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The limit of Riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type with a scaled pressure is considered for both
polytropic gas and generalizedChaplygin gas. In the former case, the delta shockwave can be obtained as the limit of shockwave and
contact discontinuity when 𝑢

−

> 𝑢
+

and the parameter 𝜖 tends to zero.The point is, the delta shock wave is not the one of transport
equations, which is obviously different from cases of some other systems such as Euler equations or relativistic Euler equations. For
the generalized Chaplygin gas, unlike the polytropic or isothermal gas, there exists a certain critical value 𝜖

2

depending only on the
Riemann initial data, such that when 𝜖 drops to 𝜖

2

, the delta shock wave appears as 𝑢
−

> 𝑢
+

, which is actually a delta solution of
the same system in one critical case. Then as 𝜖 becomes smaller and goes to zero at last, the delta shock wave solution is the exact
one of transport equations. Furthermore, the vacuum states and contact discontinuities can be obtained as the limit of Riemann
solutions when 𝑢

−

< 𝑢
+

and 𝑢
−

= 𝑢
+

, respectively.

1. Introduction

The nonsymmetric system of Keyfitz-Kranzer type can be
written as

𝜌
𝑡

+ (𝜌𝜙 (𝜌, 𝑢
1

, 𝑢
2

, . . . , 𝑢
𝑛

))
𝑥

= 0,

(𝜌𝑢
𝑖

)
𝑡

+ (𝜌𝑢
𝑖

𝜙 (𝜌, 𝑢
1

, 𝑢
2

, . . . , 𝑢
𝑛

))
𝑥

, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where

𝜙 (𝜌, 𝑢) = 𝜙 (𝑢) − 𝑝 (𝜌) (2)

is a nonlinear function. A more general form of system (1)
was first derived as a model for the elastic string by Keyfitz
and Kranzer [1].

When 𝑛 = 1, 𝜙(𝜌, 𝑢) = 𝑢 − 𝑝, and 𝑝 = 𝑝(𝜌), system (1)
can be read as

𝜌
𝑡

+ (𝜌 (𝑢 − 𝑝))
𝑥

= 0,

(𝜌𝑢)
𝑡

+ (𝜌𝑢 (𝑢 − 𝑝))
𝑥

= 0.

(3)

Let 𝑢 = V+𝑝; system (3) can be rewritten as theAw-Rascle
model [2]:

𝜌
𝑡

+ (𝜌V)
𝑥

= 0,

(𝜌 (V + 𝑝))
𝑡

+ (𝜌V (V + 𝑝))
𝑥

= 0,

(4)

where 𝜌, V represent the density and the velocity of cars on the
roadway, respectively; the state equation 𝑝(𝜌) = 𝜌𝛾, 𝛾 > 0 is
smooth and strictly increasing with

2𝑝
󸀠

(𝜌) + 𝜌𝑝
󸀠󸀠

(𝜌) > 0 for 𝜌 > 0. (5)

The Aw-Rascle model (4) resolves all the obvious inconsis-
tencies and explains instabilities in car traffic flow, especially
near the vacuum, that is, for light trafficwith few slow drivers.
In 2008, Berthelin et al. [3] studied the limit behavior which
was investigated by changing 𝑝 into 𝜖𝑝 and taking 𝑝(𝜌) =
(1/𝜌 − 1/𝜌

∗

), 𝜌 ≤ 𝜌
∗, where 𝜌∗ is the maximal density

which corresponds to a total traffic jam and is assumed to be
a fixed constant although it should depend on the velocity in
practice. Then, Shen and Sun [4] studied the limit behavior
without the constraint of the maximal density, in which
the delta shock and vacuum state were obtained through
perturbing the pressure 𝑝(𝜌) suitably.
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For the nonsymmetric systemofKeyfitz-Kranzer type (3),
under the following two assumptions on 𝑝(𝜌),

𝑝 (0) = 0, lim
𝜌→0

𝜌𝑝
󸀠

(𝜌) = 0,

𝜌𝑝
󸀠󸀠

(𝜌) + 2𝑝
󸀠

(𝜌) > 0 for 𝜌 > 0,

lim
𝜌→0

𝜌𝑝 (𝜌) = 0, lim
𝜌→∞

𝜌𝑝
󸀠

(𝜌) ≥ 𝐴,

𝜌𝑝
󸀠󸀠

(𝜌) + 2𝑝
󸀠

(𝜌) > 0 for 𝜌 > 0,

(6)

Lu [5] established the existence of global bounded weak
solutions of the Cauchy problem by using the compensated
compactness method. Recently, Lu [6] studied the existence
of global entropy solutions to general system of Keyfitz-
Kranzer type (3). In 2013, Cheng [7] considered the Riemann
problem and two kinds of interactions of elementary waves
for system (3) with the state equation for Chaplygin gas:

𝑝 (𝜌) = −

1

𝜌

. (7)

In this paper, our main purpose is to study the limit
behavior of Riemann solutions to the nonsymmetric system
of Keyfitz-Kranzer type (3) as the parameter 𝜖 goes to zero.
In 2001, Li [8] was concerned with the limits of Riemann
solutions to the compressed Euler equations for isothermal
gas by letting the temperature go to zero. Then Chen and
Liu [9, 10] presented the results of the compressible Euler
equations as pressure vanishes. There are many results on
the vanishing pressure limits of Riemann solutions; we refer
readers to [4, 11–13] and the references cited therein for more
details.

As the pressure vanishes, system (3) formally transforms
into the so-called pressureless gas dynamics model or trans-
port equations:

𝜌
𝑡

+ (𝜌𝑢)
𝑥

= 0, (𝜌𝑢)
𝑡

+ (𝜌𝑢
2

)
𝑥

= 0, (8)

where 𝜌 and 𝑢 stand for the density and the velocity of the
gas, respectively. System (8) is also called zero-pressure gas
dynamics. It can be derived from zero-pressure isentropic
gas dynamics [14]. System (8) is referred to as the adhesion
particle dynamics system to describe the motion process of
free particles sticking under collision in the low temperature
and the information of large-scale structure in the universe
[15, 16]. It is easy to see that the delta shock and vacuum do
occur in the Riemann solutions of (8); see [17]. We also refer
readers to [4, 18–23] and the references cited therein for some
results on delta shock waves.

By letting 𝑝 be 𝜀𝑝, system (3) can be changed to

𝜌
𝑡

+ (𝜌 (𝑢 − 𝜖𝑝))
𝑥

= 0,

(𝜌𝑢)
𝑡

+ (𝜌𝑢 (𝑢 − 𝜖𝑝))
𝑥

= 0.

