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Some fixed point results are given for a class ofMeir-Keeler contractivemaps acting onmetric spaces endowedwith locally transitive
relations. Technical connections with the related statements due to Berzig et al. (2014) are also being discussed.

1. Introduction

Let 𝑋 be a nonempty set. Call the subset 𝑌 of 𝑋, almost-
singleton (in short: asingleton), provided 𝑦

1
, 𝑦
2

∈ 𝑌 implies
𝑦
1

= 𝑦
2
and singleton if, in addition, 𝑌 is nonempty; note

that, in this case, 𝑌 = {𝑦}, for some 𝑦 ∈ 𝑋. Take a metric 𝑑 :

𝑋 × 𝑋 → 𝑅
+

:= [0,∞[ over 𝑋, as well as a self-map
𝑇 ∈ F(𝑋). (Here, for each couple 𝐴, 𝐵 of nonempty sets,
F(𝐴, 𝐵) denotes the class of all functions from 𝐴 to 𝐵; when
𝐴 = 𝐵, we writeF(𝐴) in place ofF(𝐴, 𝐴)). Denote Fix(𝑇) =

{𝑥 ∈ 𝑋; 𝑥 = 𝑇𝑥}; each point of this set is referred to as fixed
under 𝑇. Concerning the existence and uniqueness of such
points, a basic result is the 1922 one due to Banach [1]. Call
the self-map 𝑇, (𝑑; 𝛼)-contractive (where 𝛼 ≥ 0), if

(a01) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 1. Assume that 𝑇 is (𝑑; 𝛼)-contractive, for some 𝛼 ∈

[0, 1[. In addition, let 𝑋 be 𝑑-complete. Then,

(i) Fix(𝑇) is a singleton, {𝑧};

(ii) 𝑇
𝑛
𝑥
𝑑

󳨀→ 𝑧 as 𝑛 → ∞, for each 𝑥 ∈ 𝑋.

This result (referred to as: Banach’s fixed point theorem)
found some basic applications to the operator equations
theory. As a consequence, amultitude of extensions for it were
proposed. Here, we will be interested in the relational way of
enlargingTheorem 1, based on contractive conditions like

(a02) 𝐹(𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦),
𝑑(𝑦, 𝑇𝑥)) ≤ 0, for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥R𝑦,

where 𝐹 : 𝑅
6

+
→ 𝑅 is a function, andR is a relation over 𝑋.

Note that, whenR is the trivial relation (i.e.,R = 𝑋 × 𝑋), a
large list of such contractive maps is provided in Rhoades [2].
Further, whenR is an order on𝑋, a first result is the 1986 one
obtained by Turinici [3], in the realm of ordered metrizable
uniform spaces. Two decades after, this fixed point statement
was rediscovered (in the orderedmetrical setting) by Ran and
Reurings [4]; see also Nieto and Rodŕıguez-López [5]; and,
since then, the number of such results increased rapidly. On
the other hand, when R is an amorphous relation over 𝑋,
an appropriate statement of this type is the 2012 one due to
Samet and Turinici [6]. The “intermediary” particular case
ofR being finitely transitive was recently obtained by Berzig
and Karapınar [7], under a class of (𝛼𝜓, 𝛽𝜑)-contractive
conditions suggested by Popescu [8]. It is our aim in the
following to give further extensions of these results, when

(i) the contractive conditions are taken after the model
in Meir and Keeler [9];

(ii) the finite transitivity ofR is being assured in a “local”
way.

Further aspects will be delineated elsewhere.

2. Preliminaries

Throughout this exposition, the ambient axiomatic system
is Zermelo-Fraenkel’s (abbreviated ZF). In fact, the reduced
system (ZF-AC + DC) will suffice; here, (AC) stands for the
Axiomof Choice and (DC) for theDependent Choice Principle.
The notations and basic facts to be used in this reduced
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system are standard. Some important ones are described
below.

(A) Let 𝑋 be a nonempty set. By a relation over 𝑋, we
mean any nonempty part R ⊆ 𝑋 × 𝑋. For simplicity, we
sometimes write (𝑥, 𝑦) ∈ R as 𝑥R𝑦. Note that R may be
regarded as a mapping between 𝑋 and P(𝑋) (= the class
of all subsets in 𝑋). In fact, denote for 𝑥 ∈ 𝑋: 𝑋(𝑥,R) =

{𝑦 ∈ 𝑋; 𝑥R𝑦} (the section ofR through 𝑥); then, the desired
mapping representation is [R(𝑥) = 𝑋(𝑥,R), 𝑥 ∈ 𝑋].

Among the classes of relations to be used, the following
ones (listed in an “increasing” scale) are important for us:

(P0) R is amorphous; that is, it has no specific properties
at all;

(P1) R is an order; that is, it is reflexive [𝑥R𝑥, ∀𝑥 ∈

𝑋], transitive [𝑥R𝑦 and 𝑦R𝑧 imply 𝑥R𝑧], and
antisymmetric [𝑥R𝑦 and 𝑦R𝑥 imply 𝑥 = 𝑦];

(P2) R is a quasiorder; that is, it is reflexive and transitive;
(P3) R is transitive (see above).

A basic ordered structure is (𝑁, ≤); here, 𝑁 = {0, 1, . . .} is
the set of natural numbers and (≤) is defined as 𝑚 ≤ 𝑛 if and
only if 𝑚 + 𝑝 = 𝑛, for some 𝑝 ∈ 𝑁. For each 𝑛 ∈ 𝑁(1, ≤),
let 𝑁(𝑛, >) := {0, . . . , 𝑛 − 1} stand for the initial interval (in
𝑁) induced by 𝑛. Any set 𝑃 with 𝑃 ∼ 𝑁 (in the sense: there
exists a bijection from 𝑃 to𝑁) will be referred to as effectively
denumerable. In addition, given some natural number 𝑛 ≥ 1,
any set 𝑄 with 𝑄 ∼ 𝑁(𝑛, >) will be said to be 𝑛-finite; when 𝑛

is generic here, we say that𝑄 is finite. Finally, the (nonempty)
set 𝑌 is called (at most) denumerable if and only if it is either
effectively denumerable or finite.

Given the relationsR,S over𝑋, define their product R∘

S as

(b01) (𝑥, 𝑧) ∈ R ∘ S if there exists 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ R,
(𝑦, 𝑧) ∈ S.

This allows us to introduce the powers of a relationR as

(b02) R0 = I,R𝑛+1 = R𝑛 ∘ R, 𝑛 ∈ 𝑁.

(Here, I = {(𝑥, 𝑥); 𝑥 ∈ 𝑋} is the identical relation over 𝑋).
The following properties will be useful in the sequel:

R
𝑚+𝑛

= R
𝑚

∘ R
𝑛
, (R

𝑚
)
𝑛

= R
𝑚𝑛

, ∀𝑚, 𝑛 ∈ 𝑁. (1)

Given 𝑘 ∈ 𝑁(2, ≤), let us say that R is 𝑘-transitive, if
R𝑘 ⊆ R; clearly, transitive is identical with 2-transitive. We
may now complete the increasing scale above as

(P4) R is finitely transitive; that is, R is 𝑘-transitive for
some 𝑘 ≥ 2;

(P5) R is locally finitely transitive; that is, for each (effec-
tively) denumerable subset 𝑌 of 𝑋, there exists 𝑘 =

𝑘(𝑌) ≥ 2, such that the restriction to 𝑌 of R is 𝑘-
transitive;

(P6) R is trivial; that is,R = 𝑋×𝑋; hence, [𝑥R𝑦, ∀𝑥, 𝑦 ∈

𝑋].

