
Scientific Programming 15 (2007) 137–155 137
IOS Press

Mixed task and data parallel executions in
general linear methods

Thomas Raubera,∗ and Gudula Rüngerb
aUniversity Bayreuth, Germany
bChemnitz University of Technology, Germany
E-mail: ruenger@informatik.tu-chemnitz.de

Abstract. On many parallel target platforms it can be advantageous to implement parallel applications as a collection of
multiprocessor tasks that are concurrently executed and are internally implemented with fine-grain SPMD parallelism. A class of
applications which can benefit from this programming style are methods for solving systems of ordinary differential equations.
Many recent solvers have been designed with an additional potential of method parallelism, but the actual effectiveness of mixed
task and data parallelism depends on the specific communication and computation requirements imposed by the equation to be
solved. In this paper we study mixed task and data parallel implementations for general linear methods realized using a library
for multiprocessor task programming. Experiments on a number of different platforms show good efficiency results.

Keywords: General linear methods, ordinary differential equations, task parallelism, data parallelism, orthogonal structures of
communication

1. Introduction

Scalability problems associated with large parallel
systems can often be avoided by exploiting mixed task
and data parallelism with multiprocessor tasks (M-
tasks). For an implementation using M-tasks the appli-
cation program is split into modules which are realized
as M-Tasks and which can be executed concurrently.
Internally M-tasks can also be executed in parallel: this
can be done in a fine-grained SPMD or data parallel
way and also in a more general way.

M-task parallelism on top of fine-grained parallelism
often results in improved efficiency in cases where col-
lective communication is required for global data ex-
change; in this case a pure data parallel implementa-
tion often imposes a large communication overhead for
larger numbers of processors, whereas the mixed task
and data parallel implementation restricts communica-

∗Corresponding author. University Bayreuth, Angewandte Infor-
matik II, 95440 Bayreuth, Germany. Tel.: +49 921 555100; Fax:
+49 921 555102; E-mail: rauber@uni-bayreuth.de.

tion to a subset of the processors. The improvement
of the communication in M-task programming results
from the restriction of the communication to smaller
groups of processors. This can be achieved when sev-
eral independent tasks work, independently, on subsets
of the entire set of processors; thus collective commu-
nication inside an M-task is performed on a smaller
set of processors, while the entire application uses the
entire set of processors. The reason for this behavior
is that the cost of communication depends on the num-
ber of participating processors in a linear or logarith-
mic way. The actual effect of exploiting mixed par-
allelism on performance improvements, however, de-
pends on the specific application problem and the spe-
cific communication behavior of the target machine. A
class of applications which can benefit from mixed par-
allelism are methods for solving ordinary differential
equations (ODEs). One-step ODE solvers perform a
series of time steps which have to be executed sequen-
tially due to data dependencies. Potential parallelism
inside each time step arises when systems of ODEs are
solved and collective communication is required when

ISSN 1058-9244/07/$17.00  2007 – IOS Press and the authors. All rights reserved

138 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

exploiting this fine-grain parallelism. In such situations
it is worthwhile considering M-task parallelism.

For the integration of initial value problems for
first-order ODEs, several new parallel solution meth-
ods have been proposed which offer the potential for
method parallelism in each time step. Many of these
ODE solvers are based on multistage methods, offer-
ing potential for method parallelism in the stage vec-
tor computation. Method parallelism allows the par-
allel execution of the solution method using a number
of processors coincident with the number of stages in
the methods – usually fewer than ten. In the case of
systems of ODEs there is an additional source of sys-
tem parallelism in each stage vector computation cor-
responding to the size of the system. The exploitation
of this source of parallelism allows the employment of
a larger number of processors and improves scalability.
Examples are iterated Runge-Kutta (RK) methods [17,
24] and diagonal-implicitly iterated Runge-Kutta (DI-
IRK) methods [18,25]. The efficiency of iterated RK
solvers is heavily affected by communication since a
global exchange is necessary after each iteration step of
the stage vector computation and strongly depends on
the characteristics of the ODE system to be solved: for
sparse ODE systems, the communication bandwidth of
the target platform may limit performance. Experi-
ments on different target platforms also show that a pure
data parallel execution often results in lower execution
times than parallel execution that exploits method par-
allelism [19]. On the other hand, parallel DIIRK meth-
ods for solving stiff ODEs show good efficiency for
sparse and dense ODE systems on a wide variety of
target platforms. Moreover, on most platforms, method
parallelism results in significantly faster execution than
pure data parallel implementations.

In this paper, we explore another class of solution
methods which have different communication require-
ments. In particular, we consider a variant of gener-
al linear methods – the parallel Adams methods pro-
posed by van der Houwen and Messina in [23]. Par-
allel Adams methods have the advantage that the com-
putations in the parallel stages within each time step
are completely independent. Strong data dependencies
occur only at the end of each time step. We have im-
plemented this method using multiprocessor tasks (M-
tasks) for stage vector computations exploiting system
parallelism internally within each M-task. We investi-
gate the trade-off between reduced communication be-
tween M-tasks and increased communication after each
time step. The implementation is designed for arbi-
trary right hand sides of the ODE. Thus no application

specific characteristics are exploited and the pure effect
of using M-tasks can be observed. As applications we
consider both dense and sparse ODE systems. Exper-
iments have been performed on a Cray T3E, two Be-
owulf clusters with different interconnection networks,
and an IBM Regatta system.

M-task programs are implemented using the Tlib li-
brary, which can be used to hierarchically organize M-
task programs on top of SPMD modules [21]. The ad-
vantage is that different parallel implementations can be
easily developed on top of available stage vector SPMD
codes without incurring an additional overhead. Sev-
eral other models have been proposed for mixed task
and data parallel executions, see [2,22] for an overview
of systems and approaches and see [4] for a detailed
investigation of the benefits of combining task and data
parallel execution. Many environments for mixed par-
allelism in scientific computing are extensions of the
HPF data parallel language – see [5] for an overview.
Examples are HPJava [26], LPARX [11], KeLP [14]
and NestStep [10].