(9)

In the present paper, we focus on system (9)with equation
of state for both polytropic gas and generalizedChaplygin gas.
Firstly, we study limit of Riemann solutions to system (9) with
the state equation

𝑝 (𝜌) = 𝜌
𝛾

, 𝛾 > 0, (10)

as 𝜖 tends to zero. If 𝑢
−

> 𝑢
+

, we found that the Riemann
solution tends to a delta shock wave solution when 𝜖 →

0. However, the propagating speed and the strength of the
delta shock wave in the limit situation are different from
the classical results of transport equations (8) with the same
Riemann initial data. If 𝑢

−

< 𝑢
+

, the Riemann solution
tends to a two-contact discontinuity solution to the transport
equations (8) as 𝜖 → 0. The intermediate state between the
two-contact discontinuities is a vacuum state.When 𝑢

−

= 𝑢
+

,
the Riemann solutions converge to one-contact discontinuity
solutions of system (8). Then, we investigate system (9) for
generalized Chaplygin gas:

𝑝 (𝜌) = −𝜌
−𝛼

, 0 < 𝛼 ≤ 1, (11)

where 𝛼 = 1 is for Chaplygin gas.We find that, as 𝜖 arrives at a
certain critical value 𝜖

2

depending only on the given Riemann
initial data (𝑢

±

, 𝜌
±

), the solution involving one shock and one
contact discontinuity converges to a delta shock solution of
system (9) and (11). Eventually, when 𝜖 tends to zero, the
delta shock wave solution is exactly the solution of transport
equations (8). Thus we can see that the process of delta shock
wave formation is obviously different from those in [4, 8–13]
and so forth.

The paper is organized as follows. In Section 2, we give
some preliminary knowledge for system (8). In Section 3, we
present the Riemann solutions to system (9). In Section 4, we
display the limit of Riemann solutions to the nonsymmetric
system of Keyfitz-Kranzer type (9).

2. The Riemann Solutions of System (8)
In this section, we briefly review the Riemann solutions of (8)
with initial data:

(𝑢 (𝑥, 0) , 𝜌 (𝑥, 0)) = (𝑢
±

, 𝜌
±

) , ±𝑥 > 0, (12)

where 𝜌
±

> 0, the detailed study of which can be founded in
[17].

Transport equations (8) have a double eigenvalue 𝜆 = 𝑢
with only one corresponding right eigenvector 𝑟 = (1, 0)⊤. By
simple calculation, we obtain ∇𝜆 ⋅ 𝑟 = 0, which means that
system (8) is linearly degenerate.

Given any two constant states (𝑢
±

, 𝜌
±

), we can construc-
tively obtain the Riemann solutions of (8) and (12) containing
contact discontinuities, vacuum, or delta shock wave.

For the case 𝑢
−

< 𝑢
+

, the solution containing two contact
discontinuities and a vacuum state can be expressed as

(𝑢, 𝜌) (𝑥, 𝑡) =

{
{

{
{

{

(𝑢
−

, 𝜌
−

) , 𝑥 ≤ 𝑢
−

𝑡,

(𝜉, 0) , 𝑢
−

𝑡 ≤ 𝑥 ≤ 𝑢
+

𝑡,

(𝑢
+

, 𝜌
+

) , 𝑥 ≥ 𝑢
+

𝑡.

(13)

For the case 𝑢
−

= 𝑢
+

, we connect the constant states
(𝑢
±

, 𝜌
±

) by one contact discontinuity.
For the case 𝑢

−

> 𝑢
+

, a solution containing a weighted
𝛿-measure supported on a line will be constructed to connect
the constant (𝑢

±

, 𝜌
±

). So we define the solution in the sense of
distributions as follows.
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Definition 1. A pair (𝑢, 𝜌) constitutes a solution of (8) in the
sense of distributions if it satisfies

∫

+∞

0

∫

+∞

−∞

(𝜌𝜙
𝑡

+ (𝜌𝑢) 𝜙
𝑥

) d𝑥 d𝑡 = 0,

∫

+∞

0

∫

+∞

−∞

((𝜌𝑢) 𝜙
𝑡

+ (𝜌𝑢
2

) 𝜙
𝑥

) d𝑥 d𝑡 = 0,
(14)

for any test function 𝜙 ∈ 𝐶∞
0

(𝑅
+

× 𝑅).

Moreover, we define a two-dimensional weighted delta
functions as follows.

Definition 2. A two-dimensional weighted delta function
𝑤(𝑠)𝛿

𝑙

supported on a smooth curve 𝐿 parameterized as 𝑡 =
𝑡(𝑠), 𝑥 = 𝑥(𝑠) (𝑐 ≤ 𝑠 ≤ 𝑑) is defined by

⟨𝑤 (𝑠) 𝛿
𝑙

, 𝜙⟩ = ∫

𝑑

𝑐

𝑤 (𝑠) 𝜙 (𝑡 (𝑠) , 𝑥 (𝑠)) d𝑠, (15)

for all test functions 𝜙 ∈ 𝐶∞
0

(𝑅
+

× 𝑅).

With these definitions, one can construct a 𝛿-measure
solution as

(𝑢, 𝜌) (𝑡, 𝑥) =

{
{

{
{

{

(𝑢
−

, 𝜌
−

) , 𝑥 < 𝑢
𝛿

𝑡,

(𝑢
𝛿

, 𝜔 (𝑡) 𝛿 (𝑥 − 𝑢
𝛿

𝑡)) , 𝑥 = 𝑢
𝛿

𝑡,

(𝑢
+

, 𝜌
+

) , 𝑥 > 𝑢
𝛿

𝑡,

(16)

where 𝜔(𝑡) and 𝑢
𝛿

are weight and velocity of the delta
shock wave, respectively, satisfying the generalized Rankine-
Hugoniot condition:

d𝑥 (𝑡)
d𝑡

= 𝑢
𝛿

,

d𝜔 (𝑡)
d𝑡

= 𝑢
𝛿

[𝜌] − [𝜌𝑢] ,

d𝜔 (𝑡) 𝑢
𝛿

d𝑡
= 𝑢
𝛿

[𝜌𝑢] − [𝜌𝑢
2

] ,

(17)

with initial data 𝜔(0) = 0, where [𝜌] = 𝜌
+

− 𝜌
−

. By simple
calculation, we obtain

𝑢
𝛿

=

√𝜌
+

𝑢
+

+ √𝜌
−

𝑢
−

√𝜌
+

+ √𝜌
−

,

𝜔 (𝑡) = √𝜌
−

𝜌
+

(𝑢
−

− 𝑢
+

) 𝑡,

(18)

for 𝜌
−

̸= 𝜌
+

, and

𝑢
𝛿

=

𝑢
+

− 𝑢
−

2

,

𝜔 (𝑡) = 𝜌
+

(𝑢
−

− 𝑢
+

) 𝑡,

(19)

for 𝜌
−

= 𝜌
+

.
We can also justify that the delta shock wave satisfies the

entropy condition:

𝑢
+

< 𝑢
𝛿

< 𝑢
−

, (20)

which means that all the characteristics on both sides of the
delta shock are incoming.

3. The Riemann Solutions for System (9)
In this section, we analyze some basic properties and solve
the Riemann problem for (9).

