parallel Adams-Moulton
(PAM) method. A zeromatrix T = 0 givesthe Parallel
Adams-Bashforth (PAB) method.

PAB methods First, we consider the PAB methods
whichresultfromsettingT = 0andR = e-e} ” where
e=(1,....,1) and ey = (0,...,0,1). With Vx =

(x,x2,...,xF), Wx = (e,2x,3x2,... kx*1) and
b; = a; — 1, wedefineS = Vanl accordingto [23].
The abscissae values a;, i = 1,.. ., k, are determined

so that a convergence order of k£ + 1 results. This can
be obtained by using the L obatto points.

To compute the stage vector Yo of the initial time
step from the given initial value yo, the stage values
Yoi» © = 1,..., k, are evaluated using another explicit
method, such asDOPRI8. Starting fromY ,,, time step
n+ 1 computesY 11 = (Yn+1,0,-- - Ynt1,k) iNTWO
stages. First theright hand sidefunction f isapplied to
Ynos - - - » Ynk togiveF (Y ,,). Then'Y,, . isobtained by
adding (R ®I)Y, toh(S®I)F(Y,,). Figure 1 shows
the dependence structure of the resulting computation
scheme for the case k = 3.

PAM methods PAM methods result from (2) by
using a diagonal matrix T. The diagonal entries §;,
i =1,...,k, are determined in such a way that spe-
cific consistency conditions are satisfied. In addition,
R=-eey”andS = (Va—R-V;,—T -Wa)W, ' ae
used in the PAM methods. Again, the Lobatto points
can be used as abscissae values. Since T is diagonal,
theresulting implicit relation is un-coupled and has the
form

Ynt1,i — h* 0 # £(Yni1,6) = Vi

3
fori=1,...,k. ®

The vectors v,,; are the d-dimensional vector com-
ponentsof V.= (R®1)Y, + A(S @)F(Y,). Us
ing fixed point iteration for the solution produces the
following computation scheme:

yg4)-1,1 — hx 0y % f(ysg-ﬁl)ﬂ = Vn1

4
yisz)rl,k — hox Oy x f(ygffzc) = Vnk

Equation (4) offers method parallelism and defines,

foreachi,i = 1,...,k, an independent task that can

be executed on a group of processors. The v,,;, ¢ =

1,...,k, on the right hand side of (4) are calculated

using the stage vectors y,,;, j = 1,..., %, from the
previoustime step:

K K
Vi = Y Tii¥ng +hx > sif(¥ng) ©)
j=1 j=1

with matrices R = (’I“ij)i,jzl,___7k and S =
(8ij)ij=1,....k- The convergence order of the result-
ing implicit method is k& + 2. The starting vectors for
the iteration can be generated using a PAB method as
predictor, since both methods use the Lobatto points
as abscissae values. The resulting predictor-corrector
method is referred to as PABM below. Usually the
PAB method is used as predictor in the PABM method
which isacombination of the PAB and the PAM meth-
ods. The data dependencies of the PABM methods are
illustrated in Fig. 2.

142 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

p Processors

Group G, Group G,
| L yo ! I I L yo ! I
DiPRIS DO£’RI8
! !
g| Llyel | [Y] |
5| *
s N N
=]
£
> l l
L] vnf [T
APPLY f APPLY f
! !

Group Gy

. . . g
g
©
N
©
DOPRI8 =
£
[[[yOk «—————%——to
a
L]
O —
[} ‘.;;é
. Q
€«
| S
O o 7w B S
l @
APPLY f @.
~
)
S
c =
o =
] 2
Q
£ S
= “Y
SRR e SR Y

Fig. 5. Illustration of atask parallel implementation of a PAB method with k& stage values on k disjoint processor groups. For abscissa vaues

a= (al,..
3. Parallel implementation

The PAB and PABM methods offer several possi-
bilities for parallel execution that differ in the order in
which the computationsin each time step are performed
and in the way in which the required data exchange is
effected. The data dependencies require that the time
steps be executed one after another.

Data parallel implementation of the PAB method
In each time step a pure data parallel realization com-
putes the stage values one after another with all pro-
cessors available. To compute f(y,i), i = 1,...,k,
each of the p processors evaluates approximately d/p
components of f. After this evaluation, each processor
usesitslocal componentsof f(y.,,;) to computethe cor-
responding componentsof v,y ; accordingto Eq. (2).
Sincef is consideredto be an unknown black-box func-
tion, we must assume that all components of y,,41;

., ay) With a, = 1 the stage values y,, ;, correspond to the approximations of y(t,),n = 0,1,2,....

are availablefor the computation of each component of
f(yn+1,:) In the next time step. Thus, after the com-
putation of y,1;, agloba multi-broadcast operation
must be performed to maketheentirestagevaluey 11 ;
availableto all processors for the next time step. Fig-
ure 3 gives pseudocode for the internal computations
of onetime step.

Altogether, k& globa multi-broadcast operations are
performed in each time step with each processor con-
tributing approximately d/p components to each of
these communi cation operations, thus effecting a glob-
ally replicated distribution of the entire stage vector.
The resulting communication overhead per timestep is
given by

CPAB,dp(d7p> =k- Tmbroad(p; d/p)a (6)

where Tibroad(p,) denotes the time for a multi-
broadcast operation executed on p processorswith each

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods 143

Faembocoale PABM — one tazk parallel time siep:

1) iime s) ‘!