Concerning these concepts, the following propertywill be
useful. Call the sequence (𝑧

𝑛
; 𝑛 ≥ 0) in 𝑋, R-ascending, if

𝑧
𝑖
R𝑧
𝑖+1

for all 𝑖 ≥ 0.

Lemma 2. Let theR-ascending sequence (𝑧
𝑛
; 𝑛 ≥ 0) in𝑋 and

the natural number 𝑘 ≥ 2 be such that

(b03) R is 𝑘-transitive on 𝑍 := {𝑧
𝑛
; 𝑛 ≥ 0}.

Then, necessarily,

(∀𝑟 ≥ 0) : [(𝑧
𝑖
, 𝑧
𝑖+1+𝑟(𝑘−1)

) ∈ R, ∀𝑖 ≥ 0] . (2)

Proof. We will use the induction with respect to 𝑟. First, by
the choice of our sequence, (𝑧

𝑖
, 𝑧
𝑖+1

) ∈ R; whence, the case
𝑟 = 0 holds. Moreover, by definition, (𝑧

𝑖
, 𝑧
𝑖+𝑘

) ∈ R𝑘; and
this, along with the 𝑘-transitive property, gives (𝑧

𝑖
, 𝑧
𝑖+𝑘

) ∈ R;
hence, the case of 𝑟 = 1 holds too. Suppose that this property
holds for some 𝑟 ≥ 1; we claim that it holds as well for 𝑟 + 1.
In fact, let 𝑖 ≥ 0 be arbitrary fixed. Again by the choice of our
sequence, (𝑧

𝑖+1+𝑟(𝑘−1)
, 𝑧
𝑖+1+(𝑟+1)(𝑘−1)

) ∈ R𝑘−1, so that, by the
inductive hypothesis (and properties of relational product):

(𝑧
𝑖
, 𝑧
𝑖+1+(𝑟+1)(𝑘−1)

) ∈ R ∘ R
𝑘−1

= R
𝑘
; (3)

and this, along with the 𝑘-transitive condition, gives (𝑧
𝑖
,

𝑧
𝑖+1+(𝑟+1)(𝑘−1)

) ∈ R. The proof is thereby complete.

(B) Let (𝑋, 𝑑) be a metric space. We introduce a 𝑑-
convergence and 𝑑-Cauchy structure on 𝑋 as follows. By a
sequence in 𝑋, we mean any mapping 𝑥 : 𝑁 → 𝑋. For
simplicity reasons, it will be useful to denote it as (𝑥(𝑛); 𝑛 ≥ 0)

or (𝑥
𝑛
; 𝑛 ≥ 0); moreover, when no confusion can arise, we

further simplify this notation as (𝑥(𝑛)) or (𝑥
𝑛
), respectively.

Also, any sequence (𝑦
𝑛

:= 𝑥
𝑖(𝑛)

; 𝑛 ≥ 0) with 𝑖(𝑛) → ∞ as
𝑛 → ∞ will be referred to as a subsequence of (𝑥

𝑛
; 𝑛 ≥ 0).

Given the sequence (𝑥
𝑛
) in 𝑋 and the point 𝑥 ∈ 𝑋, we say

that (𝑥
𝑛
), 𝑑-converges to 𝑥 (written as: 𝑥

𝑛

𝑑

󳨀→ 𝑥) provided
𝑑(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞; that is,

∀𝜀 > 0, ∃𝑖 = 𝑖 (𝜀) : 𝑖 ≤ 𝑛 󳨐⇒ 𝑑 (𝑥
𝑛
, 𝑥) < 𝜀. (4)

The set of all such points 𝑥 will be denoted lim
𝑛
(𝑥
𝑛
); note

that it is an asingleton, because 𝑑 is triangular symmetric;
if lim

𝑛
(𝑥
𝑛
) is nonempty, then (𝑥

𝑛
) is called 𝑑-convergent.

We stress that the introduced convergence concept ( 𝑑󳨀→) does
match the standard requirements in Kasahara [10]. Further,
call the sequence (𝑥

𝑛
), 𝑑-Cauchy when 𝑑(𝑥

𝑚
, 𝑥
𝑛
) → 0 as

𝑚, 𝑛 → ∞, 𝑚 < 𝑛; that is,

∀𝜀 > 0, ∃𝑗 = 𝑗 (𝜀) : 𝑗 ≤ 𝑚 < 𝑛 󳨐⇒ 𝑑 (𝑥
𝑚
, 𝑥
𝑛
) < 𝜀. (5)

As 𝑑 is triangular symmetric, any 𝑑-convergent sequence
is 𝑑-Cauchy too; but, the reciprocal is not in general true.
Concerning this aspect, note that any 𝑑-Cauchy sequence
(𝑥
𝑛
; 𝑛 ≥ 0) is 𝑑-semi-Cauchy; that is,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) 󳨀→ 0 (hence, 𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑖

) 󳨀→ 0, ∀𝑖 ≥ 1) ,

as 𝑛 󳨀→ ∞.

(6)

But the reciprocal is not in general true.
The introduced concepts allow us to give a useful prop-

erty.
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Lemma 3. Themapping (𝑥, 𝑦) 󳨃→ 𝑑(𝑥, 𝑦) is 𝑑-Lipschitz, in the
sense

󵄨󵄨󵄨󵄨𝑑 (𝑥, 𝑦) − 𝑑 (𝑢, V)󵄨󵄨󵄨󵄨 ≤ 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) ,

∀ (𝑥, 𝑦) , (𝑢, V) ∈ 𝑋 × 𝑋.

(7)

As a consequence, this map is 𝑑-continuous; that is,

𝑥
𝑛

𝑑

󳨀→ 𝑥, 𝑦
𝑛

𝑑

󳨀→ 𝑦 imply 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) 󳨀→ 𝑑 (𝑥, 𝑦) .

(8)

The proof is immediate, by the usual properties of the
ambient metric 𝑑(⋅, ⋅); we do not give details.

(C) Let (𝑋, 𝑑) be a metric space; and let R ⊆ 𝑋 × 𝑋

be a (nonempty) relation over 𝑋; the triple (𝑋, 𝑑,R) will be
referred to as a relational metric space. Further, take some𝑇 ∈

F(𝑋). Call the subset 𝑌 of 𝑋, R-almost-singleton (in short:
R-asingleton) provided 𝑦

1
, 𝑦
2
∈ 𝑌, 𝑦

1
R𝑦
2

⇒ 𝑦
1
= 𝑦
2
and

R-singleton when, in addition, 𝑌 is nonempty. We have to
determine circumstances under which Fix(𝑇) is nonempty;
and, if this holds, to establish whether 𝑇 is fix-R-asingleton
(i.e., Fix(𝑇) is R-asingleton) or, equivalently, 𝑇 is fix-R-
singleton (in the sense: Fix(𝑇) isR-singleton); to do this, we
start from the working hypotheses:

(b04) 𝑇 is R-semi-progressive: 𝑋(𝑇,R) := {𝑥 ∈ 𝑋; 𝑥R
𝑇𝑥} ̸= 0;

(b05) 𝑇 isR-increasing: 𝑥R𝑦 implies 𝑇𝑥R𝑇𝑦.

The basic directions under which the investigations be
conducted are described by the list below, comparable with
the one in Turinici [11]:

(2a) We say that 𝑇 is a Picard operator (modulo (𝑑,R)) if,
for each 𝑥 ∈ 𝑋(𝑇,R), (𝑇𝑛𝑥; 𝑛 ≥ 0) is 𝑑-convergent.