The contribution of this paper is to present a paral-
lel programming model for mixed task and data par-
allelism as well as to investigate parallel implemen-
tations of parallel Adams methods using this model.
For the parallel Adams methods we show that the po-
tential parallelism within the method can be exploited
to achieve efficient parallel implementations. The de-
velopment of several parallel versions using different
programming models shows that a rigorous study of
parallelism can facilitate the construction of a program
version with good speedups for ODE solvers. On the
other hand, the parallel Adams method is a good exam-
plar for demonstrating the applicability of mixed task
and data parallelism. We advocate a specific parallel
programming model which uses cooperating multipro-
cessor tasks (M-tasks) to realize the coarse structure
of parallel applications. This programming model is
suitable for expressing the natural modular structure
of many numerical applications, since they are usually
built from different cooperating methods. Also, effi-
ciency gains are observed which can be explained by
effects on collective communication when reducing the
number of participating processors. We also present an
approach to exploit orthogonal group arrangements for
communication. This approach can be exploited in all
numerical software which use several array data struc-
tures requiring a component-wise data exchange. The
parallel Adams methods in a task parallel version ex-
hibit this kind of data dependence and thus can benefit
from orthogonal communication structures.

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 139

stepsize h stepsize h

a
p

p
ro

x
im

a
ti

o
n

 v
e
c
to

rs
fu

n
c
ti

o
n

 v
a
lu

e
s

0.8450.35

0 1 2t t t

y y y

f(y) f(y)

y y y

f(y) f(y) f(y)

y y y

f(y) f(y) f(y)
03 01 02

f(y)

020103

13 11

DOPRI8 DOPRI8

13 11 12

12 23

23

21 22

21 22

next

time

step

Simulated Time

Illustration of the dependencies of the PAB method for k=3

Fig. 1. Illustration of the dependence structure of a PAB method with k = 3 stage values. For abscissae values a = (a1, . . . , ak) with ak = 1
the stage values ynk correspond to the approximations of y(tn), n = 0, 1, 2,

The remainder of the paper introduces the parallel
Adams method in Section 2. Section 3 discusses the
implementation of the parallel Adams methods with
mixed parallelism and Section 4 introduces the Tlib
library. Section 5 presents runtime results, Section 6
discusses related work, and Section 7 comments on the
effectiveness of the proposed approach.

2. Parallel Adams method

We consider a system of initial-value problems
(IVPs) of first order differential equations (ODEs)

y′(t) = f(t,y(t)), y(t0) = y0 (1)

with initial vectory0 at start time t0, system size d � 1,
and right hand side function f : R × R

d → R
d. One-

step methods for solving ODE systems of the form (1)
start with y0 and generate a sequence of approxima-
tions yn, n = 1, 2, . . ., for the solutiony(tn) at time tn,
n = 1, 2, Parallelism can only be exploited with-
in the computations of each time step, since the time
steps depend on each other. This can be realized by
distributing the computation of components of yn or by

exploiting specific characteristics of potential method
parallelism.

In recent years solvers have been designed that addi-
tionally provide a higher degree of method parallelism
while guaranteeing good numerical properties. Many
of these are based on classical implicit Runge-Kutta
methods in which the implicit equation is handled using
a predictor-corrector approach or fixed point iterations.
These computations include the evaluation of several
stage vectors for which method parallelism can be ex-
ploited. However, several interactions between differ-
ent computation parts are required. Another class of
parallel solvers is based on implicit multistage methods
which are already parallel in the stage vector computa-
tion and which can be described by the class of general
linear methods [3]. In each time step, general linear
methods compute several stage values yni (vectors of
size d) corresponding to numerical approximation of
y(tn +aih) with abscissa vector (ai), i = 1, . . . , k and
stepsize h = tn − tn−1. The stage values of one time
step are combined in the vector Yn = (yn1, . . . ,ynk)
of length d ·k and the computation in each step is given
by:

140 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

y
03

y
13

f(y)
11

f(y)
01

y
01 y

11

13
f(y)

y
02

02
f(y)

y
12

12
f(y)

stepsize h

0
t

f(y)
03

t1

DOPRI8 DOPRI8

next

time

step

stepsize h

t 2

v v v

Simulated Time

fu
n

c
ti

o
n

 v
a
lu

e
s

a
p

p
ro

x
im

a
ti

o
n

 v
e
c
to

rs

fi
xe

d
 p

o
in

t
it

er
at

io
n

fi
xe

d
 p

o
in

t
it

er
at

io
n

Illustration of the dependencies of the PABM method for k=3

fi
xe

d
 p

o
in

t
it

er
at

io
n

Fig. 2. Illustration of the dependence structure of a PABM method with k = 3 stage values. The stage value yni, i = 1, . . . , k, computed by the
PAB method is used as starting vector for the fixed point iteration of the PABM method. For each stage value, an additional vector vni is needed
which constitutes the constant part of the right hand side of the fixed point iteration. The computation of vni is similar to the computation of yni,
but with a different matrix S.

Fig. 3. Pseudocode for one time step of the PAB method implemented in a data parallel way.

Yn+1 = (R ⊗ I)Yn + h(S ⊗ I)F(Yn)
(2)

+ h(T ⊗ I)F(Yn+1), n = 1, 2, . . .

The matrices R, S and T have dimension k × k and
R⊗I, for example, denotes the Kronecker tensor prod-
uct, i.e. the d · k × d · k dimensional block matrix with
d × d blocks rij · I for i, j = 1, . . . , k. I denotes the
d × d unit matrix. Typical values for k lie in the range
2 to 8.

In this paper, we consider a variant of this method,
the parallel Adams method proposed in [23]. The name
was chosen because of a similarity of the stage equa-
tions with classical Adams formulae. In this paper
different computation schemes are realized and evalu-
ated using both system and method parallelism. The
method is executed on different collections of proces-
sors and the parallel efficiency of the implementations
is investigated.

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 141

Fig. 4. Pseudocode for one time step of the PABM method implemented in a data parallel way.

The parallel Adams methods result from (2) by dif-
ferent choices for R, S and T. A diagonal matrix T
yields an implicit equation system to be solved by
fixed point iteration giving the Parallel Adams-Moulton
(PAM) method. A zero matrix T = 0 gives the Parallel
Adams-Bashforth (PAB) method.

PAB methods First, we consider the PAB methods
which result from settingT = 0 andR = e·ek

T where
e = (1, . . . , 1) and ek = (0, . . . , 0, 1). With Vx =
(x,x2, . . . ,xk), Wx = (e, 2x, 3x2, . . . , kxk−1) and
bi = ai − 1, we define S = VaW−1

b according to [23].
The abscissae values ai, i = 1, . . . , k, are determined
so that a convergence order of k + 1 results. This can
be obtained by using the Lobatto points.

To compute the stage vector Y0 of the initial time
step from the given initial value y0, the stage values
y0i, i = 1, . . . , k, are evaluated using another explicit
method, such as DOPRI8. Starting from Yn, time step
n + 1 computes Yn+1 = (yn+1,0, . . . , yn+1,k) in two
stages. First the right hand side function f is applied to
yn0, . . . , ynk to giveF(Yn). ThenYn+1 is obtained by
adding (R⊗ I)Yn to h(S⊗ I)F(Yn). Figure 1 shows
the dependence structure of the resulting computation
scheme for the case k = 3.