(2 comypte [g | components of g, 4 Jlt s i)
i3] gather ompanears of fi,., . 8 processarg;, of 0]
4] hroswdeast je, g 0 from ggn o2l processors;

|
(51 iFime e {504

* PAN predrctor *

fial cortpate [/ o] elements of y, |
= . g . s [R1]
i exchange local Coumponeiis of b, 4,

i8] far (f=0 = i) 4

ey Tt + 0 B e

Wil Cry Py IR - Irosdeast:

FEAM corresior ¥

{4 CONTIIIE i i elermenis -:I."|-'_'j .I:-. __r:l' [
{1 compute [} g, elements of g} =yl b8l
i eochange componends of i) ' L within 43 By mulii=brosdons;

(120 Basni =Maay s

{130 communicstion o make g, ¢ availahie 10 &l progessars;

Fig. 6. Pseudocode for one time step of the PABM method in atask parallel implementation using k processor groups G of sizeg;,i = 1,..., k.
All processors work in parallel and me denotes the processor Id of the executing processor.

Faendocode PAEN] — one time step with orthogomn] groups:

Il iFfme e OB

2} compiie | _|_|_' components of iy, 4 4
(3} exchange local components of i,

st as for the dask paralfel version,

; within Eroap £y

_.rll'- Beail o
a2 hy muiti-hraadeass;

Fig. 7. Pseudocode for one time step of a task parallel implementation of the PABM method using & processor group G, ¢ = 1...,k, with

orthogonal processor groups @1, . .., Qq.

processor contributing = data values. For the special
caseR =e- ekT, see Section 2, the computation time
for asingletime step is given by

TPAB,dp(d;p) =k- (d/p : Teval(f)
+(2k+1)-d/p-top),

where T, (f) is the time to evaluate one component
of f andt,, isthetime for an arithmetic operation such
as addition or multiplication.

Data paralld implementation of the PABM
method: The data parallel implementation of the
PABM method uses the data parallel implementation
of the PAB method as predictor to yield the starting

vector 3/7(10421,1-1 i=1,...,k, for each stage value of the

Y

PABM corrector in areplicated data distribution. For
each processor, thisrequires ; function evaluationsand
k- (2k + 1) operations for d/p elements, see formu-
la (7). A fixed number, It, of corrector iterations is
performed where, in each iteration, each processor first
computes d/p components of f (yfﬁzl,i) and then uses
itslocal componentsto computethe correspondingd/p
componentsof 37 — /%), 16, f(4("), e
Fig. 4. Thisleadsto the following computation time:

Tpapmap(dip) =k - ((It+1)-d/p- Tevar(f)
+ (2k+1)'d/p~top (8)
b IE-3-d)p-toy)

144 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

G1[§q11§ * - . 3‘hg?]

G, ({92« -+ - j93)

Fig. 8. Disjoint processor groups G1, . . ., G, and orthogonal pro-
cessor groups Q1, - . -, Qg-

Since only the local components are needed for this
computation no data exchange is required. For the
next iteration, the vector 411" is needed as argu-
ment vector for the function evaluation. Thus a glob-
al multi-broadcast operation is required to make al of
the components of v} available to all processors
forit = 0,...,It — 1. Figure 4 gives pseudocode for
the main computation and communication operations
of onetime step of the PABM method.

Thisimplementation strategy resultsinthefollowing

communication overhead within one time step:
CraM,dp(d; p) =k - (It +1)
'Tmbroad (P; d/p>

M-task implementation with internal data par-
alldism for PAB An M-task realization exploit-
ing method parallelism employs & digoint proces-
sor groups G, ...,Gy of approximately equal size
g = p/k — see the diagram in Fig. 5. In each time
step n, processor group G; is responsible for comput-
ing stage value y,,41,, ¢ = 1,...,k. The computa-
tion of y,,41,; requiresaccessto f(yy,1), . . . , £ (yni) for
i =1,..., kwhicharecomputedindependently. Thus,
by data exchange, each processor gets exactly those
componentsthat it needsfor itslocal computation. This
can, for example, berealized by first collecting the com-
ponents of f(y,;) on a specific processor, ¢;;, of G;,
i=1,...,k, using agroup-local gather operation and
then broadcasting them to the processors of all other
groups. The group-local gather operations can be per-
formed concurrently by the different groups, whereas
the single-broadcast operations have to be performed
one after another because all processors are involved,
thus leading to & single-broadcast operations. Since f
is an unknown function, vy, ; has to be distributed
among all the processorsof G; by amulti-broadcast op-
eration to ensure a group-replicated distribution of the
stage values and to enable a group internal evaluation
of f(yn+1,;) in the next time step. In addition, the last

9)

stage vector y,,;, has to be sent to all other groups G,
i=1,...,k, by asingle-broadcast operation involving
all processors for the computation of the PAB step in
the next time step.

Comparedtothepuredataparallel execution scheme,
more communication operations are necessary, but
most of these are group-local. Since the group-specific
communications can be executed concurrently, the
communicationtime per time step can be expressed as:

CPAB,tp(d7p> = Tgather(gv d/p)
+ (k + 1) : stroad (pv d) (10)
+ Tmbroad (gv d/g>

The computationtimeisidentical to the data parallel
case, if disamultiple of p and g and if p isamultiple
of g.