(2b) We say that 𝑇 is a strong Picard operator (modulo
(𝑑,R)) when, for each 𝑥 ∈ 𝑋(𝑇,R), (𝑇𝑛𝑥; 𝑛 ≥ 0)

is 𝑑-convergent and lim
𝑛
(𝑇
𝑛
𝑥) ∈ Fix(𝑇).

(2c) We say that 𝑇 is a globally strong Picard operator
(modulo (𝑑,R)) when it is a strong Picard operator
(modulo (𝑑,R)) and 𝑇 is fix-R-asingleton (hence,
fix-R-singleton).

The sufficient (regularity) conditions for such properties
are being founded on ascending orbital concepts (in short: (a-
o)-concepts). Remember that the sequence (𝑧

𝑛
; 𝑛 ≥ 0) in 𝑋

is called R-ascending, if 𝑧
𝑖
R𝑧
𝑖+1

for all 𝑖 ≥ 0; further, let us
say that (𝑧

𝑛
; 𝑛 ≥ 0) is 𝑇-orbital, when it is a subsequence of

(𝑇
𝑛
𝑥; 𝑛 ≥ 0), for some𝑥 ∈ 𝑋; the intersection of these notions

is just the precise one.

(2d) Call 𝑋, (a-o,𝑑)-complete, provided (for each (a-o)-
sequence) 𝑑-Cauchy ⇒ 𝑑-convergent.

(2e) We say that 𝑇 is (a-o, 𝑑)-continuous, if ((𝑧
𝑛
)=(a-o)-

sequence and 𝑧
𝑛

𝑑

󳨀→ 𝑧) imply 𝑇𝑧
𝑛

𝑑

󳨀→ 𝑇𝑧.
(2f) CallR, (a-o,𝑑)-almost-self-closed, if: whenever the (a-

o)-sequence (𝑧
𝑛
; 𝑛 ≥ 0) in 𝑋 and the point 𝑧 ∈ 𝑋

fulfill 𝑧
𝑛

𝑑

󳨀→ 𝑧, there exists a subsequence (𝑤
𝑛

:=

𝑧
𝑖(𝑛)

; 𝑛 ≥ 0) of (𝑧
𝑛
; 𝑛 ≥ 0) with 𝑤

𝑛
R𝑧, for all 𝑛 ≥ 0.

When the orbital properties are ignored, these conven-
tions give us ascending notions (in short: a-notions). On
the other hand, when the ascending properties are ignored,
the same conventions give us orbital notions (in short: o-
notions).The list of these is obtainable from the previous one;
so, further details are not needed. Finally, whenR = 𝑋 × 𝑋,
the list of such notions is comparable with the one in Rus
([12], Ch 2, Section 2.2): because, in this case, 𝑋(𝑇,R) = 𝑋.

3. Meir-Keeler Contractions

Let (𝑋, 𝑑,R) be a relational metric space; and let 𝑇 be
a self-map of 𝑋, supposed to be R-semi-progressive and
R-increasing. The basic directions and sufficient regularity
conditions under which the problem of determining the
fixed points of 𝑇 is to be solved were already listed. As a
completion of them, we must formulate the specific metrical
contractive conditions upon our data. These, essentially,
consist in a “relational” variant of the Meir-Keeler condition
[9]. Assume that

(c01) R is nonidentical: [R̃ := R \ I is nonempty].

Note that, by definition, the introduced relation writes

(c02) 𝑥R̃𝑦 if and only if [𝑥R𝑦 and 𝑥 ̸= 𝑦];

so, R̃ is irreflexive [𝑥R̃𝑥 is false, for each 𝑥 ∈ 𝑋]. Denote for
𝑥, 𝑦 ∈ 𝑋

(c03) 𝐴
1
(𝑥, 𝑦) = 𝑑(𝑥, 𝑦), 𝐵

1
(𝑥, 𝑦) = diam{𝑥, 𝑇𝑥, 𝑦, 𝑇𝑦},

𝐴
2
(𝑥, 𝑦) = (1/2)[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)],

𝐴
3
(𝑥, 𝑦) = max{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)},

𝐴
4
(𝑥, 𝑦) = (1/2)[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑇𝑥, 𝑦)].

Then, let us introduce the functions

(c04) 𝐵
2
= max{𝐴

1
, 𝐴
2
}, 𝐵
3
= max{𝐴

1
, 𝐴
3
}, 𝐵
4
= max{𝐴

1
,

𝐴
4
},

𝐶
1
= max{𝐴

1
, 𝐴
2
, 𝐴
4
}, 𝐶
2
= max{𝐴

1
, 𝐴
3
, 𝐴
4
},

G = {𝐴
1
, 𝐵
2
, 𝐵
3
, 𝐵
4
, 𝐶
1
, 𝐶
2
}, G
1

= {𝐴
1
, 𝐵
2
, 𝐵
4
, 𝐶
1
},

G
2
= {𝐵
3
, 𝐶
2
}.

Note that, for each 𝐺 ∈ G, we have

𝐴
1
(𝑥, 𝑦) ≤ 𝐺 (𝑥, 𝑦) ≤ 𝐵

1
(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (9)

The former of these will be referred to as 𝐺 is sufficient; note
that, by the properties of 𝑑, we must have

𝑥, 𝑦 ∈ 𝑋, 𝑥R̃𝑦 󳨐⇒ 𝐺(𝑥, 𝑦) > 0. (10)

And the latter of these means that 𝐺 is diameter bounded.
Given 𝐺 ∈ G, we say that 𝑇 is Meir-Keeler (𝑑,R; 𝐺)-

contractive, if

(c05) 𝑥R̃𝑦 implies 𝑑(𝑇𝑥, 𝑇𝑦) < 𝐺(𝑥, 𝑦), expressed as 𝑇 is
strictly (𝑑,R; 𝐺)-nonexpansive;

(c06) for all 𝜀 > 0, ∃𝛿 > 0: [𝑥R̃𝑦, 𝜀 < 𝐺(𝑥, 𝑦) < 𝜀 + 𝛿]
⇒ 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜀, expressed as𝑇 has theMeir-Keeler
property (modulo (𝑑,R; 𝐺)).
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Note that, by the former of these, the Meir-Keeler property
may be written as

(c07) for all 𝜀 > 0, ∃𝛿 > 0: [𝑥R̃𝑦, 𝐺(𝑥, 𝑦) < 𝜀 + 𝛿] ⇒

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜀.

In the following, two basic examples of such contractions
will be given.

(A) Let F(𝑟𝑒)(𝑅
+
) stand for the class of all 𝜑 ∈ F(𝑅

+
)

with the (strong) regressive property: [𝜑(0) = 0; 𝜑(𝑡) < 𝑡,
for all 𝑡 > 0]. We say that 𝜑 ∈ F(𝑟𝑒)(𝑅

+
) is Meir-Keeler

admissible, if

(c08) for all 𝛾 > 0, ∃𝛽 ∈]0, 𝛾[, (∀𝑡): 𝛾 ≤ 𝑡 < 𝛾 + 𝛽 ⇒

𝜑(𝑡) ≤ 𝛾; or, equivalently: for all 𝛾 > 0, ∃𝛽 ∈]0, 𝛾[,
(∀𝑡): 0 ≤ 𝑡 < 𝛾 + 𝛽 ⇒ 𝜑(𝑡) ≤ 𝛾.

Now, given 𝐺 ∈ G, 𝜑 ∈ F(𝑅
+
), call 𝑇, (𝑑,R; 𝐺, 𝜑)-

contractive, if

(c09) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝐺(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈ 𝑋, 𝑥R̃𝑦.