PAM methods PAM methods result from (2) by
using a diagonal matrix T. The diagonal entries δ i,
i = 1, . . . , k, are determined in such a way that spe-
cific consistency conditions are satisfied. In addition,
R = e ·ekT and S = (Va−R ·Vb−T ·Wa)W−1

b are
used in the PAM methods. Again, the Lobatto points
can be used as abscissae values. Since T is diagonal,
the resulting implicit relation is un-coupled and has the
form

yn+1,i − h ∗ δi ∗ f(yn+1,i) = vni
(3)

for i = 1, . . . , k.

The vectors vni are the d-dimensional vector com-
ponents of V = (R ⊗ I)Yn + h(S ⊗ I)F(Yn). Us-
ing fixed point iteration for the solution produces the
following computation scheme:

y(j)
n+1,1 − h ∗ δ1 ∗ f(y(j−1)

n+1,1) = vn1

... (4)

y(j)
n+1,k − h ∗ δk ∗ f(y(j−1)

n+1,k) = vnk

Equation (4) offers method parallelism and defines,
for each i, i = 1, . . . , k, an independent task that can
be executed on a group of processors. The vni, i =
1, . . . , k, on the right hand side of (4) are calculated
using the stage vectors ynj , j = 1, . . . , k, from the
previous time step:

vni =
k∑

j=1

rijynj + h ∗
k∑

j=1

sijf(ynj) (5)

with matrices R = (rij)i,j=1,...,k and S =
(sij)i,j=1,...,k. The convergence order of the result-
ing implicit method is k + 2. The starting vectors for
the iteration can be generated using a PAB method as
predictor, since both methods use the Lobatto points
as abscissae values. The resulting predictor-corrector
method is referred to as PABM below. Usually the
PAB method is used as predictor in the PABM method
which is a combination of the PAB and the PAM meth-
ods. The data dependencies of the PABM methods are
illustrated in Fig. 2.

142 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

y02

y n1 ynk

nkf(y)

0y0y 0y

y 01

n

n+1

t

t

t0

Si
m

ul
at

ed
 ti

m
e

st
ep

s

k21

y

y0k

n2

f(y) f(y)n1 n2

n+1,1 n+1,2y y n+1,ky

S
im

u
la

ti
o

n
 T

im
e

PABSTEP

DOPRI8

In
it

ia
liz

at
io

n
T

im
e

st
ep

s
1.

..n
-1

T
im

e
st

ep
 n

Group G

PABSTEP

Group GGroup G

Processorsp

DOPRI8 DOPRI8

APPLY f APPLY f APPLY f

PABSTEP

Fig. 5. Illustration of a task parallel implementation of a PAB method with k stage values on k disjoint processor groups. For abscissa values
a = (a1, . . . , ak) with ak = 1 the stage values yn,k correspond to the approximations of y(tn), n = 0, 1, 2,

3. Parallel implementation

The PAB and PABM methods offer several possi-
bilities for parallel execution that differ in the order in
which the computations in each time step are performed
and in the way in which the required data exchange is
effected. The data dependencies require that the time
steps be executed one after another.

Data parallel implementation of the PAB method
In each time step a pure data parallel realization com-
putes the stage values one after another with all pro-
cessors available. To compute f(yni), i = 1, . . . , k,
each of the p processors evaluates approximately d/p
components of f . After this evaluation, each processor
uses its local components of f(yni) to compute the cor-
responding components of yn+1,i according to Eq. (2).
Since f is considered to be an unknown black-box func-
tion, we must assume that all components of yn+1,i

are available for the computation of each component of
f(yn+1,i) in the next time step. Thus, after the com-
putation of yn+1,i, a global multi-broadcast operation
must be performed to make the entire stage value yn+1,i

available to all processors for the next time step. Fig-
ure 3 gives pseudocode for the internal computations
of one time step.

Altogether, k global multi-broadcast operations are
performed in each time step with each processor con-
tributing approximately d/p components to each of
these communication operations, thus effecting a glob-
ally replicated distribution of the entire stage vector.
The resulting communication overhead per time step is
given by

CPAB,dp(d, p) = k · Tmbroad(p, d/p), (6)

where Tmbroad(p, x) denotes the time for a multi-
broadcast operation executed on p processors with each

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 143

Fig. 6. Pseudocode for one time step of the PABM method in a task parallel implementation using k processor groups Gi of size gi, i = 1, . . . , k.
All processors work in parallel and me denotes the processor Id of the executing processor.

Fig. 7. Pseudocode for one time step of a task parallel implementation of the PABM method using k processor group Gi, i = 1 . . . , k, with
orthogonal processor groups Q1, . . . , Qg.

processor contributing x data values. For the special
case R = e · ekT , see Section 2, the computation time
for a single time step is given by

TPAB,dp(d, p) = k · (d/p · Teval(f)
(7)

+ (2k + 1) · d/p · top),

where Teval(f) is the time to evaluate one component
of f and top is the time for an arithmetic operation such
as addition or multiplication.

Data parallel implementation of the PABM
method: The data parallel implementation of the
PABM method uses the data parallel implementation
of the PAB method as predictor to yield the starting
vector y

(0)
n+1,i, i = 1, . . . , k, for each stage value of the

PABM corrector in a replicated data distribution. For
each processor, this requires k function evaluations and
k · (2k + 1) operations for d/p elements, see formu-
la (7). A fixed number, It, of corrector iterations is
performed where, in each iteration, each processor first
computes d/p components of f(y (0)

n+1,i) and then uses
its local components to compute the corresponding d/p

components of y
(it+1)
n+1,i = y

(0)
n+1,i + h · δi · f(y(it)

n,i), see
Fig. 4. This leads to the following computation time:

TPABM,dp(d, p) = k · ((It + 1) · d/p · Teval(f)

+ (2k + 1) · d/p · top (8)

+ It · 3 · d/p · top)

144 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

q

q

q q

q

q

11 1g

21 2g

s1 sg

G

G

G

1

2

Q Q
1 g

k

Fig. 8. Disjoint processor groups G1, . . . , Gk and orthogonal pro-
cessor groups Q1, . . . , Qg .

Since only the local components are needed for this
computation no data exchange is required. For the
next iteration, the vector y

(it+1)
n+1,i is needed as argu-

ment vector for the function evaluation. Thus a glob-
al multi-broadcast operation is required to make all of
the components of y

(it+1)
n+1,i available to all processors

for it = 0, . . . , It − 1. Figure 4 gives pseudocode for
the main computation and communication operations
of one time step of the PABM method.