M -task implementation with internal data paral-
lelism for PABM Using the PAB method as predictor,
the PABM method performs It corrector steps, where
each processor group G; operating independently, iter-
aively computes;g,flﬂf)l?i, i =1,...,k. After thecom-

putation of 4", this vector is made available by

a multi-broadcast to all other processors of the same
group G; where it is required for the computation of

U2 in the next corrector iteration. The final vec-
tor of the iteration !’ , ; is replicated on all proces-
sors of G, so the next time step can use this value as
Yn+1,; fOr the predictor step without further commu-
nication. Thus, compared with the PAB method, the
PABM method additionally requires It group-based
multi-broadcast operations. The communication time

for the task parallel PABM methodsis therefore:
CpaBM,tp(d, p) = Tgather (9, d/D)
+ (k+ 1) Tsproaa(p,d) (12)
+ (It +1) - Tbroaa(g, d/9)

Figure 6 gives pseudocode for the task paralld
PABM method. The computation time is identical to
the data parallel case, if d isamultiple of p and g and
if pisamultiple of g.

Exploiting orthogonal structures of communica-
tion The implementation based on M-tasks uses two
communication phases, one to make available to each
processor those components of F(Y,,) that it needs
for the computation of its local componentsof Y 1,
and one to establish a group-replicated distribution of
Yn+1,; INGroup G;. The second communication phase
is based on group-loca communication, but the first

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods 145

(1} voied® tparpafyvaid #*arg, MPLComm comm, T Deser *pdeser!

(21 I_Deagr *pafieserd:

(3l inr i;

4} liw (o=ll; d<ky i) perfi)= 1O%:

(3l T_Spli.CirpParfor (k, poescrd, poesor?, perl;

[fi} * afdocale armavs mivvals, pargs), pres, pabs, parps? ®

(7l o {i=ll; 2 k; i) [mfevals{if= feval; pabsli)= pabsten:)

(8] * rufkaleee dala strocione: ™

) P=pil

] LT L+ M)

* bf-tesk paralied evaduaion of f{v.al,

-_II-|:l|-|. il *

(1) T_Farfor{mlevada, pargs], pres, poleser2)

(12p * send fincrion resud

15 iy adl proeessors *

* M-pask parsdfed computaion of FAH slep ®

D] T_Parfan pabs, parg=2, pres, poescr? 12

el * send new sage Yerlons Un4p,e— 10 all processors #
([5) [=t+h

{rey |

{17 1

(IEr wodd “feval Cvord * arg, MM_Comnm comm, T_Deser *pafescr)ly

L] * date paralle! function svaluaan *
{20} * creade a proup repdicated distibodion of e resan
(20}

{220 viwd] ®pabstep {visid * arg. MPI_Comm comm, T_Deser ®polesery]

(2 * data paralle! PAR step for one staige vecior
{24} * creade a group repdicaled distnboaton of e resaln
(25 1

Fig. 9. Tlib program for task parallel PAB method with & parallel M-tasks independently computing y,0, - . -

y¥n,k—1- The numbering in the

program starts with O instead of 1 according to the numbering conventions in C.

uses aglobal broadcast operation. We now re-organize
thefirst communication phasesothat it al so uses group-
local communication only.

Below, we assume that the number of stage vec-
tors, k, is a multiple of the number of processors, p,
so that all groups, G;, have the same number of pro-
cessors, g = p/k. Moreover, we assume that the
dimension d of the stage values is a multiple of g.
Based on the processor groups G, ..., Gk, we de-
fine orthogonal groups Q1+, . . ., @, With |Q;| = k and
Qj ={q; € G | 1l =1,...,k}, seeFig. 8. For
the computation of F(Y), each processor ¢;; of G;
computes d/ g components of f(y.,;). The correspond-

ing components of f(y,,;) for I # i are computed by
the processors ¢;; of G;. These components are just
what are needed by ¢;; for the computation of y,, 11 ;.
Thus, the required components can be made available
to each processor by a group-oriented multi-broadcast
operation on the orthogonal group @ ;. These com-
muni cation operations can be executed concurrently on
al orthogonal groups Q1,...,Q4. The stage vector
Yn+1,k Of the last group G, is made available to the
other groups by ¢ concurrent single-broadcast opera-
tions on the orthogonal groups Q 1, ..., Q4. Thus, al
group-oriented communi cation operations can be exe-
cuted concurrently and the communi cation time within

146 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

onetime step is given by
C4PAB,01rt (d; p) = Tmbroad(kv d/g>
+ stroad(ka d/g) (12)

+ Tmbroad (ga d/g)

The computation time is the same as for the task
parallel case without orthogonal structure.

Exploiting orthogonal structures of communica-
tion for the PABM method The PAM corrector isim-
plemented identically to the M-task paralel version,
since digoint processor groups are aready exploited
by the method. The PAB predictor also exploits the
orthogonal communication structure, see Fig. 7 for an
illustration. The communication timeis reduced to:

CVPABM,ort (d, p) = Tmbroad(ka d/g)
+ stroad (k; d/g) (13)
+ (It + 1) ' Tmbroad(ga d/g)

Again, the computation time is identical to the M-
task version without orthogonal groups.

4. Tlib library for expressing task parallelism

Tlib is a runtime library to support programming
with hierarchically structured M-tasks. Tlib provides
an API comprising several library functionsthat areim-
plemented on top of MPI. A parallel program using the
library comprisesa collection of basic SPMD tasksand
aset of coordination functionsvhich embody M-tasks.
In the coordination functions, concurrent execution is
effected by calling the corresponding library functions
with a description of the (hierarchical) decomposition
of the processor set. This description is stored in a
group descriptotthat is created before the concurrent
execution of tasksisinitiated.