Lemma 4. Assume that 𝑇 is (𝑑,R; 𝐺, 𝜑)-contractive, where
𝜑 ∈ F(𝑟𝑒)(𝑅

+
) is Meir-Keeler admissible. Then, 𝑇 is Meir-

Keeler (𝑑,R; 𝐺)-contractive.

Proof. (i) Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥R̃𝑦. The contractive
condition, and regressiveness of 𝜑, yield 𝑑(𝑇𝑥, 𝑇𝑦) < 𝐺(𝑥, 𝑦),
so that, 𝑇 is strictly (𝑑,R; 𝐺)-nonexpansive.

(ii) Let 𝜀 > 0 be arbitrary fixed; and 𝛿 ∈]0, 𝜀[ be the
number assured by theMeir-Keeler admissible property of 𝜑.
Further, let𝑥, 𝑦 ∈ 𝑋be such that𝑥R̃𝑦 and 𝜀 < 𝐺(𝑥, 𝑦) < 𝜀+𝛿.
By the contractive condition and admissible property,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝐺 (𝑥, 𝑦)) ≤ 𝜀, (11)

so that 𝑇 has the Meir-Keeler property (modulo (𝑑,R; 𝐺)).

Some important classes of such functions are given below.

(I) For any 𝜑 ∈ F(𝑟𝑒)(𝑅
+
) and any 𝑠 ∈ 𝑅

0

+
:=]0,∞[, put

(c10) Λ
+
𝜑(𝑠) = inf

𝜀>0
Φ(𝑠+)(𝜀), where Φ(𝑠+)(𝜀) =

sup𝜑(]𝑠, 𝑠 + 𝜀[);
(c11) Λ

+
𝜑(𝑠) = max{𝜑(𝑠), Λ

+
𝜑(𝑠)}.

By this very definition, we have the representation (for all 𝑠 ∈

𝑅
0

+
)

Λ
+
𝜑 (𝑠) = inf

𝜀>0

Φ [𝑠+] (𝜀) ,

where Φ [𝑠+] (𝜀) = sup𝜑 ([𝑠, 𝑠 + 𝜀[) .
(12)

From the regressive property of 𝜑, these limit quantities are
finite; precisely,

0 ≤ 𝜑 (𝑠) ≤ Λ
+
𝜑 (𝑠) ≤ 𝑠, ∀𝑠 ∈ 𝑅

0

+
. (13)

Call 𝜑 ∈ F(𝑟𝑒)(𝑅
+
), Boyd-Wong admissible, if

(c12) Λ
+
𝜑(𝑠) < 𝑠 (or, equivalently: Λ

+
𝜑(𝑠) < 𝑠), for all 𝑠 >

0.

(This convention is related to the developments in Boyd
and Wong [13]; we do not give details). In particular, 𝜑 ∈

F(𝑟𝑒)(𝑅
+
) is Boyd-Wong admissible provided it is upper

semicontinuous at the right on 𝑅
0

+
:

Λ
+
𝜑 (𝑠) = 𝜑 (𝑠) ,

(or, equivalently : Λ
+
𝜑 (𝑠) ≤ 𝜑 (𝑠)) ,

∀𝑠 ∈ 𝑅
0

+
.

(14)

Note that this is fulfilled when 𝜑 is continuous at the right on
𝑅
0

+
; for, in such a case, Λ

+
𝜑(𝑠) = 𝜑(𝑠), for all 𝑠 ∈ 𝑅

0

+
.

(II) Call 𝜑 ∈ F(𝑟𝑒)(𝑅
+
), Matkowski admissible [14], pro-

vided

(c13) 𝜑 is increasing and 𝜑
𝑛
(𝑡) → 0 as 𝑛 → ∞, for

all 𝑡 > 0.

(Here, 𝜑
𝑛 stands for the 𝑛th iterate of 𝜑). Note that the

obtained class of functions is distinct from the above intro-
duced one, as simple examples show.

Now, let us say that 𝜑 ∈ F(𝑟𝑒)(𝑅
+
) is Boyd-Wong-

Matkowski admissible (abbreviated: BWM-admissible) if it is
either Boyd-Wong admissible or Matkowski admissible. The
following auxiliary fact will be useful.

Lemma5. Let𝜑 ∈ F(𝑟𝑒)(𝑅
+
) be a BWM-admissible function.

Then, 𝜑 is Meir-Keeler admissible (see above).

Proof (sketch). The former of these is an immediate conse-
quence of definition. And the second one is to be found in
Jachymski [15].

(B) Let us say that (𝜓, 𝜑) is a pair of weak generalized
altering functions inF(𝑅

+
), if

(c14) 𝜓 is increasing, and [𝜑(0) = 0; 𝜑(𝜀) > 𝜓(𝜀) − 𝜓(𝜀 − 0),
for all 𝜀 > 0]

(c15) (for all 𝜀 > 0): lim sup
𝑛
𝜑(𝑡
𝑛
) > 𝜓(𝜀 + 0) − 𝜓(𝜀),

whenever 𝑡
𝑛

→ 𝜀 + +.

Here, given the sequence (𝑟
𝑛
; 𝑛 ≥ 0) in 𝑅 and the point

𝑟 ∈ 𝑅, we denoted

𝑟
𝑛

→ 𝑟+ (resp., 𝑟
𝑛

→ 𝑟 + +), if 𝑟
𝑛

→ 𝑟 and
𝑟
𝑛
≥ 𝑟 (resp., 𝑟

𝑛
> 𝑟), for all 𝑛 ≥ 0 large enough.

Given𝐺 ∈ G and the couple (𝜓, 𝜑) of functions inF(𝑅
+
),

let us say that 𝑇 is (𝑑,R; 𝐺, (𝜓, 𝜑))-contractive, provided

(c16) 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝜓(𝐺(𝑥, 𝑦)) − 𝜑(𝐺(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈

𝑋, 𝑥R̃𝑦.

Lemma 6. Suppose that 𝑇 is (𝑑,R; 𝐺, (𝜓, 𝜑))-contractive, for
a pair (𝜓, 𝜑) of weak generalized altering functions inF(𝑅

+
).

Then, 𝑇 is Meir-Keeler (𝑑,R; 𝐺)-contractive (see above).
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Proof. (i) Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥R̃𝑦. Then (as 𝐺 is
sufficient), 𝐺(𝑥, 𝑦) > 0, so that (by the choice of our pair),
𝜑(𝐺(𝑥, 𝑦)) > 0; wherefrom 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) < 𝜓(𝐺(𝑥, 𝑦)). This
via (𝜓 = increasing) yields 𝑑(𝑇𝑥, 𝑇𝑦) < 𝐺(𝑥, 𝑦), so that 𝑇 is
strictly (𝑑,R; 𝐺)-nonexpansive.

(ii) Assume by contradiction that 𝑇 does not have the
Meir-Keeler property (modulo (𝑑,R; 𝐺)); that is, for some
𝜀 > 0,

∀𝛿 > 0, ∃ (𝑥
𝛿
, 𝑦
𝛿
) ∈ R̃ : [𝜀 < 𝐺 (𝑥

𝛿
, 𝑦
𝛿
) < 𝜀 + 𝛿,

𝑑 (𝑇𝑥
𝛿
, 𝑇𝑦
𝛿
) > 𝜀] .

(15)

Taking a zero converging sequence (𝛿
𝑛
) in𝑅
0

+
, we get a couple

of sequences (𝑥
𝑛
; 𝑛 ≥ 0) and (𝑦

𝑛
; 𝑛 ≥ 0) in 𝑋, so as

(∀𝑛) : 𝑥
𝑛
R̃𝑦
𝑛
, 𝜀 < 𝐺 (𝑥

𝑛
, 𝑦
𝑛
) < 𝜀 + 𝛿

𝑛
, 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑦
𝑛
) > 𝜀.