This implementation strategy results in the following
communication overhead within one time step:

CPABM,dp(d, p) = k · (It + 1)
(9)

·Tmbroad(p, d/p)

M-task implementation with internal data par-
allelism for PAB An M-task realization exploit-
ing method parallelism employs k disjoint proces-
sor groups G1, . . . , Gk of approximately equal size
g = p/k – see the diagram in Fig. 5. In each time
step n, processor group Gi is responsible for comput-
ing stage value yn+1,i, i = 1, . . . , k. The computa-
tion of yn+1,i requires access to f(yn1), . . . , f(ynk) for
i = 1, . . . , k which are computed independently. Thus,
by data exchange, each processor gets exactly those
components that it needs for its local computation. This
can, for example, be realized by first collecting the com-
ponents of f(yni) on a specific processor, qij , of Gi,
i = 1, . . . , k, using a group-local gather operation and
then broadcasting them to the processors of all other
groups. The group-local gather operations can be per-
formed concurrently by the different groups, whereas
the single-broadcast operations have to be performed
one after another because all processors are involved,
thus leading to k single-broadcast operations. Since f
is an unknown function, yn+1,i has to be distributed
among all the processors of Gi by a multi-broadcast op-
eration to ensure a group-replicated distribution of the
stage values and to enable a group internal evaluation
of f(yn+1,i) in the next time step. In addition, the last

stage vector ynk has to be sent to all other groups Gi,
i = 1, . . . , k, by a single-broadcast operation involving
all processors for the computation of the PAB step in
the next time step.

Compared to the pure data parallel execution scheme,
more communication operations are necessary, but
most of these are group-local. Since the group-specific
communications can be executed concurrently, the
communication time per time step can be expressed as:

CPAB,tp(d, p) = Tgather(g, d/p)

+ (k + 1) · Tsbroad(p, d) (10)

+ Tmbroad(g, d/g)

The computation time is identical to the data parallel
case, if d is a multiple of p and g and if p is a multiple
of g.

M-task implementation with internal data paral-
lelism for PABM Using the PAB method as predictor,
the PABM method performs It corrector steps, where
each processor group Gi operating independently, iter-
atively computes y

(It)
n+1,i, i = 1, . . . , k. After the com-

putation of y
(it+1)
n+1,i , this vector is made available by

a multi-broadcast to all other processors of the same
group Gi where it is required for the computation of
µ

(it+2)
n+1,i in the next corrector iteration. The final vec-

tor of the iteration yIt
n+1,i is replicated on all proces-

sors of Gi, so the next time step can use this value as
yn+1,i for the predictor step without further commu-
nication. Thus, compared with the PAB method, the
PABM method additionally requires It group-based
multi-broadcast operations. The communication time
for the task parallel PABM methods is therefore:

CPABM,tp(d, p) = Tgather(g, d/p)

+ (k + 1) · Tsbroad(p, d) (11)

+ (It + 1) · Tmbroad(g, d/g)

Figure 6 gives pseudocode for the task parallel
PABM method. The computation time is identical to
the data parallel case, if d is a multiple of p and g and
if p is a multiple of g.

Exploiting orthogonal structures of communica-
tion The implementation based on M-tasks uses two
communication phases, one to make available to each
processor those components of F(Yn) that it needs
for the computation of its local components of Yn+1,
and one to establish a group-replicated distribution of
yn+1,i in group Gi. The second communication phase
is based on group-local communication, but the first

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 145

Fig. 9. Tlib program for task parallel PAB method with k parallel M-tasks independently computing yn0, . . . , yn,k−1. The numbering in the
program starts with 0 instead of 1 according to the numbering conventions in C.

uses a global broadcast operation. We now re-organize
the first communication phase so that it also uses group-
local communication only.

Below, we assume that the number of stage vec-
tors, k, is a multiple of the number of processors, p,
so that all groups, Gi, have the same number of pro-
cessors, g = p/k. Moreover, we assume that the
dimension d of the stage values is a multiple of g.
Based on the processor groups G1, . . . , Gk, we de-
fine orthogonal groups Q1, . . . , Qg with |Qj| = k and
Qj = {qlj ∈ Gl | l = 1, . . . , k}, see Fig. 8. For
the computation of F(Yn), each processor qij of Gi

computes d/g components of f(yni). The correspond-

ing components of f(ynl) for l �= i are computed by
the processors qlj of Gl. These components are just
what are needed by qij for the computation of yn+1,i.
Thus, the required components can be made available
to each processor by a group-oriented multi-broadcast
operation on the orthogonal group Q j . These com-
munication operations can be executed concurrently on
all orthogonal groups Q1, . . . , Qg . The stage vector
yn+1,k of the last group Gk is made available to the
other groups by g concurrent single-broadcast opera-
tions on the orthogonal groups Q1, . . . , Qg . Thus, all
group-oriented communication operations can be exe-
cuted concurrently and the communication time within

146 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

one time step is given by

CPAB,ort(d, p) = Tmbroad(k, d/g)

+ Tsbroad(k, d/g) (12)

+ Tmbroad(g, d/g).

The computation time is the same as for the task
parallel case without orthogonal structure.

Exploiting orthogonal structures of communica-
tion for the PABM method The PAM corrector is im-
plemented identically to the M-task parallel version,
since disjoint processor groups are already exploited
by the method. The PAB predictor also exploits the
orthogonal communication structure, see Fig. 7 for an
illustration. The communication time is reduced to:

CPABM,ort(d, p) = Tmbroad(k, d/g)

+ Tsbroad(k, d/g) (13)

+ (It + 1) · Tmbroad(g, d/g).

Again, the computation time is identical to the M-
task version without orthogonal groups.

4. Tlib library for expressing task parallelism

Tlib is a runtime library to support programming
with hierarchically structured M-tasks. Tlib provides
an API comprising several library functions that are im-
plemented on top of MPI. A parallel program using the
library comprises a collection of basic SPMD tasks and
a set of coordination functionswhich embody M-tasks.
In the coordination functions, concurrent execution is
effected by calling the corresponding library functions
with a description of the (hierarchical) decomposition
of the processor set. This description is stored in a
group descriptorthat is created before the concurrent
execution of tasks is initiated.