3.1.The Riemann Solutions for System (9) and (10). System (9)
and (10) have two eigenvalues

𝜆
1

= 𝑢 − 𝜖 (𝛾 + 1) 𝜌
𝛾

, 𝜆
2

= 𝑢 − 𝜖𝜌
𝛾

, (21)

with corresponding right eigenvectors

𝑟
1

= (1, 0)
𝑇

, 𝑟
2

= (𝜌, 𝜖𝛾𝜌
𝛾

)
𝑇

, (22)

satisfying

∇𝜆
1

⋅ 𝑟
1

= −𝜖𝛾 (𝛾 + 1) 𝜌
𝛾−1

̸= 0, ∇𝜆
2

⋅ 𝑟
2

= 0. (23)

So the 1-characteristic field is genuinely nonlinear, and the
2-characteristic field is always linearly degenerate.

Since (9)-(10) and (12) remain invariant under a uniform
expansion of coordinates 𝑡 → 𝛽𝑡 and 𝑥 → 𝛽𝑥, 𝛽 > 0, the
solution is only connected with 𝜉 = 𝑥/𝑡. Thus we should seek
the self-similar solution

(𝑢, 𝜌) (𝑥, 𝑡) = (𝑢, 𝜌) (𝜉) , 𝜉 =

𝑥

𝑡

. (24)

Then, the Riemann problem (9)-(10) and (12) can be reduced
to

−𝜉𝜌
𝜉

+ (𝜌 (𝑢 − 𝜖𝜌
𝛾

))
𝜉

= 0,

−𝜉(𝜌𝑢)
𝜉

+ (𝜌𝑢 (𝑢 − 𝜖𝜌
𝛾

))
𝜉

= 0,

(25)

with (𝑢, 𝜌)(±∞) = (𝑢
±

, 𝜌
±

).
For smooth solutions, system (25) can be rewritten as

(

𝑢 − 𝜖 (𝛾 + 1) 𝜌
𝛾

− 𝜉 𝜌

0 𝑢 − 𝜖𝜌
𝛾

− 𝜉
)(

d𝜌
d𝑢) = 0, (26)

which provides either the general solutions (constant states),

(𝑢, 𝜌) (𝜉) = const, (𝜌 > 0) , (27)

or rarefaction wave, which is wave of the first characteristic
family,

𝑅 : {

𝜉 = 𝑢 − 𝜖 (𝛾 + 1) 𝜌
𝛾

,

𝑢 = 𝑢
−

, 𝜌 < 𝜌
−

,

(28)

or contact discontinuity, which is of the second characteristic
family,

𝐽:{𝜉 = 𝑢 − 𝜖𝜌
𝛾

,

𝑢 = 𝑢
−

+ 𝜖 (𝜌
𝛾

− 𝜌
𝛾

−

) .

(29)

For a bounded discontinuity at 𝜉 = 𝜎
𝜖

, the Rankine-
Hugoniot condition

−𝜎
𝜖

[𝜌] + [𝜌 (𝑢 − 𝜖𝜌
𝛾

)] = 0,

−𝜎
𝜖

[𝜌𝑢] + [𝜌𝑢 (𝑢 − 𝜖𝜌
𝛾

)] = 0,

(30)
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holds, where [𝜌] = 𝜌 − 𝜌
−

and 𝜎
𝜖

is the velocity of the
discontinuity. From (30), we obtain either shock wave, which
is wave of the first characteristic family,

𝑆:
{
{

{
{

{

𝜎
𝜖

= 𝑢 −

𝜖 (𝜌
𝛾+1

− 𝜌
𝛾+1

−

)

𝜌 − 𝜌
−

,

𝑢 = 𝑢
−

, 𝜌 > 𝜌
−

,

(31)

or contact discontinuity, which is of the second characteristic
family,

𝐽:{𝜎𝜖 = 𝑢 − 𝜖𝜌
𝛾

,

𝑢 = 𝑢
−

+ 𝜖 (𝜌
𝛾

− 𝜌
𝛾

−

) .

(32)

Here we notice that the shock wave curve and the rarefaction
wave curve passing through the same point (𝑢

−

, 𝜌
−

) coincid
in the phase plane; that is, (9)-(10) belong to “Temple class”
[24].

Through the point (𝑢
−

, 𝜌
−

), we draw the curve 𝑢 = 𝑢
−

for
𝜌 > 0 in the phase plane, which is parallel to the 𝜌-axis. We
denote it by 𝑅 when 𝜌 < 𝜌

−

and 𝑆 when 𝜌 > 𝜌
−

. Through the
point (𝑢

−

, 𝜌
−

), we draw the curve (29) which intersects the 𝑢-
axis at the point (𝑢

−

− 𝜖𝜌
𝛾

−

, 0), denoted by 𝐽. Then the phase
plane is divided into four regions (see Figure 1). Thus we can
construct the Riemann solutions of system (9)-(10) as follows:

(1) when (𝑢
+

, 𝜌
+

) ∈ I(𝑢
−

, 𝜌
−

), that is, 𝑢
+

> 𝑢
−

and 𝑢
+

<

𝑢
−

+ 𝜖(𝜌
𝛾

− 𝜌
𝛾

−

), the solution is 𝑆 + 𝐽;
(2) when (𝑢

+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

), that is, 𝑢
+

> 𝑢
−

and 𝑢
+

>

𝑢
−

+ 𝜖(𝜌
𝛾

− 𝜌
𝛾

−

), the solution is 𝑅 + 𝐽;
(3) when (𝑢

+

, 𝜌
+

) ∈ III(𝑢
−

, 𝜌
−

), that is, 𝑢
+

< 𝑢
−

and 𝑢
+

>

𝑢
−

+ 𝜖(𝜌
𝛾

− 𝜌
𝛾

−

), the solution is 𝑅 + 𝐽;
(4) when (𝑢

+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

), that is, 𝑢
+

< 𝑢
−

and 𝑢
+

<

𝑢
−

+ 𝜖(𝜌
𝛾

− 𝜌
𝛾

−

), the solution is 𝑆 + 𝐽.

3.2.The Riemann Solutions of System (9) and (11). Systems (9)
and (11) have two eigenvalues:

𝜆
1

= 𝑢 + 𝜖 (1 − 𝛼) 𝜌
−𝛼

, 𝜆
2

= 𝑢 + 𝜖𝜌
−𝛼

, (33)

with corresponding right eigenvectors:

𝑟
1

= (1, 0)
𝑇

, 𝑟
2

= (𝜌, 𝜖𝛼𝜌
−𝛼

)

𝑇

, (34)

satisfying

∇𝜆
1

⋅ 𝑟
1

= −𝜖𝛼 (1 − 𝛼) 𝜌
−𝛼−1

, ∇𝜆
2

⋅ 𝑟
2

= 0. (35)

Thus the 1-characteristic field is genuinely nonlinear and 2-
characteristic field is always linearly degenerate as 0 < 𝛼 <

1, while both the two characteristic fields are fully linearly
degenerate as 𝛼 = 1.