(16)

By the contractive condition (and 𝜓 = increasing), we get

𝜓 (𝜀) ≤ 𝜓 (𝐺 (𝑥
𝑛
, 𝑦
𝑛
)) − 𝜑 (𝐺 (𝑥

𝑛
, 𝑦
𝑛
)) , ∀𝑛; (17)

or, equivalently,

(0 <) 𝜑 (𝐺 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜓 (𝐺 (𝑥

𝑛
, 𝑦
𝑛
)) − 𝜓 (𝜀) , ∀𝑛. (18)

By (16),𝐺(𝑥
𝑛
, 𝑦
𝑛
) → 𝜀++, so that passing to lim sup as 𝑛 →

∞,

lim sup
𝑛

𝜑 (𝐺 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜓 (𝜀 + 0) − 𝜓 (𝜀) . (19)

But, from the hypothesis about (𝜓, 𝜑), these relations are
contradictory. This ends the argument.

4. Main Result

Let (𝑋, 𝑑,R) be a relational metric space. Further, let 𝑇 be
a self-map of 𝑋, supposed to be R-semi-progressive and
R-increasing. The basic directions and regularity conditions
under which the problem of determining the fixed points
of 𝑇 is to be solved, were already listed; and the contractive
type framework was settled. It remains now to precise the
regularity conditions uponR. Denote, for each 𝑥 ∈ 𝑋(𝑇,R),

spec (𝑥) = {𝑖 ∈ 𝑁 (1, ≤) ; 𝑥R𝑇
𝑖
𝑥} (the spectrum of 𝑥) .

(20)

Clearly, 1 ∈ spec(𝑥), but the possibility of spec(𝑥) = {1}

cannot be removed. This fact remains valid even if 𝑥 ∈

𝑋(𝑇,R) is orbital admissible, in the sense [𝑖 ̸= 𝑗 implies
𝑇
𝑖
𝑥 ̸= 𝑇
𝑗
𝑥], when the associated orbit 𝑇

𝑁
𝑥 := {𝑇

𝑛
𝑥; 𝑛 ≥ 0}

is effectively denumerable. But for the developments below,
it is necessary that these spectral subsets of 𝑁 should have a
finite Hausdorff-Pompeiu distance to𝑁; hence, in particular,
these must be infinite. Precisely, given 𝑘 ≥ 1, let us say thatR
is 𝑘-semirecurrent at the orbital admissible 𝑥 ∈ 𝑋(𝑇,R), if

for each 𝑛 ∈ 𝑁(1, ≤), there exists 𝑞 ∈ spec(𝑥) such
that 𝑞 ≤ 𝑛 < 𝑞 + 𝑘.

A global version of this convention is the following: call
R, finitely semirecurrent if, for each orbital admissible 𝑥 ∈

𝑋(𝑇,R), there exists 𝑘(𝑥) ∈ 𝑁(1, ≤), such that R is 𝑘(𝑥)-
semirecurrent at 𝑥.

Assume in the following that

(d01) R is finitely semirecurrent and nonidentical.

Our main result in this exposition is the following.

Theorem 7. Assume that 𝑇 is Meir-Keeler (𝑑,R; 𝐺)-
contractive, for some 𝐺 ∈ G. In addition, let 𝑋 be (a-o, 𝑑)-
complete; and one of the following conditions holds:

(i) 𝑇 is (a-o, 𝑑)-continuous;
(ii) R is (a-o, 𝑑)-almost-self-closed and 𝐺 ∈ G

1
;

(iii) R is (a-o, 𝑑)-almost-self-closed and 𝑇 is (𝑑,R; 𝐺, 𝜑)-
contractive, for a certain Meir-Keeler admissible func-
tion 𝜑 ∈ F(𝑟𝑒)(𝑅

+
);

(iv) R is (a-o, 𝑑)-almost-self-closed and 𝑇 is (𝑑,R; 𝐺,

(𝜓, 𝜑))-contractive, for a certain pair (𝜓, 𝜑) of weak
generalized altering functions inF(𝑅

+
).

Then 𝑇 is a globally strong Picard operator (modulo (𝑑,R)).

Proof. First, we check the fix-R-asingleton property. Let
𝑧
1
, 𝑧
2

∈ Fix(𝑇) be such that 𝑧
1
R𝑧
2
; and assume by

contradiction that 𝑧
1

̸= 𝑧
2
; whence 𝑧

1
R̃𝑧
2
. From the very

definitions above,

𝐴
1
(𝑧
1
, 𝑧
2
) = 𝐴

4
(𝑧
2
, 𝑧
2
) = 𝑑 (𝑧

1
, 𝑧
2
) ,

𝐴
2
(𝑧
1
, 𝑧
2
) = 𝐴

3
(𝑧
2
, 𝑧
2
) = 0;

(21)

whence 𝐺(𝑧
1
, 𝑧
2
) = 𝑑(𝑧

1
, 𝑧
2
). This, via 𝑇 being strictly (𝑑,R;

𝐺)-nonexpansive, yields an evaluation like

𝑑 (𝑧
1
, 𝑧
2
) = 𝑑 (𝑇𝑧

1
, 𝑇𝑧
2
) < 𝐺 (𝑧

1
, 𝑧
2
) ; (22)

which is contradictory; hence the claim follows. It remains
now to establish the strong Picard property (modulo (𝑑,R)).
The argument will be divided into several steps.

Part 1.We firstly assert that

𝐺 (𝑥, 𝑇𝑥) = 𝑑 (𝑥, 𝑇𝑥) , whenever 𝑥R̃𝑇𝑥. (23)

Let 𝑥 ∈ 𝑋 be such that 𝑥R̃𝑇𝑥. As 𝑇 is strictly (𝑑,R; 𝐺)-
nonexpansive, one has 𝑑(𝑇𝑥, 𝑇

2
𝑥) < 𝐺(𝑥, 𝑇𝑥). On the other

hand,

𝐴
4
(𝑥, 𝑇𝑥)

= (
1

2
) 𝑑 (𝑥, 𝑇

2
𝑥)

≤ (
1

2
) [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑇𝑥, 𝑇

2
𝑥)]

= 𝐴
2
(𝑥, 𝑇𝑥) ≤ max {𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑇𝑥, 𝑇

2
𝑥)}

= 𝐴
3
(𝑥, 𝑇𝑥) .

(24)
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This, along with

𝑑 (𝑇𝑥, 𝑇
2
𝑥) < 𝐴

3
(𝑥, 𝑇𝑥)

󳨐⇒ 𝑑 (𝑇𝑥, 𝑇
2
𝑥) < 𝑑 (𝑥, 𝑇𝑥)

󳨐⇒ 𝐴
3
(𝑥, 𝑇𝑥) = 𝑑 (𝑥, 𝑇𝑥) ,

(25)

gives the desired fact.

Part 2. Take some 𝑥
0

∈ 𝑋; and put (𝑥
𝑛

= 𝑇
𝑛
𝑥
0
; 𝑛 ≥ 0). If

𝑥
𝑛

= 𝑥
𝑛+1

for some 𝑛 ≥ 0, we are done, so, without loss, one
may assume that, for each 𝑛 ≥ 0,

(d02) 𝑥
𝑛

̸= 𝑥
𝑛+1

; hence, 𝑥
𝑛
R̃𝑥
𝑛+1

, 𝜌
𝑛
:= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) > 0.

