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This paper investigates potential applications of the rough sets (RS) theory and artificial neural network (ANN) method on
structural damage detection. An information entropy based discretization algorithm in RS is applied for dimension reduction
of the original damage database obtained from finite element analysis (FEA). The proposed approach is tested with a 14-bay steel
truss model for structural damage detection. The experimental results show that the damage features can be extracted efficiently
from the combined utilization of RS and ANNmethods even the volume of measurement data is enormous and with uncertainties.

1. Introduction

Structures are very vulnerable to influence like impact,
earthquake and hurricanes. Therefore it is crucial for the
decision maker to know the damage and health status of
the structure in time, so that necessary maintenance can
be taken. Recently, more and more innovative structural
damage detection techniques have been applied to the
existing structures for Structural Health Monitoring (SHM),
especially large-scale structures, and many testing methods
are nondestructive [1–3]. Attention has been drawn to how
to use the current measurement data to produce a result with
less uncertainty regardless of measurement noises and envi-
ronmental variation, such as changing temperature,moisture,
and load condition [4]. Many different approaches have
been applied to solve the inaccurate measurement problem,
for example, Sohn et al. proposed a probabilistic damage
detection methodology to reduce measurement noises [5].
Worden and Dulieu-Barton investigated the influence of
uncertainties both in practical measurement and in finite
element model of damage detection [6], and they proposed
a statistical method to resolve the inaccuracy that resulted
from the modeling and measurement errors [7]. In recent
studies, intelligent information processing techniques such as
the autoregressive integrated moving average model, linear

regression technique, ANN methods, and grey models are
introduced to SHM applications.

ANN methods have been used extensively in struc-
tural damage identification. In practice, damage indexes in
structures are firstly extracted by using signal processing
techniques such as wavelet transform and Fourier analysis;
then ANN models are built to detect structural damages
from those indexes. It has been widely accepted that the
ANN methods have helped to achieve a greater accuracy in
structural damage detection. However, ANNhas two obvious
drawbacks when applying to a large number of data [8, 9].
The first one is that training an ANNmodel with big amount
of data is time consuming, and the second one is that ANN
cannot reach an analytical solution. In consequence, a reliable
ANNmodel that can select the relevant factors automatically
from the historical data is required.

As a useful mathematical tool, RS theory applies the
unclear relation and data pattern comparison based on the
concept of an information system with indiscernible data,
where the data is uncertain or inconsistent. The character-
istics of RS theory are to create approximate descriptions of
objects for data analysis, optimization, and recognition, and it
does not need the prior knowledge.Therefore usingRS theory
can evaluate the importance of various attributes and retain
some key attributes with no additional knowledge except for
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Table 1: Decision table general form.
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the supplied data required [10]. To date, the RS approach
has been applied in many domains, such as machine fault
diagnosis, stock market forecast, decision support systems,
medical diagnosis, data filtration, and software engineering
[11–14].

The classical RS model can only be used to process
categorical features with discrete values. For the RS based
damage index selection in structural damage identifica-
tion, a discretizing algorithm is required to partition the
value domains of real-valued variables into several inter-
vals as categorical features. Many discretization methods of
numerical attributes have been proposed in recent years,
including equal distance method, equal frequency method,
and maximum entropy method [9]. However, discretiza-
tion of numerical attributes may cause information loss
because the degrees of membership of numerical values
to discretized values are not considered [15, 16]. Recently,
a discretization algorithm based on information entropy
has been reported to be a potential mechanism for the
measurement of uncertainty in RS. The information entropy
has been widely employed in RS, and different informa-
tion entropy models have been proposed. In particular,
Düntsch and Gediga presented a well-justified information
entropy model for the measurement of uncertainty in RS
[17].