Thelibrary’s API provides separate functionsfor the
structuring of processor groupsand for the coordination
of concurrent and nested M-tasks. The task structure
can be nested arbitrarily, which means that a coordina-
tion function can assign other coordination functions
to subgroups, which can, in turn, split the subgroup
and assign other coordination functions. Tlib library
functions are designed to be called in an SPMD man-
ner which resultsin multi-level group SPMD programs.
The entire management of groups and M-tasks at ex-
ecution time is done using the library. This includes
the creation and administration of the structure of the
processor groups, the mapping of tasks to groups and

their coordination, the handling and termination of re-
cursive calls and group splittings, and the organization
of communication between groupsin the hierarchy.
Internally, the library exploits distributed informa-
tion stored in distributed group descriptors, which
are hidden from the user. The first group descriptor
pdescr of type T_Descr of aprogram isinitialized

by

int T_Init(int argc, char *argv[], MPI_Comm comm,
T_Descr *pdescr)

which needs an MPI communicator and creates a de-
scriptor pdescr . The splitting of an existing group
of processorsthat is represented by a group descriptor
pdescr into two new groupsis performed by

int T_SplitGrp(T_Descr * pdescr, T_Descr * pdescrl,
float perl, float per2);

per 1 and per 2 denotefractional values, with perl +
per2 < 1. Thetwo resulting groups contain afraction
perl or per2 of the processorsof theoriginal group and
are both represented by the group descriptor pdescr 1.
More general splitting operations are available. After
a splitting operation, the concurrent execution of two
independent tasks can beinitiated by calling thelibrary
function

int T_Par(void * (*f1)(void *, MPI_Comm, T_Descr *),
void * pargl, void * presl,
void * (*f2)(void *, MPI_Comm, T_Descr *),
void * parg2, void * pres2,
T_Descr * pdescr)

The M-tasks to be executed are supplied as argu-
mentsf 1 andf 2, theargumentsof thetasksarepar g1
and par g2, and the result values of the executed M-
tasksarereturnedin pr es1 and pr es2, respectively;
pdescr represents the two groups on which the two
M-tasks provided are executed.

Because of the specific way that functionsare passed
asargumentsto alibrary function, all basic SPMD tasks
and all coordination functionsthat may be passed asan
argument to alibrary function are required to have the
form

void *F (void * arg, MPI_Comm comm, T_Descr * pdescr)

The separation of the creation and the use of the de-
scriptorsis useful in iterative methods where the same
descriptor can be efficiently reused several times.

We have used Tlib to implement the task parallel
versions of the PAB and PABM methods. The Tlib li-
brary makesit easy to implement different task parallel

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

147

1) vaoid *pabmstep (void * ang, MPLComm comam, T_Desor ®pdeser)y
* datn paradlel computation of PAREM step fr ooe stage vecror *
t2) fargir =0 ar < MR |
() "t paralhed 0 e poidl SIGE ToF i SEE VeI eorkaitalmair ™
i) * commumicalion tr creale a group replicated distribolion of e resilt vector #
(] |
iy}

Fig. 10. Tlib function for task parallel PABM method.

PAB-method with brusselator function for k=8 on Cray T3E-1200

T T T T T T T T

Wl data parallel

3H [task parallel
[task parallel orthogonal

25F

time per step in seconds

0.5

0
8 16 32 48 064
n=180000

96 128 8

16 32 48 64 96 128 8
n=320000

processors

16 32 48 64 96 128
n=500000

Fig. 11. Runtimes of the PAB method for Brusselator on Cray T3E with k = 8.

versionsquickly without incurring a perceptibleimple-
mentation overhead. The use of the library requires
the definition of the parallel procedures as M-Tasks by
mapping them to the argumentsf1 and f2 of the library
function T_Par and by packing the corresponding ar-
guments of these procedures in the arguments pargl
and parg2 of T_Par .

The task parallel implementations of the PAB and
the PABM methods use ageneralization of thefunction
T_Par to define k parallel M-tasks (k is the number
of stage values defining the degree of task parallelism).
Each M-task is one of the fixed point iterations, ex-

ploiting the fact that these computations are compl ete-
ly independent within each time step. After each time
step communi cation between M-tasksisrequiredto ex-
change vectors as described earlier. The call of the
paralel M-tasks using the Tlib function is repeated in
each step. The underlying splitting of the processors
into & groups of processors is done once only at the
outset using a generalized version of the library func-
tion T_Spl i t Gr p and this partition is reused in each
step.

Figure9 showsessential partsof the Tlib programfor
the task parallel implementation of the PAB method.

148 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

PABM-method with brusselator function for k=8 on Cray T3E-1200

T T T T T T T T T

Hl data parallel

3 [task parallel
[task parallel orthogonal

25F

time per step in seconds

0.5

0
8 16 32 48 64 96 128
n=180000

8 16 32 48 64 96 128
n=320000

processors

8 16 32 48 64 96 128
n=500000

Fig. 12. Runtimes of the PABM method for Brusselator on Cray T3E with k = 8.

For simplicity, many details, like the allocation of data
structures, are omitted; allocations and initializations
areindicated by comments. Variables, like the number
k of stage values, t O for the start time of the time
interval, H for the size of the time interval, and h for
the stepsize are considered to be global variables. Ini-
tially, the library function T_Spl i t G- pPar f or cre-
ates k digoint groups of processorsin line (5). Inline
(7),foreachi,i =0,...,k — 1, thearray nf eval is
filled with references to function f eval ; analogous-
ly, the array pabs isfilled with references to function
pabst ep. These functions perform the evaluation of
f (feval) and the computation of the PAB method (pab-
step), see aso Fig. 5 for the task parallel execution of
the PAB method. The library call T_Par f or inline
(112) ensuresthat & parallel function callsareissued and
executed on the processor groupspreviously created by
T_Split G pParfor. Thesecondcal of T_Par f or
in line (13) initiates the task parallel execution of the
function pabst ep. In general, the function argument
array for T_Par f or can be filled with different func-
tions resulting in different groups executing different
M-tasks concurrently; however, for the PAB method,

all groups execute the same M-task on different stage
vectors.