From the preceding part, we derive

𝜌
𝑛+1

= 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

) < 𝐺 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝜌
𝑛
, ∀𝑛, (26)

so that the sequence (𝜌
𝑛
; 𝑛 ≥ 0) is strictly descending. As a

consequence, 𝜌 := lim
𝑛
𝜌
𝑛
exists as an element of 𝑅

+
. Assume

by contradiction that𝜌 > 0; and let 𝛿 > 0 be the number given
by the Meir-Keeler (𝑑,R; 𝐺)-contractive condition upon 𝑇.
By definition, there exists a rank 𝑛(𝛿) such that 𝑛 ≥ 𝑛(𝛿)

implies 𝜌 < 𝜌
𝑛
< 𝜌 + 𝛿; hence (by a previous representation)

𝜌 < 𝐺(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝜌
𝑛

< 𝜌 + 𝛿. This, by the Meir-Keeler
contractive condition we just quoted, yields (for the same 𝑛),
𝜌
𝑛+1

= 𝑑(𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

) ≤ 𝜌; contradiction. Hence, 𝜌 = 0, so
that

𝜌
𝑛
:= 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) 󳨀→ 0, as 𝑛 󳨀→ ∞; (27)

that is, (see above): (𝑥
𝑛
; 𝑛 ≥ 0) is 𝑑-semi-Cauchy.

Part 3. Suppose that
(d03) there exist 𝑖, 𝑗 ∈ 𝑁 such that 𝑖 < 𝑗, 𝑥

𝑖
= 𝑥
𝑗
.

Denoting 𝑝 = 𝑗 − 𝑖, we thus have 𝑝 > 0 and 𝑥
𝑖
= 𝑥
𝑖+𝑝

, so that

𝑥
𝑖
= 𝑥
𝑖+𝑛𝑝

, 𝑥
𝑖+1

= 𝑥
𝑖+𝑛𝑝+1

, ∀𝑛 ≥ 0. (28)

By the introduced notations, 𝜌
𝑖
= 𝜌
𝑖+𝑛𝑝

, for all 𝑛 ≥ 0. This,
along with 𝜌

𝑖+𝑛𝑝
→ 0 as 𝑛 → ∞, yields 𝜌

𝑖
= 0, in

contradiction with the initial choice of (𝜌
𝑛
; 𝑛 ≥ 0). Hence,

our working hypothesis cannot hold; wherefrom

∀𝑖, 𝑗 ∈ 𝑁 : 𝑖 ̸= 𝑗 implies 𝑥
𝑖

̸= 𝑥
𝑗
. (29)

Part 4. As a consequence of this, the map 𝑖 󳨃→ 𝑥
𝑖
:= 𝑇
𝑖
𝑥
0
is

injective; hence, 𝑥
0
is orbital admissible. Let 𝑘 := 𝑘(𝑥

0
) ≥ 1

be the semirecurrence constant of R at 𝑥
0
(assured by the

choice of this relation). Further, let 𝜀 > 0 be arbitrary fixed;
and 𝛿 > 0 be the number associated by the Meir-Keeler
(𝑑,R; 𝐺)-contractive property; without loss, onemay assume
that 𝛿 < 𝜀. By the 𝑑-semi-Cauchy property and triangular
inequality, there exists a rank 𝑛(𝛿) ≥ 0, such that

(∀𝑛 ≥ 𝑛 (𝛿)) : 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) <
𝛿

4𝑘
,

whence 𝑑 (𝑥
𝑛
, 𝑥
𝑛+ℎ

) <
ℎ𝛿

4𝑘
≤

𝛿

2
,

∀ℎ ∈ {1, . . . , 2𝑘} .

(30)

We claim that the following relation holds:

(∀𝑠 ≥ 1) : [𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑠

) < 𝜀 +
𝛿

2
, ∀𝑛 ≥ 𝑛 (𝛿)] ; (31)

wherefrom, (𝑥
𝑛
; 𝑛 ≥ 0) is 𝑑-Cauchy. To do this, an induction

argument upon 𝑠 ≥ 1 will be used. The case 𝑠 ∈ {1, . . . , 2𝑘} is
evident, by the preceding evaluation. Assume that it holds for
all 𝑠 ∈ {1, . . . , 𝑝}, where 𝑝 ≥ 2𝑘; we must establish its validity
for 𝑠 = 𝑝 + 1. As R is 𝑘-semirecurrent at 𝑥

0
, there exists

𝑞 ∈ spec(𝑥
0
) such that 𝑞 ≤ 𝑝 < 𝑞 + 𝑘; note that the former of

these yields (from theR-increasing property of𝑇), 𝑥
𝑛
R̃𝑥
𝑛+𝑞

.
Now, by the inductive hypothesis and (30),

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑞

) , 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+𝑞

) ,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+𝑞+1

) < 𝜀 +
𝛿

2
< 𝜀 + 𝛿,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) , 𝑑 (𝑥
𝑛+𝑞

, 𝑥
𝑛+𝑞+1

) <
𝛿

4𝑘
< 𝛿 < 𝜀 + 𝛿.

(32)

This, along with the triangular inequality, gives us

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑞+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑞

) + 𝑑 (𝑥
𝑛+𝑞

, 𝑥
𝑛+𝑞+1

)

< 𝜀 +
𝛿

2
+

𝛿

4𝑘
< 𝜀 + 𝛿;

(33)

wherefrom 𝐵
1
(𝑥
𝑛
, 𝑥
𝑛+𝑞

) < 𝜀 + 𝛿, so that (by the diameter
boundedness property), (0 <) 𝐺(𝑥

𝑛
, 𝑥
𝑛+𝑞

) < 𝜀+𝛿. Taking the
Meir-Keeler (𝑑,R; 𝐺)-contractive assumption imposed upon
𝑇 into account gives

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+𝑞+1

) = 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+𝑞

) ≤ 𝜀, (34)

so that by the triangular inequality (and (30) again),

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+𝑞+1

) + 𝑑 (𝑥
𝑛+𝑞+1

, 𝑥
𝑛+𝑝+1

)

< 𝜀 +
𝛿

4𝑘
+

𝑘𝛿

4𝑘

≤ 𝜀 +
𝛿

4
+

𝛿

4
= 𝜀 +

𝛿

2
;

(35)

and our claim follows.

Part 5. As𝑋 is (a-o, 𝑑)-complete, 𝑥
𝑛

𝑑

󳨀→ 𝑧, for some (uniquely
determined) 𝑧 ∈ 𝑋. If there exists a sequence of ranks
(𝑖(𝑛); 𝑛 ≥ 0) with [𝑖(𝑛) → ∞ as 𝑛 → ∞] such that
𝑥
𝑖(𝑛)

= 𝑧 (hence, 𝑥
𝑖(𝑛)+1

= 𝑇𝑧) for all 𝑛, then, as (𝑥
𝑖(𝑛)+1

; 𝑛 ≥ 0)

is a subsequence of (𝑥
𝑛
; 𝑛 ≥ 0), one gets 𝑧 = 𝑇𝑧. So, in

the following, we may assume that the opposite alternative
is true:

(d04) ∃ℎ ≥ 0: 𝑛 ≥ ℎ ⇒ 𝑥
𝑛

̸= 𝑧.

There are several cases to discuss.
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Case 5a. Suppose that 𝑇 is (a-o, 𝑑)-continuous. Then 𝑦
𝑛

:=

𝑇𝑥
𝑛

𝑑

󳨀→ 𝑇𝑧 as 𝑛 → ∞. On the other hand, (𝑦
𝑛
= 𝑥
𝑛+1

; 𝑛 ≥ 0)

is a subsequence of (𝑥
𝑛
); whence 𝑦

𝑛

𝑑

󳨀→ 𝑧; and this yields (as
𝑑 is sufficient), 𝑧 = 𝑇𝑧.