A novel application of integrating RS theory and ANN
is presented in this paper for structural health monitor-
ing and damage detection particularly for problems with
large measurement data with uncertainties. The objective
of the paper is to study how the RS and ANN tech-
niques can be combined to detect structural damages.
This method consists of three stages. First, RS will be
applied to find relevant factors for structural modal param-
eters derived from structural vibration responses. Then,
relevant information will be fed to the ANN as input.
Finally, a synthesizing RS-ANN model based on the data-
fusion technique will be used to assess the structural dam-
age.

This paper is organized as follows. In Section 2, a brief
introduction of fundamental theories onRSwith information
entropy is presented, and an overview of the ANN methods
is given in Section 3. A three-stage damage detection model
using combined RS and ANN technique is presented in
Section 4. Laboratory experiment of a 14-bay truss model
will be carried out to test and validate the proposed method
in Section 5. Finally, concluding remarks are summarized in
Section 6.

2. Information Entropy Based RS Theory

RS theory was proposed by Pawlak [18] as a new math-
ematical tool for reasoning about vagueness, uncertainty,
and imprecise information. In this section, we introduce
the concepts of decision table, discretization algorithm, and
information entropy in RS theory and explain their relation-
ships.

2.1. RS Theory. We have the following.

Definition 1. Decision table is a knowledge representation
system in the application of RS theory with a quaternary
(𝑋,𝑅, 𝑉, 𝑓) set, where 𝑋 is a set of targets, and 𝑅 is a set
of attributes, 𝑅 = 𝐶 ∪ 𝐷. 𝐶 and 𝐷 are condition attribute
set and decision attribute set, respectively. 𝑉 = ∪𝑉

𝑟
is a

set of attributes’ data range. 𝑉
𝑟
is the range of attribute 𝑟.

𝑓 : 𝑋 × 𝑅 → 𝑉; 𝑓 is an information function, which assigns
the range of each attribute. Table 1 is a typical decision table.

Definition 2. 𝑋 is a domain of discourse. 𝑃 and 𝑄 are
equivalence relations of universe 𝑋; then the 𝑃-positive
region of 𝑄 is defined by the union of all the objects of 𝑈

which can be classified as the equivalence class of𝑈/𝑄 by the
knowledge 𝑈/𝑃; that is,

POS
𝑃
(𝑄) = ⋃

𝑍∈𝑋/𝑄

𝑃 (𝑍) . (1)

Definition 3. Let 𝑃 and 𝑄 be equivalence relations of 𝑈. If
(2) is satisfied, then 𝑟 ∈ 𝑃 is said to be 𝑄-dispensable in
𝑃; otherwise, 𝑟 ∈ 𝑃 is 𝑄-indispensable in 𝑃. If all 𝑟 are 𝑄-
indispensable in 𝑃, 𝑃 is said to be independent with respect
to 𝑄. Consider

POS
𝑃
(𝑄) = POS

𝑃−{𝑟}
(𝑄) . (2)

Definition 4. If 𝑆 ⊆ 𝑃 is 𝑃-independent and POS
𝑆
(𝑄) =

POS
𝑃
(𝑄) is satisfied, then 𝑆 is said to be the 𝑄-reduct of 𝑃,

that is, RED
𝑄
(𝑃), and the union of all the 𝑄-indispensable

attributes is said to be the 𝑄-core of 𝑃, that is, CORE
𝑄
(𝑃).

The relation of these two notions is expressed as

CORE
𝑄
(𝑃) = ∩RED

𝑄
(𝑃) . (3)

2.2. Discretization Algorithm Based on Information Entropy.
Let 𝑈 ⊆ 𝑋 be a subset, and the number of instances is |𝑈|.
The number of jth (𝑗 = 1, 2, . . . , 𝑟) decision attribute is 𝑘

𝑗
. Let

the information entropy of this subset be

𝐻(𝑈) = −

𝑟(𝑑)

∑

𝑗=1

𝑝
𝑗
log
2
𝑝
𝑗
, 𝑝
𝑗
=

𝑘
𝑗

|𝑈|
. (4)

In general, 𝐻(𝑈) ≥ 0. If the information entropy is small, it
reveals that several decision attributes are predominant, and
the complexity is small. All the decision attributes especially
are the same, and 𝐻(𝑈) = 0. For the breakpoint 𝑐

𝑎

𝑖
in

the example, its decision attribute is 𝑗 (𝑗 = 1, 2, . . . , 𝑟); the
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Table 2: Structural damage database.