TheTlibfunctionfor PABM hasthesamestructureas
thefunctiont par _pabst ep but uses the assignment
pabs[i] = pabnmstepfori=0,...k—1instead
of pabs[i] = pabstepinline(7) of Fig. 9. The
function pabs[i] = pabnst ep is a data parallel
implementation of the fixed point iteration for comput-
ing oneof the stage vectorsy,, 1,4 =0,...k—1, see
Fig. 10.

5. Runtime experiments

For the experiments, the PAB and PABM methods
have been implemented for £ = 2,4,8. According
to[23], afixed stepsize strategy isused tofacilitateclear
observation of the algorithmic features. The implicit
relations are solved by a fixed point iteration with a
fixed number of iterations for all stages.

As test problems two classes of ODE systems are
considered:

SparseODE systems are characterized by each com-
ponent of the right-hand side function f of the ODE

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

149

PAB-method with brusselator function for k=8 on Xeon cluster (SCI)

T T T T T T T
data parallel

1
|
[task parallel

0.9H [task parallel orthogonal

0.6

0.5F

time per step in seconds

0.1

o

2 4 8 16 24 32 2
n=180000

4

8

n=320000

1 1 1
16 24 32 2 4 8 16 24 32
n=500000

processors

Fig. 13. Runtimes of the PAB method for Brusselator on SCI Xeon cluster with k£ = 8.

system having a fixed evaluation time that is indepen-
dent of the size of the ODE system, i.e., the evaluation
timefor the entirefunctionf increases linearly with the
size of the ODE system. Such systems arise, for exam-
ple, from a spatial discretization of a time-dependent
partial differential equation (PDE) [6]. In particular,
an ODE system resulting from the spatial discretiza-
tion of a2D PDE describing the reaction with diffusion
of two chemical substances (Brusselator equation) is
considered [7,17].

DenseODE systems are characterized by each com-
ponent of f having an evaluation time that increases
linearly with the system size, i.e., the evaluation time
for theentirefunctionf increases quadratically with the
size of the ODE system. |n particular, a spectral de-
composition of atime-dependent Schr ddinger equation
whichresultsinadense ODE systemisconsidered [16].

The parallel implementations have been tested on
four machines: a Cray T3E-1200, two Beowulf clus-
ters and an IBM Regatta system. One of the Beowulf
clusters has 16 nodes, where each node consists of two,
2.0GHz, Xeon processors. The nodesare connected by
a SCI interconnection network. The second Beowulf
Cluster CLiC (‘ Chemnitzer Linux Cluster’) is built of

528, 800 MHz, Pentium I11 processors. The processors
are connected by two different networks, the communi-
cation network and the service network. Both of these
are based on the fast-Ethernet-standard. The IBM Re-
gatta system uses 32, 1.7 GHz, Power4 processors per
node and has 34 nodes.

Figures 11 and 12 show the execution timesin sec-
onds of onetime step of the PAB and PABM methods,
with & = 8 stage vectors, for the Brusselator equation
using system sizes 180000, 320000 and 500000. For
k = 8, task parallelism can only be implemented for
at least 8 processors, because each group needs at least
oneprocessor. Thefiguresshow that, for both methods,
the orthogonal parallel version with M-tasksis consid-
erably faster than both the data parallel version and the
standard M-task version, since the former uses group-
based communication only. For the PAB method, the
data parallel versionis faster than the standard M-task
version, since the M-task version uses more communi-
cation operations and a global gather operationin each
time step. In particular, the orthogonal version shows
much better scalability than the other two.

In Fig. 11, it can be observed that the data parallel
version has a local minimum for p = 48 processors.

150

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

PABM-method with schroedinger function for k=8 on Xeon cluster (SCI)

T T T T

Hl data parallel
[task parallel
[task parallel orthogonal

3.5

25

time per step in seconds
N

0.5

4 8 12 16 24 32 4 8 12 16 24 32 4 8 12 16 24 32
n=6002 n=8002 n=10002
processors

Fig. 14. Runtimes of the PABM method for Schrodinger on SCI Xeon cluster with k = 8.

Thisbehavior can be explained by considering the run-
time formulae (6) and (7) from Section 3. According
to formula (6), the communication time is determined
by a global multi-broadcast operation for which each
processor contributes a data block with d/p elements.
The execution time of a multi-broadcast operation is
given by

(14)

where 1, 75 and t. are architectural parameters de-
scribing the communication system of the target plat-
form [20]. These parameters can be determined by
benchmark programs. The parameter n isthesize of the
data block on each processor, i.e., for the PAB method
itisn = d/p - sizeof(double). Thus, the last term,
t.-p-n,isconstant for afixed system size, independent-
ly of the number p of processors. But because of the
second term 75 - p, the communication time of the PAB
method increases with the number of processors. The
computation time, on the other hand, decreases with
increasing numbersof processorsaccording to formula
(7). For up to 48 processors, this decrease is larger
than the increase in the communication time, so that
the overall execution time decreases with the number

Tmb(pvn):71+72'p+tc'p'n

of processors. Starting with 64 processors, theincrease
in the communication time is larger than the decrease
in the computation time as the number of processors
increases. Hence, the overall execution time starts to
increase with the number of processors.