When 0 < 𝛼 < 1, we get rarefaction wave and shock wave
which can be expressed by

𝑅:{𝜉 = 𝑢 + 𝜖 (1 − 𝛼) 𝜌
−𝛼

,

𝑢 = 𝑢
−

, 𝜌 < 𝜌
−

,

𝑆:
{
{

{
{

{

𝜎
𝜖

= 𝑢 +

𝜖 (𝜌
1−𝛼

− 𝜌
1−𝛼

−

)

𝜌 − 𝜌
−

,

𝑢 = 𝑢
−

, 𝜌 > 𝜌
−

,

(36)

or contact discontinuity which can be expressed by

𝐽:{𝜏𝜖 = 𝑢 + 𝜖𝜌
−𝛼

,

𝑢 = 𝑢
−

+ 𝜖 (𝜌
−𝛼

−

− 𝜌
−𝛼

) .

(37)

When 0 < 𝛼 < 1, through the point (𝑢
−

, 𝜌
−

), we draw the
curve 𝑢 = 𝑢

−

for 𝜌 > 0 in the phase plane, denoted by𝑅when
𝜌 < 𝜌

−

and 𝑆 when 𝜌 > 𝜌
−

. Through the point (𝑢
−

, 𝜌
−

), we
draw the curve (37) which has two asymptotes 𝑢 = 𝑢

−

+ 𝜖𝜌
−𝛼

−

and 𝜌 = 0, denoted by 𝐽. Through the point (𝑢
−

− 𝜖/𝜌
𝛼

−

, 𝜌
−

),
we draw the curve (37), which has two asymptotic lines 𝑢 =
𝑢
−

and 𝜌 = 0, denoted by 𝑆
𝛿

. Then the phase plane is divided
into five regions; see Figure 2.

For any given (𝑢
−

, 𝜌
−

), the Riemann solution is showed as
follows:

(1) when (𝑢
+

, 𝜌
+

) ∈ I(𝑢
−

, 𝜌
−

), that is, 𝑢
+

> 𝑢
−

and 𝑢
+

<

𝑢
−

+ 𝜖(𝜌
−𝛼

−

− 𝜌
−𝛼

), the solution is 𝑆 + 𝐽;
(2) when (𝑢

+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

), that is, 𝑢
+

> 𝑢
−

and 𝑢
+

>

𝑢
−

+ 𝜖(𝜌
−𝛼

−

− 𝜌
−𝛼

), the solution is 𝑅 + 𝐽;
(3) when (𝑢

+

, 𝜌
+

) ∈ III(𝑢
−

, 𝜌
−

), that is, 𝑢
+

< 𝑢
−

and 𝑢
+

>

𝑢
−

+ 𝜖(𝜌
−𝛼

−

− 𝜌
−𝛼

), the solution is 𝑅 + 𝐽;
(4) when (𝑢

+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

), that is, 𝑢
+

< 𝑢
−

and 𝑢
+

<

𝑢
−

+ 𝜖(𝜌
−𝛼

−

− 𝜌
−𝛼

), the solution is 𝑆 + 𝐽.

The nonvacuum intermediate constant state (𝑢
∗

, 𝜌
∗

) is given
by

(𝑢
∗

, 𝜌
∗

) = (𝑢
−

, 𝛼√

𝜖

𝑢
+

− 𝑢
−

+ 𝜖𝜌
−𝛼

+

) . (38)

When (𝑢
+

, 𝜌
+

) ∈ V(𝑢
−

, 𝜌
−

), we introduce a definition of
𝛿-measure solution, in which we introduce a definition of a
generalized solution [19, 20, 22, 25] for system (9) and (11).

Suppose that Γ = {𝛾
𝑖

| 𝑖 ∈ 𝐼} is a graph in the closed upper
half-plane {(𝑥, 𝑡) | 𝑥 ∈ R, 𝑡 ∈ [0, +∞)} ⊂ R2 containing
smooth arcs 𝛾

𝑖

, 𝑖 ∈ 𝐼, and 𝐼 is a finite set. 𝐼
0

is subset of 𝐼 such
that an arc 𝛾

𝑘

for 𝑘 ∈ 𝐼
0

starts from the point of the 𝑥-axis;
Γ
0

= {𝑥
0

𝑘

| 𝑘 ∈ 𝐼
0

} is the set of initial points of arc 𝛾
𝑘

, 𝑘 ∈ 𝐼
0

.
Consider the 𝛿-shock wave type initial data

(𝑢
0

(𝑥), 𝜌
0

(𝑥)), where

𝜌
0

(𝑥) = 𝜌
0

(𝑥) + 𝑤
0

𝛿 (Γ
0

) , (39)

𝑢
0

, 𝜌
0

∈ 𝐿
∞

(R;R), 𝑤0𝛿(Γ
0

) = ∑
𝑘∈𝐼

0

𝑤
0

𝑘

𝛿(𝑥 − 𝑥
0

𝑘

), and 𝑤0
𝑘

are
constants for 𝑘 ∈ 𝐼

0

. Furthermore, the pressure 𝑝 = −𝜌−𝛼 in
(11) is a nonlinear termwith respect to 𝜌 defined by 𝑝0(𝑥, 𝑡) =
−𝜌
−𝛼

0

.

Definition 3. A pair of distributions (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡)) and a
graph Γ, where 𝜌(𝑥, 𝑡) and 𝑝(𝑥, 𝑡) have the form

𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) + 𝑤 (𝑥, 𝑡) 𝛿 (Γ) , 𝑝 (𝑥, 𝑡) = −𝜌(𝑥, 𝑡)
−𝛼

,

(40)

𝑢, 𝜌 ∈ 𝐿
∞

(R × R
+

;R), 𝑤(𝑥, 𝑡)𝛿(Γ) = ∑
𝑖∈𝐼

𝑤
𝑖

(𝑥, 𝑡)𝛿(𝛾
𝑖

),

𝑤
𝑖

(𝑥, 𝑡) ∈ 𝐶(Γ) for 𝑖 ∈ 𝐼 is called a generalized 𝛿-shock wave
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(u−, 𝜌−)

II

S

R

J

u

R

J

II

I

III

IV

I

III

IV

𝜌
𝜌

u− − 𝜖𝜌
𝛾
−

u−

𝛾 > 1

uu− − 𝜖𝜌
𝛾
−

u−

0 < 𝛾 < 1

(u−, 𝜌−)

(u−, 𝜌−)

Figure 1: The upper half (𝑢, 𝜌) plane with 𝑝 = 𝜌𝛾 is divided into 4 regions for both cases 𝛾 > 1 and 0 < 𝛾 < 1.

type solution of system (9) with the initial data (𝑢0(𝑥), 𝜌0(𝑥))
if the integral identities

∫

+∞

0

∫

+∞

−∞

(𝜌𝜙
𝑡

+ 𝜌 (𝑢 − 𝜖𝑝) 𝜙
𝑥

) 𝑑𝑥 𝑑𝑡

+∑

𝑖∈𝐼

∫

𝛾

𝑖

𝜔
𝑖

(𝑥, 𝑡)