Damage case Damage condition Natural frequency ⋅ ⋅ ⋅ Mode curvature
Bay Position Degree 1 2 3 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 13

1 2 1 5% 8.76 32.34 61.57 ⋅ ⋅ ⋅ 0.006 ⋅ ⋅ ⋅ 0.006
2 2 1 10% 8.73 32.31 61.49 ⋅ ⋅ ⋅ 0.006 ⋅ ⋅ ⋅ 0.006
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

684 13 3 95% 7.84 24.53 52.32 ⋅ ⋅ ⋅ 0.006 ⋅ ⋅ ⋅ 0.018

Table 3: Minimum property set 1 after reduction.

Damage case Damage condition Natural frequency First order strain mode
Span Position Degree 1 2 3 1 ⋅ ⋅ ⋅ 12

1 2 1 5% 8.76 32.34 61.57 0.003 ⋅ ⋅ ⋅ 0.003
2 2 1 10% 8.73 32.31 61.49 0.004 ⋅ ⋅ ⋅ 0.003
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

684 13 3 95% 7.84 24.53 52.32 0.003 ⋅ ⋅ ⋅ 0.018

Table 4: Minimum property set 2 after reduction.

Damage case Damage condition Natural frequency Second order strain mode
Span Position Degree 1 2 3 1 ⋅ ⋅ ⋅ 12

1 2 1 5% 8.76 32.34 61.57 0.009 ⋅ ⋅ ⋅ −0.006
2 2 1 10% 8.73 32.31 61.49 0.012 ⋅ ⋅ ⋅ −0.006
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

684 13 3 95% 7.84 24.53 52.32 0.006 ⋅ ⋅ ⋅ −0.036

Table 5: Minimum property set 3 after reduction.

Damage case Damage condition Natural frequency Third order strain mode
Span Position Degree 1 2 3 1 ⋅ ⋅ ⋅ 12

1 2 1 5% 8.76 32.34 61.57 0.009 ⋅ ⋅ ⋅ 0.009
2 2 1 10% 8.73 32.31 61.49 0.015 ⋅ ⋅ ⋅ 0.009
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

684 13 3 95% 7.84 24.53 52.32 0.009 ⋅ ⋅ ⋅ 0.054

Table 6: Sections of each attribute set and condition attributes.

Damage case Natural frequency Strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

Set 1, DB 3 2 5 5 6 5 7 7 5 5 7 7 5 6 5
Set 2, DB 3 2 5 9 7 8 9 10 11 11 9 9 8 7 9
Set 3, DB 3 2 5 8 7 7 8 10 10 10 10 8 7 7 8
Set 1, DP 4 10 10 3 5 2 4 4 4 4 4 4 2 5 3
Set 2, DP 4 10 10 1 2 4 4 3 5 5 3 4 4 2 1
Set 3, DP 4 10 10 1 1 1 5 4 3 3 4 5 1 1 1

Table 7: Attribute set 1 rules generation for damage bay.

Damage case Natural frequency First order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 2 3 4 3 3 2 3 3 3 4 2 3 3 3 2
2 3 2 3 5 3 3 2 2 2 3 2 2 2 3 2 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

139 3 2 2 2 3 2 2 2 3 2 2 2 3 3 5 12
140 2 1 1 2 2 2 2 2 2 2 2 2 2 2 5 12
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Table 8: Attribute set 2 rules generation for damage bay.