The library’s API provides separate functions for the
structuring of processor groups and for the coordination
of concurrent and nested M-tasks. The task structure
can be nested arbitrarily, which means that a coordina-
tion function can assign other coordination functions
to subgroups, which can, in turn, split the subgroup
and assign other coordination functions. Tlib library
functions are designed to be called in an SPMD man-
ner which results in multi-level group SPMD programs.
The entire management of groups and M-tasks at ex-
ecution time is done using the library. This includes
the creation and administration of the structure of the
processor groups, the mapping of tasks to groups and

their coordination, the handling and termination of re-
cursive calls and group splittings, and the organization
of communication between groups in the hierarchy.

Internally, the library exploits distributed informa-
tion stored in distributed group descriptors, which
are hidden from the user. The first group descriptor
pdescr of type T Descr of a program is initialized
by

int T Init(int argc, char *argv[], MPI Comm comm,
T Descr *pdescr)

which needs an MPI communicator and creates a de-
scriptor pdescr. The splitting of an existing group
of processors that is represented by a group descriptor
pdescr into two new groups is performed by

int T SplitGrp(T Descr * pdescr, T Descr * pdescr1,
float per1, float per2);

per1 and per2 denote fractional values, with per1 +
per2 � 1. The two resulting groups contain a fraction
per1 or per2 of the processors of the original group and
are both represented by the group descriptorpdescr1.
More general splitting operations are available. After
a splitting operation, the concurrent execution of two
independent tasks can be initiated by calling the library
function

int T Par(void * (*f1)(void *, MPI Comm, T Descr *),
void * parg1, void * pres1,
void * (*f2)(void *, MPI Comm, T Descr *),
void * parg2, void * pres2,
T Descr *pdescr)

The M-tasks to be executed are supplied as argu-
mentsf1 andf2, the arguments of the tasks areparg1
and parg2, and the result values of the executed M-
tasks are returned in pres1 and pres2, respectively;
pdescr represents the two groups on which the two
M-tasks provided are executed.

Because of the specific way that functions are passed
as arguments to a library function, all basic SPMD tasks
and all coordination functions that may be passed as an
argument to a library function are required to have the
form

void *F (void * arg, MPI Comm comm, T Descr *pdescr)

The separation of the creation and the use of the de-
scriptors is useful in iterative methods where the same
descriptor can be efficiently reused several times.

We have used Tlib to implement the task parallel
versions of the PAB and PABM methods. The Tlib li-
brary makes it easy to implement different task parallel

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 147

Fig. 10. Tlib function for task parallel PABM method.

8 16 32 48 64 96 128 8 16 32 48 64 96 128 8 16 32 48 64 96 128
0

0.5

1

1.5

2

2.5

3

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PAB-method with brusselator function for k=8 on Cray T3E-1200

n=180000 n=320000 n=500000

data parallel
task parallel
task parallel orthogonal

Fig. 11. Runtimes of the PAB method for Brusselator on Cray T3E with k = 8.

versions quickly without incurring a perceptible imple-
mentation overhead. The use of the library requires
the definition of the parallel procedures as M-Tasks by
mapping them to the arguments f1 and f2 of the library
function T Par and by packing the corresponding ar-
guments of these procedures in the arguments parg1
and parg2 of T Par.

The task parallel implementations of the PAB and
the PABM methods use a generalization of the function
T Par to define k parallel M-tasks (k is the number
of stage values defining the degree of task parallelism).
Each M-task is one of the fixed point iterations, ex-

ploiting the fact that these computations are complete-
ly independent within each time step. After each time
step communication between M-tasks is required to ex-
change vectors as described earlier. The call of the
parallel M-tasks using the Tlib function is repeated in
each step. The underlying splitting of the processors
into k groups of processors is done once only at the
outset using a generalized version of the library func-
tion T SplitGrp and this partition is reused in each
step.

Figure 9 shows essential parts of the Tlib program for
the task parallel implementation of the PAB method.

148 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

8 16 32 48 64 96 128 8 16 32 48 64 96 128 8 16 32 48 64 96 128
0

0.5

1

1.5

2

2.5

3

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PABM-method with brusselator function for k=8 on Cray T3E-1200

n=180000 n=320000 n=500000

data parallel
task parallel
task parallel orthogonal

Fig. 12. Runtimes of the PABM method for Brusselator on Cray T3E with k = 8.

For simplicity, many details, like the allocation of data
structures, are omitted; allocations and initializations
are indicated by comments. Variables, like the number
k of stage values, t 0 for the start time of the time
interval, H for the size of the time interval, and h for
the stepsize are considered to be global variables. Ini-
tially, the library function T SplitGrpParfor cre-
ates k disjoint groups of processors in line (5). In line
(7), for each i, i = 0, . . . , k − 1, the array mfeval is
filled with references to function feval; analogous-
ly, the array pabs is filled with references to function
pabstep. These functions perform the evaluation of
f (feval) and the computation of the PAB method (pab-
step), see also Fig. 5 for the task parallel execution of
the PAB method. The library call T Parfor in line
(11) ensures that k parallel function calls are issued and
executed on the processor groups previously created by
T SplitGrpParfor. The second call ofT Parfor
in line (13) initiates the task parallel execution of the
function pabstep. In general, the function argument
array for T Parfor can be filled with different func-
tions resulting in different groups executing different
M-tasks concurrently; however, for the PAB method,

all groups execute the same M-task on different stage
vectors.

The Tlib function for PABM has the same structure as
the function tpar pabstep but uses the assignment
pabs[i] = pabmstep for i = 0, . . . k − 1 instead
of pabs[i] = pabstep in line (7) of Fig. 9. The
function pabs[i] = pabmstep is a data parallel
implementation of the fixed point iteration for comput-
ing one of the stage vectors yn+1,i, i = 0, . . . k−1, see
Fig. 10.

5. Runtime experiments

For the experiments, the PAB and PABM methods
have been implemented for k = 2, 4, 8. According
to [23], a fixed stepsize strategy is used to facilitate clear
observation of the algorithmic features. The implicit
relations are solved by a fixed point iteration with a
fixed number of iterations for all stages.

As test problems two classes of ODE systems are
considered:
SparseODE systems are characterized by each com-
ponent of the right-hand side function f of the ODE

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 149

2 4 8 16 24 32 2 4 8 16 24 32 2 4 8 16 24 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PAB-method with brusselator function for k=8 on Xeon cluster (SCI)

n=180000 n=320000 n=500000

data parallel
task parallel
task parallel orthogonal

Fig. 13. Runtimes of the PAB method for Brusselator on SCI Xeon cluster with k = 8.

system having a fixed evaluation time that is indepen-
dent of the size of the ODE system, i.e., the evaluation
time for the entire function f increases linearly with the
size of the ODE system. Such systems arise, for exam-
ple, from a spatial discretization of a time-dependent
partial differential equation (PDE) [6]. In particular,
an ODE system resulting from the spatial discretiza-
tion of a 2D PDE describing the reaction with diffusion
of two chemical substances (Brusselator equation) is
considered [7,17].