For the PABM method, see Fig. 12, the standard
M-task version is faster than the data parallel version,
since the latter uses a global multi-broadcast operation
in each iteration step whereas the former uses a global
gather operation only oncein each time step. Orthogo-
nal communication structures further improve the per-
formance. Similar results are obtained for k£ = 4. Fig-
ure 13 shows the execution times for the PAB method
applied to the Brusselator equation on the Xeon cluster.
The results are similar to those for the T3E. The Xeon
cluster has only 32 processors; thus, measurements are
only shown for up to 32 processors. Again, for 2 and 4
processors, no task parallel version is shown, because
thisrequires at least 8 processors for k = 8 stage vec-
tors.

Figure 14 shows the execution times for the PABM
method for the Schrdinger equation on the Xeon clus-
ter. Here al versions show good scalability, since the
evaluation timefor f accountsfor alarge portion of the

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

151

PABM-method with schroedinger function for k=8 on Cray T3E-1200

T T T T T T T T T

Hl data parallel

80 [task parallel
[_] task parallel orthogonal

70

o

60

40

30

time per step in seconds

20

0
4 8 16 32 48 64 96 128
n=6002

4 8 16 32 48 64 96 128
n=8002
processors

4 8 16 32 48 64 96 128
n=10002

Fig. 15. Runtimes of the PABM method for Schrodinger on Cray T3E with k& = 8.

parallel runtime. However, the orthogonal task paral-
lel version has the least execution time in most cas-
es. The difference between the M-task version and
the data parallel version is most significant for small-
er ODE systems. Similar results are obtained for the
PAB methods on both hardware platforms for & = 4
and k£ = 8. Figure 15 shows the execution times for
the PABM method for the Schrodinger equation on the
Cray T3E, and again shows similar results because of
the dominance of computation over communication.
Figure 16 shows the execution times of the PABM
method for the Brusselator equationonthe CLIiC. Inthis
case, the task parallel implementation is significantly
faster than the data parallel implementation which is
further improved by exploiting orthogonal communi-
cation structures. The impressive decrease in runtime
when using concurrent multiprocessor tasks instead of
data parallelism can be explained by the large commu-
nication overhead for collective communication oper-
ations on the CLiC due to its interconnection network.
Figure 17 shows the execution times for the PABM
method for the Brussel ator equation on one node of the
IBM Regatta system. Here, the data parallel version
has the fastest execution times and shows good scala-

bility because of the shared memory used within each
node. Comparing Figs 16 and 17, it can be seen that
the advantage of an orthogonal task parallel execution
of the PABM methods is most significant on machines
with a slow interconnection network and that, for par-
allel machines with a fast network or a shared mem-
ory, data parallel implementations can be competitive
with and even befaster than the orthogonal task parallel
versions. But for cluster systems with a slower net-
work, such asthe Beowulf cluster CLiC, optimizations
such as orthogonal task parallel versions are required
to achieve competitive performance results.

Orthogonal realization of communication opera-
tions The improvement of the communication in M-
task programming arises from the restriction of the
communication to smaller groups of processors. This
is realised when several independent tasks operate in-
dependently on subsets of the entire set of processors:
thus collective communication inside an M-task is per-
formed on asmaller set of processors, while the entire
application uses the complete set of processors. The
reason for this behavior is that the costs of communi-
cation depends on the number of processorsin either a
linear or logarithmic way.

152 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

PABM-method for k=8 on CLiC

250 T T T T T T T T T
Hl data parallel
[task parallel

Il task parallel orthogonal

200

150

100

time per step in seconds

8 16 32 48 64 96 128
n=45000

8 16 32 48 64 96 128 8
n=80000

processors

16 32 48 64 96 128
n=180000

Fig. 16. Runtimes of the PABM method for Brusselator on CLiC with £ = 8.

There is also the possibility to internally restruc-
ture collective communi cation so that orthogonal struc-
turesare used internally. Thisissue has been addressed
in [12]; this paper establishes that orthogonal restruc-
turing can have a significant effect, if the MPI library
is not efficiently implemented. In particular, thisis the
case for the MPI implementation on the CLiC cluster.
In addition, for the MPI implementations on the SCI
Xeon cluster, the T3E and the IBM Regatta improve-
ments can be obtained. However, these are less im-
pressive than those obtained by restructuring the com-
munication in the algorithm as reported upon here.
Theimprovementsfor the parallel Adams methods ob-
tained using orthogonal communication structures are
also due to the fact that fewer data values need to be
exchanged because of a judicious arrangement of the
stage vectors.

Runtime prediction The runtime functions from
Section 3 can be used to estimate the execution time of
the PAB or PABM methods on a given target machine.
To do this, architectural parameters of the target ma-
chine need to be considered. To estimate the compu-
tation time, the average time for performing an arith-
metic operation is required. This can be determined

using benchmark programs. Based on the time for an
arithmetic operation, the time for performing an eval-
uation of the function f describing the specific ODE
system (1) to be solved can be determined. To estimate
the communication time, functions for the communi-
cation operations used are required. An expression for
the execution time of a multi-broadcast operation, for
example, has been given in Formula (14).