Case 5b. Suppose that R is (a-o, 𝑑)-almost-self-closed. Put,
for simplicity reasons, 𝑏 := 𝑑(𝑧, 𝑇𝑧). By definition, there
exists a subsequence (𝑢

𝑛
:= 𝑥
𝑖(𝑛)

; 𝑛 ≥ 0) of (𝑥
𝑛
; 𝑛 ≥ 0), such

that 𝑢
𝑛
R𝑧, for all 𝑛. Note that, as lim

𝑛
𝑖(𝑛) = ∞, one may

arrange for 𝑖(𝑛) ≥ 𝑛, for all 𝑛, so that, from (d04),

∀𝑛 ≥ ℎ : [𝑖 (𝑛) ≥ ℎ; whence (see above) , 𝑢
𝑛
R̃𝑧] . (36)

This, along with (𝑇𝑢
𝑛

= 𝑥
𝑖(𝑛)+1

; 𝑛 ≥ 0) being as well a
subsequence of (𝑥

𝑛
; 𝑛 ≥ 0), gives (via (27) and Lemma 3)

𝐴
1
(𝑢
𝑛
, 𝑧) = 𝑑 (𝑢

𝑛
, 𝑧) 󳨀→ 0, 𝑑 (𝑇𝑢

𝑛
, 𝑧) 󳨀→ 0,

𝑑 (𝑢
𝑛
, 𝑇𝑢
𝑛
) 󳨀→ 0, 𝑑 (𝑢

𝑛
, 𝑇𝑧) 󳨀→ 𝑏,

𝑑 (𝑇𝑢
𝑛
, 𝑇𝑧) 󳨀→ 𝑏;

(37)

whence (by definition)

𝐴
2
(𝑢
𝑛
, 𝑧) , 𝐴

4
(𝑢
𝑛
, 𝑧) 󳨀→

𝑏

2
,

𝐴
3
(𝑢
𝑛
, 𝑧) , 𝐵

1
(𝑢
𝑛
, 𝑧) 󳨀→ 𝑏.

(38)

We now show that the assumption 𝑧 ̸= 𝑇𝑧 (i.e., 𝑏 > 0)
yields a contradiction. Two alternatives must be treated.

Alter 1. Suppose that 𝐺 ∈ G
1
. By the Meir-Keeler contractive

condition,

𝑑 (𝑇𝑢
𝑛
, 𝑇𝑧) < 𝐺 (𝑢

𝑛
, 𝑧) ≤ 𝐵

1
(𝑢
𝑛
, 𝑧) , ∀𝑛 ≥ ℎ; (39)

so that, combining with the preceding relations, 𝐺(𝑢
𝑛
, 𝑧) →

𝑏. This, along with (37) + (38), is impossible for any 𝐺 ∈ G
1
;

whence, 𝑧 = 𝑇𝑧.

Alter 2. Suppose that 𝐺 ∈ G
2
. The above convergence

properties of (𝑢
𝑛
; 𝑛 ≥ 0) tell us that, for a certain rank 𝑛(𝑏) ≥

ℎ, we must have

𝑑 (𝑢
𝑛
, 𝑇𝑢
𝑛
) , 𝑑 (𝑢

𝑛
, 𝑧) , 𝑑 (𝑇𝑢

𝑛
, 𝑧) <

𝑏

2
, ∀𝑛 ≥ 𝑛 (𝑏) . (40)

This, by the 𝑑-Lipschitz property of 𝑑(⋅, ⋅), gives

󵄨󵄨󵄨󵄨𝑑 (𝑢
𝑛
, 𝑇𝑧) − 𝑏

󵄨󵄨󵄨󵄨 ≤ 𝑑 (𝑢
𝑛
, 𝑧) <

𝑏

2
, ∀𝑛 ≥ 𝑛 (𝑏) , (41)

wherefrom, 𝑏/2 < 𝑑(𝑢
𝑛
, 𝑇𝑧) < 3𝑏/2, ∀𝑛 ≥ 𝑛(𝑏). Combining

these yields

𝐺 (𝑢
𝑛
, 𝑧) = 𝑏, ∀𝑛 ≥ 𝑛 (𝑏) , ∀𝐺 ∈ G

2
. (42)

Two subcases are now under discussion.

Alter 2a. Suppose that 𝑇 is (𝑑,R; 𝐺, 𝜑)-contractive, for a
certainMeir-Keeler admissible function 𝜑 ∈ F(𝑟𝑒)(𝑅

+
). (The

case𝐺 ∈ G
1
was already clarified in a preceding step.) By (42)

and this contractive property,

𝑑 (𝑇𝑢
𝑛
, 𝑇𝑧) ≤ 𝜑 (𝑏) , ∀𝑛 ≥ 𝑛 (𝑏) . (43)

Passing to limit gives (by (37) above), 𝑏 ≤ 𝜑(𝑏); contradiction;
hence, 𝑧 = 𝑇𝑧.

Alter 2b. Suppose that 𝑇 is (𝑑,R; 𝐺, (𝜓, 𝜑))-contractive, for a
certain pair (𝜓, 𝜑) of weak generalized altering functions in
F(𝑅
+
). (As before, the case 𝐺 ∈ G

1
is clear, by a preceding

step.) From this contractive condition,

𝜓 (𝑑 (𝑇𝑢
𝑛
, 𝑇𝑧)) ≤ 𝜓 (𝐺 (𝑢

𝑛
, 𝑧)) − 𝜑 (𝐺 (𝑢

𝑛
, 𝑧)) ,

∀𝑛 ≥ 𝑛 (𝑏) ;

(44)

or, equivalently (combining with (42) above),

0 < 𝜑 (𝑏) ≤ 𝜓 (𝑏) − 𝜓 (𝑑 (𝑇𝑢
𝑛
, 𝑇𝑧)) , ∀𝑛 ≥ 𝑛 (𝑏) . (45)

Note that, as a consequence, 𝑑(𝑇𝑢
𝑛
, 𝑇𝑧) < 𝑏, for all 𝑛 ≥ 𝑛(𝑏).

Passing to limit as 𝑛 → ∞ and taking (37) into account,
yields 𝜑(𝑏) ≤ 𝜓(𝑏) − 𝜓(𝑏 − 0). This, however, contradicts the
choice of (𝜓, 𝜑), so that 𝑧 = 𝑇𝑧. The proof is complete.

In particular, whenR is transitive, this result is compara-
ble with the one in Turinici [11]. Note that further extensions
of these facts are possible, in the realm of triangular sym-
metric spaces, taken as in Hicks and Rhoades [16]; or, in the
setting of partial metric spaces, introduced under the lines in
Matthews [17]; we will discuss them elsewhere.

5. Further Aspects

Let in the following (𝑋, 𝑑,R) be a relationalmetric space; and
let𝑇 be a self-map of𝑋. Technically speaking,Theorem 7 that
we just exposed consists of three substatements; according
to the alternatives of our main result we already listed. For
both practical and theoretical reasons, it would be useful to
evidentiate them; further aspects involving the obtained facts
are also discussed.

Before doing this, let us remark that the condition

(e01) R is locally finitely transitive and nonidentical

appears as a particular case of (d01). On the other hand, (d01)
is not deductible from (e01). In fact, (d01) has nothing to do
with the points of

(e02) 𝑋
𝑐
(𝑇,R) := 𝑋 \ 𝑋(𝑇,R) = {𝑥 ∈ 𝑋; (𝑥, 𝑇𝑥) ∉ R}.