DenseODE systems are characterized by each com-
ponent of f having an evaluation time that increases
linearly with the system size, i.e., the evaluation time
for the entire function f increases quadratically with the
size of the ODE system. In particular, a spectral de-
composition of a time-dependent Schrödinger equation
which results in a dense ODE system is considered [16].

The parallel implementations have been tested on
four machines: a Cray T3E-1200, two Beowulf clus-
ters and an IBM Regatta system. One of the Beowulf
clusters has 16 nodes, where each node consists of two,
2.0 GHz, Xeon processors. The nodes are connected by
a SCI interconnection network. The second Beowulf
Cluster CLiC (‘Chemnitzer Linux Cluster’) is built of

528, 800 MHz, Pentium III processors. The processors
are connected by two different networks, the communi-
cation network and the service network. Both of these
are based on the fast-Ethernet-standard. The IBM Re-
gatta system uses 32, 1.7 GHz, Power4 processors per
node and has 34 nodes.

Figures 11 and 12 show the execution times in sec-
onds of one time step of the PAB and PABM methods,
with k = 8 stage vectors, for the Brusselator equation
using system sizes 180000, 320000 and 500000. For
k = 8, task parallelism can only be implemented for
at least 8 processors, because each group needs at least
one processor. The figures show that, for both methods,
the orthogonal parallel version with M-tasks is consid-
erably faster than both the data parallel version and the
standard M-task version, since the former uses group-
based communication only. For the PAB method, the
data parallel version is faster than the standard M-task
version, since the M-task version uses more communi-
cation operations and a global gather operation in each
time step. In particular, the orthogonal version shows
much better scalability than the other two.

In Fig. 11, it can be observed that the data parallel
version has a local minimum for p = 48 processors.

150 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

4 8 12 16 24 32 4 8 12 16 24 32 4 8 12 16 24 32
0

0.5

1

1.5

2

2.5

3

3.5

4

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PABM-method with schroedinger function for k=8 on Xeon cluster (SCI)

n=6002 n=8002 n=10002

data parallel
task parallel
task parallel orthogonal

Fig. 14. Runtimes of the PABM method for Schrödinger on SCI Xeon cluster with k = 8.

This behavior can be explained by considering the run-
time formulae (6) and (7) from Section 3. According
to formula (6), the communication time is determined
by a global multi-broadcast operation for which each
processor contributes a data block with d/p elements.
The execution time of a multi-broadcast operation is
given by

Tmb(p, n) = τ1 + τ2 · p + tc · p · n (14)

where τ1, τ2 and tc are architectural parameters de-
scribing the communication system of the target plat-
form [20]. These parameters can be determined by
benchmark programs. The parameter n is the size of the
data block on each processor, i.e., for the PAB method
it is n = d/p · sizeof(double). Thus, the last term,
tc ·p·n, is constant for a fixed system size, independent-
ly of the number p of processors. But because of the
second term τ2 · p, the communication time of the PAB
method increases with the number of processors. The
computation time, on the other hand, decreases with
increasing numbers of processors according to formula
(7). For up to 48 processors, this decrease is larger
than the increase in the communication time, so that
the overall execution time decreases with the number

of processors. Starting with 64 processors, the increase
in the communication time is larger than the decrease
in the computation time as the number of processors
increases. Hence, the overall execution time starts to
increase with the number of processors.

For the PABM method, see Fig. 12, the standard
M-task version is faster than the data parallel version,
since the latter uses a global multi-broadcast operation
in each iteration step whereas the former uses a global
gather operation only once in each time step. Orthogo-
nal communication structures further improve the per-
formance. Similar results are obtained for k = 4. Fig-
ure 13 shows the execution times for the PAB method
applied to the Brusselator equation on the Xeon cluster.
The results are similar to those for the T3E. The Xeon
cluster has only 32 processors; thus, measurements are
only shown for up to 32 processors. Again, for 2 and 4
processors, no task parallel version is shown, because
this requires at least 8 processors for k = 8 stage vec-
tors.

Figure 14 shows the execution times for the PABM
method for the Schrödinger equation on the Xeon clus-
ter. Here all versions show good scalability, since the
evaluation time for f accounts for a large portion of the

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 151

4 8 16 32 48 64 96 128 4 8 16 32 48 64 96 128 4 8 16 32 48 64 96 128
0

10

20

30

40

50

60

70

80

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PABM-method with schroedinger function for k=8 on Cray T3E-1200

n=6002 n=8002 n=10002

data parallel
task parallel
task parallel orthogonal

Fig. 15. Runtimes of the PABM method for Schrödinger on Cray T3E with k = 8.

parallel runtime. However, the orthogonal task paral-
lel version has the least execution time in most cas-
es. The difference between the M-task version and
the data parallel version is most significant for small-
er ODE systems. Similar results are obtained for the
PAB methods on both hardware platforms for k = 4
and k = 8. Figure 15 shows the execution times for
the PABM method for the Schrödinger equation on the
Cray T3E, and again shows similar results because of
the dominance of computation over communication.

Figure 16 shows the execution times of the PABM
method for the Brusselator equation on the CLiC. In this
case, the task parallel implementation is significantly
faster than the data parallel implementation which is
further improved by exploiting orthogonal communi-
cation structures. The impressive decrease in runtime
when using concurrent multiprocessor tasks instead of
data parallelism can be explained by the large commu-
nication overhead for collective communication oper-
ations on the CLiC due to its interconnection network.
Figure 17 shows the execution times for the PABM
method for the Brusselator equation on one node of the
IBM Regatta system. Here, the data parallel version
has the fastest execution times and shows good scala-

bility because of the shared memory used within each
node. Comparing Figs 16 and 17, it can be seen that
the advantage of an orthogonal task parallel execution
of the PABM methods is most significant on machines
with a slow interconnection network and that, for par-
allel machines with a fast network or a shared mem-
ory, data parallel implementations can be competitive
with and even be faster than the orthogonal task parallel
versions. But for cluster systems with a slower net-
work, such as the Beowulf cluster CLiC, optimizations
such as orthogonal task parallel versions are required
to achieve competitive performance results.

Orthogonal realization of communication opera-
tions The improvement of the communication in M-
task programming arises from the restriction of the
communication to smaller groups of processors. This
is realised when several independent tasks operate in-
dependently on subsets of the entire set of processors:
thus collective communication inside an M-task is per-
formed on a smaller set of processors, while the entire
application uses the complete set of processors. The
reason for this behavior is that the costs of communi-
cation depends on the number of processors in either a
linear or logarithmic way.