𝜕𝜙

𝜕𝑙

𝑑𝑙

+ ∫

+∞

−∞

𝜌
0

(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥 + ∑

𝑘∈𝐼

0

𝑤
0

𝑘

𝜙 (𝑥
0

𝑘

, 0) = 0,

∫

+∞

0

∫

+∞

−∞

(𝜌𝑢𝜙
𝑡

+ 𝜌𝑢 (𝑢 − 𝜖𝑝) 𝜙
𝑥

) 𝑑𝑥 𝑑𝑡

+∑

𝑖∈𝐼

∫

𝛾

𝑖

𝑤
𝑖

(𝑥, 𝑡) 𝑢
𝛿

(𝑥, 𝑡)

𝜕𝜙

𝜕𝑙

𝑑𝑙

+ ∫

+∞

−∞

𝜌
0

(𝑥) 𝑢
0

(𝑥) 𝜙 (𝑥, 0) 𝑑𝑥

+ ∑

𝑘∈𝐼

0

𝑤
0

𝑘

𝑢
0

𝛿

(𝑥
0

𝑘

) 𝜙 (𝑥
0

𝑘

, 0) = 0

(41)

hold for any test functions𝜙(𝑥, 𝑡) ∈ D(R×R
+

), where 𝜕𝜙/𝜕𝑙 is
the tangential derivative on the graph Γ, ∫

𝛾

𝑖

𝑑𝑙 is a line integral
along the arc 𝛾

𝑖

, 𝑢
𝛿

(𝑥, 𝑡) is the velocity of the 𝛿-shock wave,
and 𝑢0

𝛿

(𝑥
0

𝑘

) = 𝑢
𝛿

(𝑥
0

𝑘

, 0), 𝑘 ∈ 𝐼
0

.

Theorem4. When (𝑢
+

, 𝜌
+

) ∈ 𝑉, for the Riemann problem (9),
(11), and (12), there is a 𝛿-shock wave solution (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡))
with form

𝑢 (𝑥, 𝑡) = 𝑢
−

+ [𝑢]𝐻 (𝑥 − 𝑥 (𝑡)) ,

𝜌 (𝑥, 𝑡) = 𝜌
−

+ [𝜌]𝐻 (𝑥 − 𝑥 (𝑡)) + 𝑤 (𝑡) 𝛿 (𝑥 − 𝑥 (𝑡)) ,

(42)

which satisfies the integral identities (41) in the sense of
Definition 3, where Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡) = 𝜎𝑡, 𝑡 ≥ 0},
𝜌(𝑥, 𝑡) = 𝜌

−

+ [𝜌]𝐻(𝑥 − 𝑥(𝑡)),

∫

Γ

𝑤 (𝑥, 𝑡)

𝜕𝜙 (𝑥, 𝑡)

𝜕𝑙

= ∫

∞

0

𝑤 (𝑥, 𝑡)

𝑑𝜙 (𝑥, 𝑡)

𝑑𝑡

, (43)

and𝐻(𝑥) is the Heaviside function𝐻(𝑥) = 0(1), 𝑥 < (>)0.

u

S

R

I

II
III

IV

V

(u− − 𝜖𝜌−𝛼− , 𝜌−)

𝜌

u− − 𝜖𝜌−𝛼− u− + 𝜖𝜌−𝛼−
u−

S𝛿

(u−, 𝜌−)

Figure 2: The upper half (𝑢, 𝜌) plane with 𝑝 = 𝜌
𝛼

(0 < 𝛼 < 1) is
divided into 5 regions.

Suppose that Ω ⊂ R × R
+

is a region cut by a smooth
curve Γ = {(𝑥, 𝑡) | 𝑥 = 𝑥(𝑡)} into left and right hand
parts Ω

±

= {(𝑥, 𝑡) | ±(𝑥 − 𝑥(𝑡)) > 0}; (𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡))
is a generalized 𝛿-shock wave solution of system (9) and
(11); functions 𝜌(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are smooth in Ω

±

and have
one-side limits 𝜌

±

, 𝑢
±

on the curve Γ. Then the generalized
Rankine-Hugoniot conditions for 𝛿-shock wave are

d𝑥 (𝑡)
d𝑡

= 𝑢
𝛿

,

d𝜔 (𝑡)
d𝑡

= 𝑢
𝛿

[𝜌] − [𝜌 (𝑢 + 𝜖𝜌
−𝛼

)] ,

d (𝜔 (𝑡) 𝑢
𝛿

)

d𝑡
= 𝑢
𝛿

[𝜌𝑢] − [𝜌𝑢 (𝑢 + 𝜖𝜌
−𝛼

)] ,

(44)

with initial data 𝜔(0) = 0, where [𝜌] = 𝜌
+

− 𝜌
−

, 0 < 𝛼 < 1.
From (44), we obtain

𝑢
𝛿

= ( [2𝜌𝑢 + 𝜖𝜌
1−𝛼

]

+√[2𝜌𝑢 + 𝜖𝜌
1−𝛼

]
2

− 4 [𝜌] [𝜌𝑢 (𝑢 + 𝜖𝜌
−𝛼

)])

× (2 [𝜌])
−1

,
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𝜔 (𝑡) = (( − [𝜖𝜌
1−𝛼

]

+ √[2𝜌𝑢 + 𝜖𝜌
1−𝛼

]
2

− 4 [𝜌] [𝜌𝑢 (𝑢 + 𝜖𝜌
−𝛼

)])

× (2)
−1

) 𝑡,

(45)

as 𝜌
−

̸= 𝜌
+

, and

𝑢
𝛿

=

𝑢
+

− 𝑢
−

+ 𝜖𝜌
−𝛼

+

2

,

𝜔 (𝑡) = 𝜌
+

(𝑢
−

− 𝑢
+

) 𝑡,

(46)

as 𝜌
−

= 𝜌
+

.
We also can justify that the delta shock wave satisfies the

entropy condition:

𝜆
2

(𝑢
+

, 𝜌
+

) ≤ 𝑢
𝛿

≤ 𝜆
1

(𝑢
−

, 𝜌
−

) , (47)

which means that all the characteristics on both sides of the
delta shock are not outcoming.

When 𝛼 = 1, the detailed study can be found in [7]; we
omit it.

Thus, we have obtained the solutions of the Riemann
problem for (9).

4. Limit of Riemann Solutions to the Keyfitz-
Kranzer Type System

In this section, our main purpose is to consider the limits
of the Riemann solutions of (9) and compare them with the
corresponding Riemann solutions to transport equations (8).
Our discussion depends on the order of 𝑢

−

and 𝑢
+

.

4.1. The Limits of Riemann Solutions of (9)-(10). Firstly, we
display the limit of Riemann solution to (9)-(10) for 𝑢

−

< 𝑢
+

.