So, even if the restriction of R to 𝑋
𝑐
(𝑇,R) is arbitrarily

taken, (d01) may hold. On the other hand, (e01) cannot hold
whenever𝑋𝑐(𝑇,R) admits a denumerable subset𝑌 such that
the restriction of R to 𝑌 is not finitely transitive; and this
proves our assertion.

We may now pass to the particular cases of Theorem 7
with practical interest.

Case 1. As a direct consequence of Theorem 7, we get the
following.
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Theorem 8. Assume that 𝑇 is R-semiprogressive, R-
increasing, and Meir-Keeler (𝑑,R; 𝐺)-contractive, for some
𝐺 ∈ G. In addition, letR be finitely semirecurrent nonidenti-
cal, 𝑋 be (a-o, 𝑑)-complete, and one of the conditions below
holds:

(i1) 𝑇 is (a-o, 𝑑)-continuous;
(i2) R is (a-o, 𝑑)-almost-self-closed and 𝐺 ∈ G

1
:= {𝐴

1
,

𝐵
2
, 𝐵
4
, 𝐶
1
}.

Then 𝑇 is a globally strong Picard operator (modulo (𝑑,R)).

The following particular cases of this result are to be
noted.

(1-1) Let 𝜎(⋅) be a function in F(𝑋 × 𝑋, 𝑅
+
); and S

denote the associated relation: [𝑥S𝑦 if and only if
𝜎(𝑥, 𝑦) ≥ 1]. Then, if we take R := S and 𝐺 = 𝐴

1
,

the alternative (i1) of Theorem 8 includes the related
statement in Berzig and Rus [18]. By the previous
remark, this inclusion is—at least from a technical
viewpoint—effective, but, from a logical perspective,
it is possible that the converse inclusion be also true.
Finally, the alternative (i2) of Theorem 8 seems to be
new.

(1-2) Suppose that R = 𝑋 × 𝑋 (i.e., R is the trivial
relation over𝑋).Then,Theorem 8 is comparable with
the main results in Włodarczyk and Plebaniak [19–
22], based on contractive type conditions involving
generalized pseudodistances. However, none of these
is reducible to the remaining ones; we do not give
details.

Case 2. As another consequence of Theorem 7, we have the
following statement (with practical value).

Theorem 9. Assume that 𝑇 isR-semiprogressive,R-increas-
ing, and (𝑑,R; 𝐺, 𝜑)-contractive, for some𝐺 ∈ G and a certain
Meir-Keeler admissible function 𝜑 ∈ F(𝑟𝑒)(𝑅

+
). In addition,

let R be finitely semirecurrent nonidentical, 𝑋 be (a-o, 𝑑)-
complete, and one of the conditions below holds:

(j1) 𝑇 is (a-o, 𝑑)-continuous;
(j2) R is (a-o, 𝑑)-almost-self-closed.

Then 𝑇 is a globally strong Picard operator (modulo (𝑑,R)).

The following particular cases of this result are to be
noted.

(2-1) Suppose that R = 𝑋 × 𝑋 (= the trivial relation over
𝑋) and 𝐺 = 𝐴

1
. Then, Theorem 9 is comparable with

the main results in Włodarczyk et al. [23, 24], based
on contractive type conditions like

(e03) diam(𝑇(𝑌)) ≤ 𝜑(diam(𝑌)), for all 𝑌 ∈ CB(𝑋).

(Here, CB(𝑋) is the class of all (nonempty) closed bounded
subsets of 𝑋.) Clearly, this condition is stronger than the
one we already used in Theorem 9. On the other hand, (e03)
is written in terms of generalized pseudodistances. Hence,

direct inclusions between these results are not in general
available; we do not give details.

(2-2) Suppose that R = 𝑋 × 𝑋; and 𝜑 ∈ F(𝑟𝑒)(𝑅
+
)

is BWM-admissible (i.e., it is either Boyd-Wong
admissible or Matkowski admissible). Then, if 𝐺 =

𝐴
1
, Theorem 9 includes the Boyd-Wong result [13]

when 𝜑 is Boyd-Wong admissible; and, respectively,
the Matkowski’s result [14] when 𝜑 is Matkowski
admissible. Moreover, when 𝐺 = 𝐶

2
, Theorem 9

includes the result in Leader [25].
(2-3) Suppose that R is an order on 𝑋. Then, Theorem 9

includes the results in Agarwal et al. [26]; see also
O’Regan and Petruşel [27].

Case 3. As a final consequence of Theorem 7, we have

Theorem 10. Assume that the self-map 𝑇 is R-semipro-
gressive,R-increasing, and (𝑑,R; 𝐺, (𝜓, 𝜑))-contractive, for a
certain 𝐺 ∈ G and some pair (𝜓, 𝜑) of generalized altering
functions inF(𝑅

+
). In addition, letR be finitely semirecurrent

nonidentical, 𝑋 be (a-o, 𝑑)-complete, and one of the conditions
below holds:

(k1) 𝑇 is (a-o, 𝑑)-continuous;
(k2) R is (a-o, 𝑑)-almost-self-closed.

Then 𝑇 is a globally strong Picard operator (modulo (𝑑,R)).

The following particular cases of this result are to be
noted.

(3-1) Let𝛼(⋅), 𝛽(⋅) be a couple of functions inF(𝑋×𝑋, 𝑅
+
);

andA, B stand for the associated relations:

𝑥A𝑦 iff 𝛼 (𝑥, 𝑦) ≤ 1; 𝑥B𝑦 iff 𝛽 (𝑥, 𝑦) ≥ 1. (46)

Then, if we takeR := A ∩ B and 𝐺 ∈ G, this result includes
(cf. Lemma 1) the one in Berzig et al. [28], based on global
contractive conditions like

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (𝑥, 𝑦) 𝜓 (𝑑 (𝑥, 𝑦))

− 𝛽 (𝑥, 𝑦) 𝜑 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋;

(47)

referred to as 𝑇 is (𝛼𝜓, 𝛽𝜑)-contractive. In particular, when
𝐺 = 𝐴

1
, this last result reduces to the one in Berzig and

Karapınar [7]; which, in turn, extends the one due to Samet
et al. [29]; hence, so does Theorem 10 above.

(3-2) Let (𝑌, 𝑑) be a metric space; and 𝑇 be a self-map of
𝑌. Given 𝑝 ≥ 2, let {𝐴

1
, . . . , 𝐴

𝑝
} be a finite system of closed

subsets of 𝑌 with

(e04) 𝑇(𝐴
𝑖
) ⊆ 𝐴

𝑖+1
, for all 𝑖 ∈ {1, . . . , 𝑝} (where 𝐴

𝑝+1
=

𝐴
1
).

Define a relationR over 𝑌 as

(e05) R = (𝐴
1
× 𝐴
2
) ∪ ⋅ ⋅ ⋅ ∪ (𝐴

𝑝
× 𝐴
𝑝+1

);

then, put𝑋 = 𝐴
1
∪ ⋅ ⋅ ⋅ ∪𝐴

𝑝
. Clearly, 𝑇 is a self-map of𝑋; and

the relation R is 𝑝-semirecurrent at each orbital admissible
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point of 𝑋(𝑇,R). The corresponding version of Theorem 10
includes the related statement in Berzig et al. [28].

It is to be stressed that this last construction may be also
attached to the setting of Case 2. Then, the corresponding
version of Theorem 9 extends in a direct way some basic
results in Kirk et al. [30].

Finally, we should remark that none of these particular
theorems may be viewed as a genuine extension for the
fixed point statement due to Samet and Turinici [6]; because,
in the quoted paper, R is not subjected to any kind of
(local or global) transitive type requirements. Further aspects
(involving the same general setting) may be found in Berzig
[31].
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