152 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

8 16 32 48 64 96 128 8 16 32 48 64 96 128 8 16 32 48 64 96 128
0

50

100

150

200

250

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PABM-method for k=8 on CLiC

n=45000 n=80000 n=180000

data parallel
task parallel
task parallel orthogonal

Fig. 16. Runtimes of the PABM method for Brusselator on CLiC with k = 8.

There is also the possibility to internally restruc-
ture collective communication so that orthogonal struc-
tures are used internally. This issue has been addressed
in [12]; this paper establishes that orthogonal restruc-
turing can have a significant effect, if the MPI library
is not efficiently implemented. In particular, this is the
case for the MPI implementation on the CLiC cluster.
In addition, for the MPI implementations on the SCI
Xeon cluster, the T3E and the IBM Regatta improve-
ments can be obtained. However, these are less im-
pressive than those obtained by restructuring the com-
munication in the algorithm as reported upon here.
The improvements for the parallel Adams methods ob-
tained using orthogonal communication structures are
also due to the fact that fewer data values need to be
exchanged because of a judicious arrangement of the
stage vectors.

Runtime prediction The runtime functions from
Section 3 can be used to estimate the execution time of
the PAB or PABM methods on a given target machine.
To do this, architectural parameters of the target ma-
chine need to be considered. To estimate the compu-
tation time, the average time for performing an arith-
metic operation is required. This can be determined

using benchmark programs. Based on the time for an
arithmetic operation, the time for performing an eval-
uation of the function f describing the specific ODE
system (1) to be solved can be determined. To estimate
the communication time, functions for the communi-
cation operations used are required. An expression for
the execution time of a multi-broadcast operation, for
example, has been given in Formula (14).

With this additional information, it is possible to give
a coarse estimate for the execution time of the PAB and
PABM methods on a specific target platform. As ex-
ample, Fig. 18 compares the measured and the predict-
ed execution times of data-parallel implementations of
the PAB method (left) and the PABM method (right)
on a Cray T3E system. The measurements are based
on a particular MPI implementation that reduces the
communication time by using an internal orthogonal
realization. The predicted execution times match the
measured execution times reasonably well. For the
T3E system, the deviations are usually below 12%. An
exact fitting is not possible using the runtime functions
derived, since these ignore important details of the tar-
get platform like the memory hierarchy, the availability
of multiple instruction units or the pipelining of instruc-

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 153

2 4 8 12 16 24 32 2 4 8 12 16 24 32 2 4 8 12 16 24 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

processors

tim
e

pe
r

st
ep

 in
 s

ec
on

ds
PAB-method with brusselator function for k=8 on IBM Regatta p690

n=180000 n=320000 n=500000

data parallel
task parallel
task parallel orthogonal

Fig. 17. Runtimes of the PABM method on IBM Regatta with k = 8.

tion units. Nevertheless, the runtime functions pro-
vide a rough estimate and allow a coarse comparison
of different parallel versions.

6. Related work

Several research groups have proposed models for
mixed task and data parallel executions with the goal
of obtaining parallel programs with faster execution
time and better scalability properties, see [2,22] for an
overview of systems and approaches and see [4] for a
detailed investigation of the benefits of combining task
and data parallel execution.

Many environments for mixed parallelism in scien-
tific computing are extensions of the HPF data parallel
language: see [5] for an overview. Examples of parallel
programming systems are HPJava [26], LPARX [11]
and KeLP [14]. HPJava adopts the data distribution
concepts of HPF but uses a high level SPMD program-
ming model with a fixed number of logical control
threads and includes collective communication oper-
ations encapsulated in a communication library. The
concept of processor groups is supported in the sense

that global data to be distributed over one process group
can be defined and that the program execution con-
trol can choose one of the process groups to be active.
LPARX is a parallel programming system for the de-
velopment of dynamic, nonuniform scientific computa-
tion supporting block-irregular data distributions [11].
KeLP extends LPARX to support the development of
efficient programs for hierarchical parallel computers
such as clusters of SMPs [1,5]. KeLP has been ex-
tended to KeLP-HPF which uses an SPMD program
to coordinate multiple HPF tasks and, thus, combines
regular data parallel computations in HPF with a co-
ordination layer for irregular block-structured features
on one grid [14].

Much research has been devoted to the development
of the BSP (bulk synchronous parallelism) model and
a programming library (Oxford BSP library) is avail-
able that allows the formulation of BSP programs in an
SPMD style [8,13]. NestStep extends the BSP model
by supporting group-oriented parallelism,through nest-
ing of supersteps, and a hierarchical processor group
concept [10]. NestStep is defined as a set of extensions
to programming languages like C or Java and is de-
signed for a distributed address space. It also supports

154 T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods

10 20 30 40 50 60 70 80 90 100
1

2
3

4
5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

system size

modeling of PAB-method on Cray T3E-1200

processors

ru
nt

im
e

(in
 s

ec
)

measurement
prediction

10 20 30 40 50 60 70 80 90 100
1

2
3

4
5

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

system size

modeling of PABM-method for K=4 on Cray T3E-1200

processors
ru

nt
im

e
(in

 s
ec

)

measurement
prediction

Fig. 18. Measured and predicted runtimes of the PAB-method (left) and PABM-method for K = 4 on the Cray T3E-1200.

the use of distributed shared arrays. Since it would be
too expensive to exchange all elements of such an array
at the end of each superstep, the compiler and runtime
system try to arrange prefetching of elements by those
processors that use these elements in the next super-
step. The group concept of NestStep is similar to that of
Tlib. However, the BSP-based programming model of
NestStep is quite different from the Tlib programming
model in which there is no concept of supersteps. In
particular, each communication operation takes effect
as soon as the data arrives at the receiving processors.

7. Conclusions

The realization of parallel applications using pure
data parallelism can result in efficient programs. How-
ever, applications that rely on information exchange
with collective communication operations may exhibit
scalability problems, when executed on parallel sys-
tems with larger numbers of processors. The reason
is that the execution time of collective communication
operations increases logarithmically or linearly with
the number of participating processors. In such situa-
tions it can be beneficial to employ a parallel processing
approach based on a separation of different program
parts which can then be assigned to different groups of
processors to be executed concurrently as multiproces-
sor tasks. Such an execution scheme is attractive for
applications having inherent task parallelism potential.

The parallel Adams methods discussed in this paper
offer potential method parallelism in the form of inde-
pendent stage vector computation in each iteration step
and can benefit from the M-task programming style.