Damage case Natural frequency Second order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 2 3 1 1 2 3 2 3 8 6 6 6 5 6 2
2 3 2 3 1 2 2 3 2 3 8 6 6 6 5 6 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

194 3 1 1 6 5 6 6 7 7 3 3 4 3 3 1 12
195 2 1 1 6 5 6 6 7 7 3 3 5 3 4 1 12

Table 9: Attribute set 3 rules generation for damage bay.

Damage case Natural frequency Third order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 2 3 7 5 5 6 7 9 5 3 1 1 1 1 2
2 3 2 3 7 5 5 6 7 10 5 3 1 1 1 1 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

229 3 1 1 2 1 1 1 3 5 10 7 6 5 5 8 12
230 2 1 1 2 1 1 1 3 6 10 7 6 5 5 8 12

number of decision attributes less than 𝑐
𝑎

𝑖
in the set𝑈 is 𝑙𝑈

𝑗
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and the number of decision attributes greater than 𝑐
𝑎

𝑖
in the
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𝑖
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The information entropy of the breakpoint 𝑐𝑎
𝑖
to the set𝑈

is rewritten as

𝐻
𝑈
(𝑐
𝑎

𝑖
) =

𝑋𝑙


|𝑋|
𝐻 (𝑋
𝑙
) +

𝑋𝑟


|𝑋|
𝐻 (𝑋
𝑟
) . (7)

Assume that 𝐿 = {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑚
} is the equivalence

selected by decision table; the new information entropy of the
new breakpoint 𝑐 ∉ 𝑃 can be written as

𝐻(𝑐, 𝐿) = 𝐻
𝑌
1
(𝑐) + 𝐻

𝑌
2
(𝑐) + ⋅ ⋅ ⋅ + 𝐻

𝑌
𝑚
(𝑐) . (8)

Let 𝑃 be the set of the chosen breakpoints, 𝐿 is an
equivalent set divided by breakpoint set 𝑃, 𝑆 is the set of
the initial breakpoint, and 𝐻 is the information entropy of
decision table; our discretization algorithm can be expressed
as follows.

Step 1. 𝑃 = 0; 𝐿 = {𝑋}; 𝐻 = 𝐻(𝑋).

Step 2. To any 𝑐 ∈ 𝑆, calculate 𝐻(𝑐, 𝐿).

Step 3. If 𝐻 ≤ min{𝐻(𝑐, 𝐿)}, go to the end.

Step 4. Select 𝑐max into 𝑃 to make 𝐻(𝑐, 𝐿) be minimum, 𝐻 =

𝐻(𝑐, 𝐿)𝑆 = 𝑆 − {𝑐}.

Step 5. To all 𝑈 ∈ 𝐿, if 𝑐max divide the equivalence 𝑈 into 𝑋
1

and𝑋
2
, then delete𝑈 from 𝐿 and join the equivalence𝑋

1
and

𝑋
2
into 𝐿.

Step 6. If any equivalence in 𝐿 has the same decision, go to
the end. Otherwise go to Step 2.

3. Artificial Neural Network (ANN)

An artificial neural network (ANN) is an information pro-
cessing paradigm inspired by biological nervous systems
like brains. Although ANNs model the mechanism of brain,
they do not have analytical function form, and therefore
ANNs are data based instead of model based. An ANN is
usually composed of a large number of highly interconnected
processing elements (neurons) working in unison to solve
specific problems.

The ANN used in this study is arranged in three layers
of neurons, namely, the input, hidden, and output layers. The
input layers introduce the model inputs, and the middle layer
of hidden units feeds into an output layer through variable
weight connections. The ANN learns by adjusting the values
of these weights through a back-propagation algorithm that
permits error corrections to be fed through the layers. Output
layer provides the estimations of the network. An ANN
is renowned for their ability to learn and generalize from
example data, even when the data is noisy and incomplete.
This ability has led to an investigation into the application
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Table 10: Attribute set 1 rules generation for damage position.