Lemma 5. In the case 𝑢
−

< 𝑢
+

, when 𝜌
−

≥ 𝜌
+

, (𝑢
+

, 𝜌
+

) ∈

II(𝑢
−

, 𝜌
−

) for arbitrary 𝜖; when 𝜌
−

< 𝜌
+

, there exists 𝜖
0

= (𝑢
+

−

𝑢
−

)/(𝜌
𝛾

+

− 𝜌
𝛾

−

) > 0, such that (𝑢
+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

) when 0 <
𝜖 < 𝜖
0

.

This lemma shows that the curve 𝐽 becomes steeper as 𝜖
is much small. As 𝑢

−

< 𝑢
+

, from Lemma 5, we know that
(𝑢
+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

) when 0 < 𝜖 < 𝜖
0

. Then the Riemann
solutions of (9)-(10) consist of the rarefaction wave 𝑅 and the
contact discontinuity 𝐽 with the intermediate constant state
(𝑢
∗

, 𝜌
∗

) besides the two constant states (𝑢
±

, 𝜌
±

) as this form:

(𝑢
𝜖

, 𝜌
𝜖

) (𝜉) =

{
{
{
{

{
{
{
{

{

(𝑢
−

, 𝜌
−

) , −∞ < 𝜉 ≤ 𝜆
1

(𝑢
−

, 𝜌
−

) ,

𝑅, 𝜆
1

(𝑢
−

, 𝜌
−

) ≤ 𝜉 ≤ 𝜆
1

(𝑢
∗

, 𝜌
∗

) ,

(𝑢
∗

, 𝜌
∗

) , 𝜆
1

(𝑢
∗

, 𝜌
∗

) ≤ 𝜉 < 𝜏
𝜖

(𝑢
+

, 𝜌
+

) , 𝜏
𝜖

< 𝜉 < +∞,

(48)

where 𝜆
1

is determined by (21),

𝜏
𝜖

= 𝑢
+

− 𝜖𝜌
𝛾

+

, (49)

(𝑢
∗

, 𝜌
∗

) = (𝑢
−

,
𝛾

√

𝑢
−

− 𝑢
+

𝜖

+ 𝜌
𝛾

+

) . (50)

When 𝑢
−

< 𝑢
+

, from (50), and when 𝜖 is small enough to
satisfy 0 < 𝜖 ≤ (𝑢

+

− 𝑢
−

)/𝜌
𝛾

+

, we know that a vacuum state
appears in the Riemann solutions of (9)-(10). By (21), (49),
and (50), it is easy to get that

lim
𝜖→0

𝜆
1

(𝑢
−

, 𝜌
−

) = lim
𝜖→0

(𝑢
−

− 𝜖 (𝛾 + 1) 𝜌
𝛾

−

) = 𝑢
−

,

lim
𝜖→0

𝜆
1

(𝑢
∗

, 𝜌
∗

) = lim
𝜖→0

(𝑢
∗

− 𝜖 (𝛾 + 1) 𝜌
𝛾

∗

) = 𝑢
−

,

lim
𝜖→0

𝜏
𝜖

= lim
𝜖→0

(𝑢
+

− 𝜖𝜌
𝛾

+

) = 𝑢
+

,

(51)

which mean that the rarefaction wave 𝑅 and the contact
discontinuity 𝐽: 𝑢

∗

− 𝜖𝜌
𝛾

∗

= 𝑢
+

− 𝜖𝜌
𝛾

+

become the contact
discontinuities 𝐽

1

: 𝑢 = 𝑢
−

and 𝐽
2

: 𝑢 = 𝑢
+

, respectively, as 𝜖 →
0. Meanwhile the vacuum state will fill up the region between
the two contact discontinuities, which is exactly identical
with the corresponding Riemann solutions of system (8).

Secondly, when 𝑢
+

= 𝑢
−

, the Riemann solution contains a
shock wave 𝑆with the propagating speed 𝜎

𝜖

besides the states
(𝑢
±

, 𝜌
±

) for 𝜌
+

> 𝜌
−

, or a rarefaction wave 𝑅 with the speed
𝜆
1

(𝑢, 𝜌) (𝜌
−

≥ 𝜌 ≥ 𝜌
+

) for 𝜌
+

< 𝜌
−

; see Figure 1. From (31)
and (50), we obtain

lim
𝜖→0

𝜎
𝜖

= lim
𝜖→0

(𝑢 −

𝜖 (𝜌
𝛾+1

− 𝜌
𝛾+1

−

)

𝜌 − 𝜌
−

) = 𝑢
−

, (52)

or from (21) and (50), we have

lim
𝜖→0

𝜆
1

(𝑢
−

, 𝜌
−

) = lim
𝜖→0

(𝑢
−

− 𝜖 (𝛾 + 1) 𝜌
𝛾

−

) = lim
𝜖→0

𝜆
1

(𝑢
+

, 𝜌
+

)

= lim
𝜖→0

(𝑢
+

− 𝜖 (𝛾 + 1) 𝜌
𝛾

+

) = 𝑢
−

.

(53)

We conclude that, when 𝑢
−

= 𝑢
+

, the Riemann solution of
system (9)-(10) containing one shock wave or one rarefaction
wave converges to the contact discontinuity solution of the
transport equations (8) as 𝜖 → 0.

Finally, we display the limit of Riemann solutions to (9)-
(10) for 𝑢

−

> 𝑢
+

.

Lemma 6. In the case 𝑢
−

> 𝑢
+

, when 𝜌
−

≤ 𝜌
+

, (𝑢
+

, 𝜌
+

) ∈

IV(𝑢
−

, 𝜌
−

) for arbitrary 𝜖; when 𝜌
−

> 𝜌
+

, there exists 𝜖
1

=

(𝑢
−

−𝑢
+

)/(𝜌
𝛾

−

−𝜌
𝛾

+

) > 0, such that (𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

) when
0 < 𝜖 < 𝜖

1

.

From this lemma we know that the contact discontinuity
𝐽 becomes steeper and steeper when 𝜖 decreases; that is,
(𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

) for small 𝜖. In this case, the Riemann
solution of (9)-(10) consists of a shock wave 𝑆 and a contact
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discontinuity 𝐽 with the intermediate constant state (𝑢
∗

, 𝜌
∗

)

as

(𝑢
𝜖

, 𝜌
𝜖

) =

{
{

{
{

{

(𝑢
−

, 𝜌
−

) , −∞ < 𝜉 < 𝜎
𝜖

,

(𝑢
∗

, 𝜌
∗

) , 𝜎
𝜖

< 𝜉 < 𝜏
𝜖

,

(𝑢
+

, 𝜌
+

) , 𝜏
𝜖

< 𝜉 < +∞,

(54)

where (𝑢
∗

, 𝜌
∗

) is given by (50) and

𝜎
𝜖

= 𝑢
−

−

𝜖 (𝜌
𝛾+1

∗

− 𝜌
𝛾+1

−

)

𝜌
∗

− 𝜌
−

. (55)

When 𝑢
−

> 𝑢
+

, from (50), it is easy to see that

lim
𝜖→0

𝜌
∗

= lim
𝜖→0

𝛾

√

𝑢
−

− 𝑢
+

𝜖

+ 𝜌
𝛾

+

= ∞. (56)