With thisadditional information, itispossibleto give
acoarse estimate for the execution time of the PAB and
PABM methods on a specific target platform. As ex-
ample, Fig. 18 compares the measured and the predict-
ed execution times of data-parallel implementations of
the PAB method (left) and the PABM method (right)
on a Cray T3E system. The measurements are based
on a particular MPI implementation that reduces the
communication time by using an internal orthogonal
realization. The predicted execution times match the
measured execution times reasonably well. For the
T3E system, the deviations are usually below 12%. An
exact fitting is not possible using the runtime functions
derived, since these ignoreimportant details of the tar-
get platform like the memory hierarchy, the availability
of multipleinstruction unitsor the pipelining of instruc-

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

153

PAB-method with brusselator function for k=8 on IBM Regatta p69

0.5

T T T T T
Wl data parallel
[task parallel
[task parallel orthogonal | :

0.45H

0.4

time per step in seconds
o o o
N o N o w
(4] N [w (3]
T T T T T

o
=

0.05H | i FEREEREE
0 i 1

1
2 4 8 12 16 24 32 2

n=180000

4

8 12 16 24 32 2 4 8 12 16 24 32
n=320000 n=500000
processors

Fig. 17. Runtimes of the PABM method on IBM Regatta with & = 8.

tion units. Nevertheless, the runtime functions pro-
vide a rough estimate and allow a coarse comparison
of different parallel versions.

6. Related work

Several research groups have proposed models for
mixed task and data parallel executions with the goal
of obtaining parallel programs with faster execution
time and better scalability properties, see [2,22] for an
overview of systems and approaches and see [4] for a
detailed investigation of the benefits of combining task
and data parallel execution.

Many environments for mixed paralelism in scien-
tific computing are extensions of the HPF data parallel
language: see[5] for an overview. Examplesof parallel
programming systems are HPJava [26], LPARX [11]
and KeLP [14]. HPJava adopts the data distribution
concepts of HPF but uses ahigh level SPMD program-
ming model with a fixed number of logical control
threads and includes collective communication oper-
ations encapsulated in a communication library. The
concept of processor groups is supported in the sense

that global datato bedistributed over oneprocessgroup
can be defined and that the program execution con-
trol can choose one of the process groups to be active.
LPARX is a paralel programming system for the de-
velopment of dynamic, nonuniform scientific computa-
tion supporting block-irregular data distributions [11].
KeLP extends LPARX to support the development of
efficient programs for hierarchical parallel computers
such as clusters of SMPs [1,5]. KeLP has been ex-
tended to KeL P-HPF which uses an SPMD program
to coordinate multiple HPF tasks and, thus, combines
regular data parallel computations in HPF with a co-
ordination layer for irregular block-structured features
ononegrid[14].

Much research has been devoted to the development
of the BSP (bulk synchronous parallelism) model and
a programming library (Oxford BSP library) is avail-
ablethat allowsthe formulation of BSP programsin an
SPMD style [8,13]. NestStep extends the BSP model
by supporting group-oriented parallelism, through nest-
ing of supersteps, and a hierarchical processor group
concept [10]. NestStep is defined as a set of extensions
to programming languages like C or Java and is de-
signed for a distributed address space. It aso supports

154 T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

modeling of PAB-method on Cray T3E-1200

measurement

- [F¥ prediction

processors system size

modeling of PABM-method for K=4 on Cray T3E-1200

measurement

T prediction

processors

system size

Fig. 18. Measured and predicted runtimes of the PAB-method (left) and PABM-method for K = 4 on the Cray T3E-1200.

the use of distributed shared arrays. Since it would be
too expensiveto exchangeall elementsof such an array
at the end of each superstep, the compiler and runtime
system try to arrange prefetching of elements by those
processors that use these elements in the next super-
step. Thegroup concept of NestStep issimilar to that of
Tlib. However, the BSP-based programming model of
NestStep is quite different from the Tlib programming
model in which there is no concept of supersteps. In
particular, each communication operation takes effect
as soon as the data arrives at the receiving processors.

7. Conclusions

The realization of parallel applications using pure
data parallelism can result in efficient programs. How-
ever, applications that rely on information exchange
with collective communi cation operations may exhibit
scalability problems, when executed on parallel sys-
tems with larger numbers of processors. The reason
is that the execution time of collective communication
operations increases logarithmicaly or linearly with
the number of participating processors. In such situa-
tionsit can bebeneficial to employ aparallel processing
approach based on a separation of different program
parts which can then be assigned to different groups of
processorsto be executed concurrently as multiproces-
sor tasks. Such an execution scheme is attractive for
applications having inherent task parallelism potential.

The parallel Adams methods discussed in this paper
offer potential method parallelism in the form of inde-
pendent stage vector computationin each iteration step
and can benefit from the M-task programming style.

However, additional collective communication is re-
quired since information has to be exchanged between
processor groups. By reordering the communication
using an orthogonal organization of disjoint processor
groupsfor dataexchange, the communication overhead
can be significantly reduced. For the parallel Adams
methods the combination of an implementation as an
M-task program with orthogonal processor groups for
the communication phases resultsin the most efficient
implementation on anumber of parallel platforms hav-
ing different interconnection networks. The approach
also exhibits good scalability. The experiments on dif-
ferent parallel platforms show that the implementation
asan M-task program is especially effective on parallel
platforms having small bandwidth.

The approach used for the parallel Adams method
can aso beappliedin other applications, particularly in
numerical mathematics. For example, parallel iterated
Runge-Kuttamethods, also used for solving ODEs and
also based on the computation of independent stage
vectors, can be implemented using the same approach
of combining M-task programming with orthogonal
communication. Other applications that can benefit
fromorthogonal communication are matrix-based com-
putations like LU factorization where an orthogonal
structuring of the communication leads to increased
scalahility [15].