Damage case Natural frequency First order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 10 8 2 3 1 2 2 2 2 2 2 1 3 1 1
2 3 9 7 3 1 1 2 2 2 2 2 2 1 1 1 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

251 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 3
252 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3

Table 11: Attribute set 2 rules generation for damage position.

Damage case Natural frequency Second order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 10 8 1 1 1 2 1 1 3 1 3 3 1 1 1
2 3 9 7 1 1 1 2 1 1 3 1 3 3 1 1 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

253 1 1 1 1 1 3 3 1 3 1 1 2 2 1 1 3
254 1 1 1 1 1 3 3 1 3 1 1 3 3 1 1 3

of ANNs to automated knowledge acquisition. They also
help to discern patterns among input data, require fewer
assumptions, and achieve a higher degree of prediction
accuracy.

4. The Hybrid Method

The common advantage of RS and ANN is that they do not
need any additional information about data like probability in
statistics or grade of membership in fuzzy-set theory [19]. RS
has proved to be very effective inmany practical applications.
However, in RS theory, the deterministic mechanism for
the description of error is too straightforward [20], and
therefore the rules generated by RS are often unstable and
have low classification accuracies. In consequence, RS cannot
identify structural damage with a high accuracy. ANN is
generally considered to be the most powerful classifier for
low classification-error rates and robustness to noise. The
knowledge of ANN is buried in their structures and weights
[21, 22]. It is often difficult to extract rules from a trained
ANN. The combination of RS and ANN is very natural for
their complementary features.

One typical approach is to use the RS approach as a
preprocessing tool for the ANN [12, 23]. RS theory pro-
vides useful techniques to reduce irrelevant and redundant
attributes from a large database with various attributes. ANN
has the ability to approach any complex functions and possess
a good robustness to noise. In practice, there are often vast
amounts of sensor data that are typically updated every few
minutes in SHM system. One of the most important issues of
RS theory is the reduction in dimension of the decision table
in terms of both attributes and objects, thereby reducing the
redundancy.

This paper will develop the structural damage model
by using the RS methodology to reduce the dimension of
the structural damage database before applying the ANN

method. Firstly, the following reductions can be derived
based on the RS theory: attribute reduction, object reduction,
and rule generation. Object reduction involves reducing the
rows of the database in terms of redundant objects (rows).
Rule generation involves the generation of If-Then rules from
the database. Then the ANN is trained to learn in order to
predict the damage conditions.

5. Experimental Validation

5.1. Test Structure. The test structure is a steel truss with 14
bays, shown in Figure 1. Each bay is 585mm long, 490mm
wide, and 350mm high. Totally, the steel truss has 52
longitudinal rods, 50 crosswise rods, and 54 diagonal rods.
Each rod is forged with steel pipe. The section of the rods is
hollow circular with an outer diameter of 18mm, and inner
diameter of 12mm. Node board uses equilateral angle steel.
Rods are bolted on the node board. Damages of the structure
are simulated by two kinds of reduced thickness rods. One is
2mm thick, and the other is 1mm thick.

Accelerometers are mounted on each node of the struc-
ture as shown in Figure 2. The sampling interval of measure-
ments retrieved from the data acquisition system is 5min.

5.2. Establishment of Damage Database. A FE model was
built to simulate the test structure as shown in Figure 3. In
this study, three types of damage conditions are investigated,
respectively, including damage bay, damage position, and
damage degree. Since the end bays have no upper rod, the
damage bay starts from the second span. Thus 12 bays are
assumed to be damaged. In these bays, damage positions in
upper rod, diagonal rod, and bottom rod are all known. For
damage degree, we simulate the stiffness from 95% to 5%
with the interval of 5%. In total there are 19 different kinds of
damage degrees. Combining these three damage conditions,
we have 684 damage conditions in total.
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Table 12: Attribute set 3 rules generation for damage position.