By (55), we obtain

lim
𝜖→0

𝜎
𝜖

= lim
𝜖→0

(𝑢
−

−

𝜖 (𝜌
𝛾+1

∗

− 𝜌
𝛾+1

−

)

𝜌
∗

− 𝜌
−

) = 𝑢
+

. (57)

From (56)-(57) and

lim
𝜖→0

𝜏
𝜖

= lim
𝜖→0

(𝑢
+

− 𝜖𝜌
𝛾

+

) = 𝑢
+

, (58)

we know that 𝑆 and 𝐽 coincide with a new type of nonlinear
hyperbolic wave which is called the delta shock wave in [23].
Compared with the corresponding Riemann solutions of (8),
it is clear to see that the propagation speed of the delta shock
wave here is 𝑢

𝛿

= 𝑢
+

which is different from that of (8).
From (30), we have

𝜎
𝜖

(𝜌
∗

− 𝜌
−

) = 𝜌
∗

(𝑢
∗

− 𝜖𝜌
𝛾

∗

) − 𝜌
−

(𝑢
−

− 𝜖𝜌
𝛾

−

) ,

𝜏
𝜖

(𝜌
+

− 𝜌
∗

) = 𝜌
+

(𝑢
+

− 𝜖𝜌
𝛾

+

) − 𝜌
∗

(𝑢
∗

− 𝜖𝜌
𝛾

∗

) ,

(59)

which mean that

lim
𝜖→0

(𝜎
𝜖

− 𝜏
𝜖

) 𝜌
∗

= 𝑢
+

[𝜌] − [𝜌𝑢] = 𝜌
−

(𝑢
−

− 𝑢
+

) . (60)

It is obvious that

𝜔 (𝑡) = lim
𝜖→0

∫

𝜏

𝜖
𝑡

𝜎

𝜖
𝑡

𝜌
∗

𝑑𝑥 = lim
𝜖→0

(𝜎
𝜖

− 𝜏
𝜖

) 𝜌
∗

𝑡 = 𝜌
−

(𝑢
−

− 𝑢
+

) 𝑡.

(61)

From (61), we obtain that the strength of the delta shock
wave is also different from transport equations (8), whichmay
be due to the different propagation speed of the delta shock
wave. For the limit situation of (9)-(10), the characteristics on
the left side of the delta shock wave will come into the delta
shock wave line 𝑥 = 𝑢

+

𝑡while the characteristics on the right
side of it will be parallel to it. For transport equations (8), the
characteristics on the two sides will come into the delta shock
wave curve𝑥 = 𝑢

𝛿

𝑡. So, the Riemann solution of (9)-(10) does
not converge to solution of (8) as 𝜖 → 0 when 𝑢

−

> 𝑢
+

.

4.2. The Limit of Riemann Solutions of System (9) and (11). In
this subsection, we deal with the limit behavior of Riemann
solutions to system (9) and (11).

Firstly, we display the limit of Riemann solutions to (9)
and (11) for 𝑢

−

< 𝑢
+

.

Lemma 7. For the case 𝑢
−

< 𝑢
+

, when 𝜌
−

≥ 𝜌
+

, (𝑢
+

, 𝜌
+

) ∈

II(𝑢
−

, 𝜌
−

) for arbitrary 𝜖; when 𝜌
−

< 𝜌
+

, then there exists 𝜖
0

=

(𝑢
+

− 𝑢
−

)/(𝜌
−𝛼

−

− 𝜌
−𝛼

+

) > 0 such that (𝑢
+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

) as
0 < 𝜖 < 𝜖

0

.

From Lemma 7, we know that the contact discontinuity
𝐽 becomes steeper as 𝜖 becomes smaller and smaller; that is,
(𝑢
+

, 𝜌
+

) ∈ II(𝑢
−

, 𝜌
−

) for small 𝜖. Then the Riemann solution
of (9) and (11) consists of a rarefaction wave 𝑅 and a contact
discontinuity 𝐽 with the intermediate constant state (𝑢

∗

, 𝜌
∗

)

besides the two constant states (𝑢
±

, 𝜌
±

), which has this form:

(𝑢
𝜖

, 𝜌
𝜖

) =

{
{
{
{

{
{
{
{

{

(𝑢
−

, 𝜌
−

) , −∞ < 𝜉 < 𝜆
1

(𝑢
−

, 𝜌
−

) ,

𝑅, 𝜆
1

(𝑢
−

, 𝜌
−

) ≤ 𝜉 ≤ 𝜆
1

(𝑢
∗

, 𝜌
∗

) ,

(𝑢
∗

, 𝜌
∗

) , 𝜆
1

(𝑢
∗

, 𝜌
∗

) < 𝜉 < 𝜏
𝜖

,

(𝑢
+

, 𝜌
+

) , 𝜏
𝜖

< 𝜉 < +∞,

(62)

where 𝜆
1

, (𝑢
∗

, 𝜌
∗

) are determined by (33) and (38), respec-
tively, and

𝜏
𝜖

= 𝑢
+

+ 𝜖𝜌
−𝛼

+

. (63)

From (38), we obtain

lim
𝜖→0

𝜌
∗

= lim
𝜖→0

𝛼

√

𝜖

𝑢
+

− 𝑢
−

+ 𝜖𝜌
−𝛼

+

= 0, (64)

and then a vacuum state appears in the Riemann solution of
(9)–(11).

By (33), (38), and (63), we get

lim
𝜖→0

𝜆
1

(𝑢
−

, 𝜌
−

) = lim
𝜖→0

𝜆
1

(𝑢
∗

, 𝜌
∗

) = 𝑢
−

,

lim
𝜖→0

𝜏
𝜖

= 𝑢
+

,

(65)

which mean that the rarefaction wave 𝑅 and the contact
discontinuity 𝐽 become the contact discontinuities 𝐽

1

: 𝑢 =

𝑢
−

and 𝐽
2

: 𝑢 = 𝑢
+

, respectively, as 𝜖 → 0. Meanwhile
the vacuum state will fill up the region between the two
contact discontinuities, which is exactly identical with the
corresponding Riemann solution of system (8).

Secondly, when 𝑢
+

= 𝑢
−

, as done in Section 4.1, it is easy
to see that the Riemann solution of (9) and (11) converges to
the contact discontinuity of system (8); we omit it.

Finally, we discuss the limit of Riemann solutions of (9)
and (11) when 𝑢

−

> 𝑢
+

.

Lemma 8. If 𝑢
−

> 𝑢
+

, then there exist 𝜖
1

, 𝜖
2

> 0 such that
(𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

) when 𝜖
2

< 𝜖 < 𝜖
1

; (𝑢
+

, 𝜌
+

) ∈ V(𝑢
−

, 𝜌
−

)

when 0 < 𝜖 < 𝜖
2

.