Theruntimelibrary Tlib offersconvenient support to
implement M-task programs by providing operations
to create and manage processor groups and to map in-
dependent computationsto these groups. Tlib a so sup-
ports hierarchical subdivisions of processor groupsin-
to smaller groups. Thus, Tlib can be used for the im-
plementation of divide-and-conquer algorithms where

T. Rauber and G. éhger / Mixed task and data parallel executions in general linear methods

anew level of processor groups is used for each level
of recursion. This approach has been used to devel-
op fast multi-level algorithmsfor matrix multiplication
that use a fixed number of recursions of the Strassen
algorithm at the top level [9].

Acknowledgment

We thank the anonymous referees for their helpful
comments. We also thank the NIC Julich for access to
its parallel machines.

References

(4

(2

(3]

(4

(9]

6]

(7

(8l

(9

(1]

[11]

S.B. Baden and S.J. Fink, A Programming Methodology for
Dual-Tier Multicomputers, IEEE Transactions on Software
Engineering26(3) (2000), 212—226.

H. Bal and M. Haines, Approaches for Integrating Task and
DataParallelism, IEEE Concurrency(3) (July-August 1998),
74-84.

J.C. Butcher, The Numerical Analysis of Ordinary Differential
Equations Runge-Kutta and General Linear Methods. Wiley,
New York, 1987.

S. Chakrabarti, J. Demmel and K. Yelick, Modeling the bene-
fits of mixed data and task parallelism, in: Symposium on Par-
allel Algorithms and ArchitecturéSPAA, 1995, pp. 74-83.

S.J. Fink, A Programming Model for Block-Structured Scien-
tific Calculations on SMP ClusterfhD thesis, University of
California, San Diego, 1998.

E. Hairer, S.P. Ngrsett and G. Wanner, Solving Ordinary Differ-
ential Equations I: Nonstiff ProblemSpringer-Verlag, Berlin,
1993.

E. Hairer and G. Wanner, Solving Ordinary Differential Equa-
tions II, Springer, 1991.

M. Hill, W. McCaoll and D. Skillicorn, Questions and Answers
about BSP, Scientific Programmin@(3) (1997), 249-274.

S. Hunold, T. Rauber and G. Runger, Multilevel Hierarchical
Matrix Multiplication on Clustersin Proceedings of the 18th
Annual ACM International Conference on Supercomputing,
ICS 04, June 2004, 136-145.

C.W. Kefller, NestStep: Nested Parallelism and Virtual Shared
Memory for the BSP model, The Journal of Supercomputing
17 (2001), 245-262.

S.R. Kohnand S.B. Baden, Irregular Coarse-Grain Data Paral -
lelism under LPARX, Scientific Programmin (1995), 185—
201.

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

155

M. Kthnemann, T. Rauber and G. Riinger, Optimizing MPI
Collective Communication by Orthogonal Structures. to ap-
pear: Cluster Computing — The Journ. of Networks, Software
Tools and Applications, Special Issue on Cluster Computing
in Science and Engineerir§(4) (2005), 257-279.

W.F. McColl, Universal ComputingIn Proceedings of the
EuroParfl96, Springer LNCS 1123 1996, 25-36.

J. Merlin, S.Baden, St. Fink and B. Chapman, Multiple data
paralelsim with HPF and KeLP. J, Future Generation Com-
puter Sciencd5(3) (1999), 393-405.

T. Rauber and G. Riinger, Optimal Data Distribution for LU
DecompositionIn Proc. of the EuroPar’ 95, Springer LNCS
966, 1995, 391-402.

T. Rauber and G. Runger, Parallel Solution of a Sckidinger-
Poisson system In International Conference on High-
Performance Computing and Networking, Springer LNCS
919, 1995, 697-702.

T. Rauber and G. Ruinger, Parallel Iterated Runge-Kutta Meth-
odsand Applications, International Journal of Supercomputer
Applications10(1) (1996), 62—90.

T. Rauber and G. Riinger, Diagonal-Implicitly Iterated Runge-
Kutta Methods on Distributed Memory Machines, Int Journal
of High Speed Computintp(2) (1999), 185-207.

T. Rauber and G. Riinger, A Transformation Approach to De-
rive Efficient Parallel Implementations, IEEE Transactions on
Software Engineerin@6(4) (2000), 315-339.

T. Rauber and G. Ruinger, Modelling the Runtime of Scientific
Programs on Perallel Computers, in: Proc. ICPP-Workshop
on High Performance Scientific and Engineering Computing
with Applications(HPSECA-0), Toronto, Kanada, August
2000, 307-314.

T. Rauber and G. Riinger, Library Support for Hierarchical
Multi-Processor Taskdn Proc. of the Supercomputing 2002,
Baltimore, USA, 2002. ACM/IEEE.

D. Skillicorn and D. Talia, Models and languages for parallel
computation, ACM Computing Survey30(2) (1998), 123—
169.

PJ. van der Houwen and E. Messina, Parallel AdamsMethods,

J of Comp and App Mathematid®1 (1999), 153-165.

P.J. vander Houwen and B.P. Sommeijer, Iterated Runge-Kutta
Methods on Parallel Computers, SIAM Journal on Scientific
and Statistical Computing2(5) (1991), 1000-1028.

PJ. van der Houwen, B.P. Sommeijer and W. Couzy, Embed-
ded Diagonally Implicit Runge-Kutta Algorithms on Perallel
Computers, Mathematics of ComputatioB8(197) (January
1992), 135-159.

G. Zhang, B. Carpenter, G.Fox, X. Li and Y. Wen, A high level
SPMD programming model: HPspmd and its Java language
binding Technical report, NPAC at Syracuse University, 1998.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