Damage case Natural frequency Third order strain mode
1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

1 3 10 8 1 1 1 4 4 3 3 1 1 1 1 1 1
2 3 9 7 1 1 1 4 4 3 3 1 1 1 1 1 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

273 3 2 3 1 1 1 1 1 3 3 4 4 1 1 1 3
274 2 2 3 1 1 1 1 2 3 3 4 4 1 1 1 3

Table 13: Damage identification by using attribute set 1.

Expectation Bay Position Degree Recognition Bay Position Degree
1 7 upper 28.8% 1 7.32 1.28 15.96%
2 7 upper 62.2% 2 6.93 1.02 48.53%
3 7 diagonal 28.8% 3 7.23 1.97 30.68%
4 7 diagonal 62.2% 4 7.08 2.01 57.75%
5 7 bottom 28.8% 5 7.11 3.33 10.84%
6 7 bottom 62.2% 6 7.07 3.13 20.68%
7 5 upper 28.8% 7 5.12 1.17 40.52%
8 5 upper 62.2% 8 4.88 0.74 63.84%
9 5 diagonal 28.8% 9 4.53 1.45 82.56%
10 5 diagonal 62.2% 10 4.54 1.15 35.53%
11 5 bottom 28.8% 11 5.16 2.63 68.45%
12 5 bottom 62.2% 12 5.22 3.04 72.34%

Figure 1: Test structure.

According to the FEA results, 13 structural damage
indexes are extracted, including the first three natural fre-
quencies, the first three strain modes, the first three vibration
mode shapes, modal assurance criterion (MAC), coordinate
modal assurance criterion (COMAC), curvature mode, and
natural frequency square. These indexes, together with dam-
age conditions, form a 684 rows and 124 columns structural
damage database (decision table) in this study. Table 2 lists
part of the database. Note that in the damage position
column, number 1, 2, and 3 represent the upper rod, diagonal
rod, and bottom rod, respectively.

Figure 2: Accelerometer.

5.3. Attribute Reduction. In this section, application of RS to
data reduction involves three steps (see below).

5.3.1. Step 1: Reduction of Decision Table. The damage
database is reduced in batches as shown in Tables 3, 4, and
5. From the reduced database, it can be seen that the data
volume has been greatly reduced. The core of the database
is the first three natural frequencies. In order to ensure
the integrity of the damage indexes, less reduced condition
attributes are remained. There are 3 minimum properties in
total. They are the first three frequencies with the first order
strainmode (set 1), the first three frequencies with the second
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Table 14: Damage identification by using attribute set 2.

Expectation Bay Position Degree Recognition Bay Position Degree
1 7 upper 28.8% 1 6.24 1.34 13.41%
2 7 upper 62.2% 2 7.42 1.34 35.42%
3 7 diagonal 28.8% 3 7.14 1.84 42.52%
4 7 diagonal 62.2% 4 6.73 1.93 45.14%
5 7 bottom 28.8% 5 7.24 2.04 85.31%
6 7 bottom 62.2% 6 7.21 3.54 51.96%
7 5 upper 28.8% 7 4.76 1.42 45.15%
8 5 upper 62.2% 8 4.62 0.67 13.56%
9 5 diagonal 28.8% 9 5.25 2.02 41.08%
10 5 diagonal 62.2% 10 5.11 1.44 68.28%
11 5 bottom 28.8% 11 5.62 3.52 49.31%
12 5 bottom 62.2% 12 6.21 3.13 25.19%

Table 15: Damage identification by using attribute set 3.