However, additional collective communication is re-
quired since information has to be exchanged between
processor groups. By reordering the communication
using an orthogonal organization of disjoint processor
groups for data exchange, the communication overhead
can be significantly reduced. For the parallel Adams
methods the combination of an implementation as an
M-task program with orthogonal processor groups for
the communication phases results in the most efficient
implementation on a number of parallel platforms hav-
ing different interconnection networks. The approach
also exhibits good scalability. The experiments on dif-
ferent parallel platforms show that the implementation
as an M-task program is especially effective on parallel
platforms having small bandwidth.

The approach used for the parallel Adams method
can also be applied in other applications, particularly in
numerical mathematics. For example, parallel iterated
Runge-Kutta methods, also used for solving ODEs and
also based on the computation of independent stage
vectors, can be implemented using the same approach
of combining M-task programming with orthogonal
communication. Other applications that can benefit
from orthogonal communication are matrix-based com-
putations like LU factorization where an orthogonal
structuring of the communication leads to increased
scalability [15].

The runtime library Tlib offers convenient support to
implement M-task programs by providing operations
to create and manage processor groups and to map in-
dependent computations to these groups. Tlib also sup-
ports hierarchical subdivisions of processor groups in-
to smaller groups. Thus, Tlib can be used for the im-
plementation of divide-and-conquer algorithms where

T. Rauber and G. R̈unger / Mixed task and data parallel executions in general linear methods 155

a new level of processor groups is used for each level
of recursion. This approach has been used to devel-
op fast multi-level algorithms for matrix multiplication
that use a fixed number of recursions of the Strassen
algorithm at the top level [9].

Acknowledgment

We thank the anonymous referees for their helpful
comments. We also thank the NIC Jülich for access to
its parallel machines.

References

[1] S.B. Baden and S.J. Fink, A Programming Methodology for
Dual-Tier Multicomputers, IEEE Transactions on Software
Engineering26(3) (2000), 212–226.

[2] H. Bal and M. Haines, Approaches for Integrating Task and
Data Parallelism, IEEE Concurrency6(3) (July-August 1998),
74–84.

[3] J.C. Butcher, The Numerical Analysis of Ordinary Differential
Equations, Runge-Kutta and General Linear Methods. Wiley,
New York, 1987.

[4] S. Chakrabarti, J. Demmel and K. Yelick, Modeling the bene-
fits of mixed data and task parallelism, in: Symposium on Par-
allel Algorithms and Architecture(SPAA), 1995, pp. 74–83.

[5] S.J. Fink, A Programming Model for Block-Structured Scien-
tific Calculations on SMP Clusters, PhD thesis, University of
California, San Diego, 1998.

[6] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differ-
ential Equations I: Nonstiff Problems, Springer-Verlag, Berlin,
1993.

[7] E. Hairer and G. Wanner, Solving Ordinary Differential Equa-
tions II, Springer, 1991.

[8] M. Hill, W. McColl and D. Skillicorn, Questions and Answers
about BSP, Scientific Programming6(3) (1997), 249–274.

[9] S. Hunold, T. Rauber and G. Rünger, Multilevel Hierarchical
Matrix Multiplication on Clusters, in Proceedings of the 18th
Annual ACM International Conference on Supercomputing,
ICS’04, June 2004, 136–145.

[10] C.W. Keßler, NestStep: Nested Parallelism and Virtual Shared
Memory for the BSP model, The Journal of Supercomputing
17 (2001), 245–262.

[11] S.R. Kohn and S.B. Baden, Irregular Coarse-Grain Data Paral-
lelism under LPARX, Scientific Programming5 (1995), 185–
201.

[12] M. Kühnemann, T. Rauber and G. Rünger, Optimizing MPI
Collective Communication by Orthogonal Structures. to ap-
pear: Cluster Computing – The Journ. of Networks, Software
Tools and Applications, Special Issue on Cluster Computing
in Science and Engineering8(4) (2005), 257–279.

[13] W.F. McColl, Universal Computing, In Proceedings of the
EuroParfl96, Springer LNCS 1123 1996, 25–36.

[14] J. Merlin, S.Baden, St. Fink and B. Chapman, Multiple data
parallelsim with HPF and KeLP. J, Future Generation Com-
puter Science15(3) (1999), 393–405.

[15] T. Rauber and G. Rünger, Optimal Data Distribution for LU
Decomposition, In Proc. of the EuroPar’95, Springer LNCS
966, 1995, 391–402.

[16] T. Rauber and G. Rünger, Parallel Solution of a Schrödinger-
Poisson system, In International Conference on High-
Performance Computing and Networking, Springer LNCS
919, 1995, 697–702.

[17] T. Rauber and G. Rünger, Parallel Iterated Runge-Kutta Meth-
ods and Applications, International Journal of Supercomputer
Applications10(1) (1996), 62–90.

[18] T. Rauber and G. Rünger, Diagonal-Implicitly Iterated Runge-
Kutta Methods on Distributed Memory Machines, Int Journal
of High Speed Computing10(2) (1999), 185–207.

[19] T. Rauber and G. Rünger, A Transformation Approach to De-
rive Efficient Parallel Implementations, IEEE Transactions on
Software Engineering26(4) (2000), 315–339.

[20] T. Rauber and G. Rünger, Modelling the Runtime of Scientific
Programs on Parallel Computers, in: Proc. ICPP-Workshop
on High Performance Scientific and Engineering Computing
with Applications(HPSECA-00), Toronto, Kanada, August
2000, 307–314.

[21] T. Rauber and G. Rünger, Library Support for Hierarchical
Multi-Processor Tasks, In Proc. of the Supercomputing 2002,
Baltimore, USA, 2002. ACM/IEEE.

[22] D. Skillicorn and D. Talia, Models and languages for parallel
computation, ACM Computing Surveys30(2) (1998), 123–
169.

[23] P.J. van der Houwen and E. Messina, Parallel Adams Methods,
J of Comp and App Mathematics101 (1999), 153–165.

[24] P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta
Methods on Parallel Computers, SIAM Journal on Scientific
and Statistical Computing12(5) (1991), 1000–1028.

[25] P.J. van der Houwen, B.P. Sommeijer and W. Couzy, Embed-
ded Diagonally Implicit Runge-Kutta Algorithms on Parallel
Computers, Mathematics of Computation58(197) (January
1992), 135–159.

[26] G. Zhang, B. Carpenter, G.Fox, X. Li and Y. Wen, A high level
SPMD programming model: HPspmd and its Java language
binding, Technical report, NPAC at Syracuse University, 1998.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