Expectation Bay Position Degree Recognition Bay Position Degree
1 7 upper 28.8% 1 7.22 1.17 58.74%
2 7 upper 62.2% 2 5.82 0.74 20.84%
3 7 diagonal 28.8% 3 6.81 1.88 66.68%
4 7 diagonal 62.2% 4 7.03 2.35 59.52%
5 7 bottom 28.8% 5 6.81 2.63 60.39%
6 7 bottom 62.2% 6 7.59 3.04 63.84%
7 5 upper 28.8% 7 4.84 1.14 62.56%
8 5 upper 62.2% 8 5.04 1.36 83.15%
9 5 diagonal 28.8% 9 5.14 2.44 39.16%
10 5 diagonal 62.2% 10 5.15 1.97 43.18%
11 5 bottom 28.8% 11 4.91 3.74 25.44%
12 5 bottom 62.2% 12 4.70 3.02 72.82%

Figure 3: Test structure FE model.

order strain mode (set 2), and the first three frequencies with
the third order strain mode (set 3), respectively.

5.3.2. Step 2: Discretization of Reduced Decision Table.
Through the discretization of the three attribute sets, a set
of reduced decision tables can be obtained. The attribute

sets (1, 2, and 3) are discretized according to the decision
attributes, the damage bay (DB), and the damage position
(DP), respectively.

Table 6 summarizes the intervals of each decision
attribute resulted from the discretization of the three attribute
sets. It is found that, for the decision attribute of damage
bay, the intervals are much more in the strain mode con-
dition attributes than those in natural frequency condition
attributes. While for the decision attribute of damage posi-
tion, the intervals are much more at the natural frequency
condition attributes than those in strain mode condition
attributes. The result demonstrates that the strain mode has
moreweights in identification of structural damage bay, while
the natural frequency has more weights in identification of
structural damage position.

5.3.3. Step 3: Rules Generation. Rules generation is a key
step in the RS analysis. In this study, the rules are generated
from the discretized decision table in the form of knowledge.
According to the exclusive rule extraction method, the same
condition and decision attributes are removed. Therefore,
simplified decision tables are obtained as shown in Tables 7, 8,
9, 10, 11, and 12. These decision tables demonstrate that every
single damage case is unique.
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From Table 7 to Table 12, it can be seen that the rows of
each table are decreased to less than half of the original ones
after rules generation. Each attribute set has its own rule of
damage identification. The values of rule generation result
for damage bay are less than those for damage position on
average. It illustrates that the identification of damage bay is
easier than that of damage position.

5.4. Identification of Structure Damage Using ANN. In this
section, back-propagation ANN is applied to the reduced
database for further identification of structural damages.The
reduced database in terms of attributes can be described as
the best subset of variables which describe the structural
damage database completely. This reduction in number of
attributes decreases the time of decision-making process
and consequently reduces the cost of efficiency analysis. As
mentioned above, three attribute sets are chosen as the input,
and three damage conditions are chosen as the output to train
the ANN model. The back-propagation network computes
theweights in a recurrencemode from the last layer backward
to the first layer.

Using real data obtained from the experimental testing,
we put the experimentalmeasurements into the trainedANN
input layer to identify the structural damage. The results in
Tables 13, 14, and 15 show that the RS method determines the
group of input variables and generates the structural damage
rule sets before using ANN. While the performance of the
ANN model on identification of damaged degree is not very
good, the hybrid method proposed in the paper is helpful to
construct a good identification model for structural damage,
offering an excellent performance of identifying the damaged
bay and damaged position of the test structure.

6. Conclusions

In this paper, a novel method of combining RS and ANN
methods is applied to the identification of structural damages.
This study uses RS theory and integrates the inductive
reduction algorithm and discretization algorithm based on
information entropy to improve the ANN model for struc-
tural damage identification.Through a detailed experimental
analysis of a 14-bay truss structure, this paper presents and
discusses the conversion of damage index to RS object,
predicting variables selection, removal of redundant from
information table, and rules generation. The experiments
data is preprocessed and reduced by RS before using ANN for
identifying the damages of truss structure. The identification
accuracy is mainly attributed to RS since it can remove
redundant attributes without any classification information
loss. Furthermore, the improvement in tolerance and accu-
racy with the proposed method shows that there is a great
potential for integration of various techniques to improve the
performance of an individual technique.
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