Proof. When 𝜌
−

≤ 𝜌
+

, it is easy to find that (𝑢
+

, 𝜌
+

) ∈ IV ∪

V(𝑢
−

, 𝜌
−

) for arbitrary 𝜖 directly from Figure 2. On the other
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hand, when 𝜌
−

> 𝜌
+

and (𝑢
+

, 𝜌
+

) ∈ IV ∪ V(𝑢
−

, 𝜌
−

), see
Figure 2 together with (37), we can get that 𝜖 should satisfy
𝑢
+

+𝜖𝜌
−𝛼

+

< 𝑢
−

+𝜖𝜌
−𝛼

−

, which gives 𝜖 < (𝑢
−

−𝑢
+

)/(𝜌
−𝛼

+

−𝜌
−𝛼

−

).
In one word, (𝑢

+

, 𝜌
+

) ∈ IV ∪ V(𝑢
−

, 𝜌
−

) for small 𝜖.
If (𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

), (𝑢
+

, 𝜌
+

) should satisfy 𝑢
+

< 𝑢
−

,
𝑢
+

+ 𝜖𝜌
−𝛼

+

< 𝑢
−

+ 𝜖𝜌
−𝛼

−

, and 𝑢
+

> 𝑢
−

− 𝜖𝜌
−𝛼

+

. From the above
inequalities, we obtain (𝑢

+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

) when 𝜖
2

< 𝜖 <

𝜖
1

, and (𝑢
+

, 𝜌
+

) ∈ V(𝑢
−

, 𝜌
−

) when 0 < 𝜖 < 𝜖
2

, where

𝜖
1

=

𝑢
−

− 𝑢
+

𝜌
−𝛼

+

− 𝜌
−𝛼

−

, 𝜖
2

= (𝑢
−

− 𝑢
+

) 𝜌
𝛼

+

. (66)

The results have been obtained.

When 𝑢
−

> 𝑢
+

and 𝜖
2

< 𝜖 < 𝜖
1

, the Riemann solution
of (9) and (11) consists of a shock wave 𝑆 and a contact
discontinuity 𝐽 with the intermediate state (𝑢

∗

, 𝜌
∗

) besides
the two constant states (𝑢

±

, 𝜌
±

), which is as this form:

(𝑢
𝜖

, 𝜌
𝜖

) =

{
{

{
{

{

(𝑢
−

, 𝜌
−

) , −∞ < 𝜉 < 𝜎
𝜖

,

(𝑢
∗

, 𝜌
∗

) , 𝜎
𝜖

< 𝜉 < 𝜏
𝜖

,

(𝑢
+

, 𝜌
+

) , 𝜏
𝜖

< 𝜉 < +∞,

(67)

where (𝑢
∗

, 𝜌
∗

), 𝜏
𝜖

are determined by (38) and (63), respec-
tively, and

𝜎
𝜖

= 𝑢
−

+

𝜖 (𝜌
1−𝛼

∗

− 𝜌
1−𝛼

−

)

𝜌
∗

− 𝜌
−

. (68)

It is easy to see that

𝜖𝜌
−𝛼

∗

= 𝑢
+

− 𝑢
−

+ 𝜖𝜌
−𝛼

+

. (69)

For given 𝜌
+

> 0, letting 𝜖 → 𝜖
2

= (𝑢
−

− 𝑢
+

)𝜌
𝛼

+

in (69) yields

lim
𝜖→𝜖

2

𝜖𝜌
−𝛼

∗

= lim
𝜖→𝜖

2

(𝑢
+

− 𝑢
−

+ 𝜖𝜌
−𝛼

+

) = 0. (70)

Hence, we deduce that

lim
𝜖→𝜖

2

𝜌
∗

= ∞. (71)

Thus we have the following result.

Lemma 9. Consider

lim
𝜖→𝜖

2

𝑢
∗

= lim
𝜖→𝜖

2

𝜎
𝜖

= lim
𝜖→𝜖

2

𝜏
𝜖

= 𝑢
−

, (72)

where 𝜎
𝜖

, 𝜏
𝜖

is given by (63) and (68), and

lim
𝜖→𝜖

2

∫

𝜎

𝜖
𝑡

𝜏

𝜖
𝑡

𝜌
∗

𝑑𝑥 = (𝑢
−

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡. (73)

Proof. Due to (63) and (68), we get

lim
𝜖→𝜖

2

𝜎
𝜖

= lim
𝜖→𝜖

2

(𝑢
−

+

𝜖 (𝜌
1−𝛼

∗

− 𝜌
1−𝛼

−

)

𝜌
∗

− 𝜌
−

) = 𝑢
−

,

lim
𝜖→𝜖

2

𝜏
𝜖

= lim
𝜖→𝜖

2

(𝑢
+

+ 𝜖𝜌
−𝛼

+

) = 𝑢
−

.

(74)

Thus it can be seen from (74) that shock wave 𝑆 and contact
discontinuity 𝐽 will coalesce together when 𝜖 arrives at 𝜖

2

.
Using the Rankine-Hugoniot condition for shock 𝑆 and

contact discontinuity 𝐽, we have

𝜎
𝜖

(𝜌
∗

− 𝜌
−

) = 𝜌
∗

(𝑢
∗

+ 𝜖𝜌
−𝛼

∗

) − 𝜌
−

(𝑢
−

+ 𝜖𝜌
−𝛼

−

) ,

𝜏
𝜖

(𝜌
+

− 𝜌
∗

) = 𝜌
+

(𝑢
+

+ 𝜖𝜌
−𝛼

+

) − 𝜌
∗

(𝑢
∗

+ 𝜖𝜌
−𝛼

∗

) ,

(75)

which implies that

lim
𝜖→𝜖

2

(𝜎
𝜖

− 𝜏
𝜖

) 𝜌
∗

= (𝑢
−

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) . (76)

It is obvious that

lim
𝜖→𝜖

2

∫

𝜏

𝜖
𝑡

𝜎

𝜖
𝑡

𝜌
∗

𝑑𝑥 = lim
𝜖→𝜖

2

(𝜎
𝜖

− 𝜏
𝜖

) 𝜌
∗

𝑡=(𝑢
−

[𝜌]−[𝜌 (𝑢 − 𝜖𝑝)]) 𝑡.

(77)

The proof is completed.

From Lemma 5, it can be concluded that the shock wave
𝑆 and contact discontinuity 𝐽 will coincide when 𝜖 tends to
𝜖
2

. On the other hand, for 𝜌
+

̸= 𝜌
−

, by substituting 𝜖 = 𝜖
2

=

(𝑢
−

− 𝑢
+

)𝜌
𝛼

+

into (45), we have

𝑢
𝛿

= 𝑢
−

,

𝜔 (𝑡) = (𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡.

(78)

So, we obtain that the quantities 𝑢
𝛿

, 𝜔(𝑡) and the limits
of 𝑢
∗

, 𝜎
𝜖

and 𝜏
𝜖

are consistent with (45) as proposed for the
Riemann solutions of (9) and (11) for 𝜌

+

̸= 𝜌
−

when we take
𝜖 = 𝜖
2

. Otherwise, the assert is obviously true when 𝜌
+

= 𝜌
−

.
Thus, it uniquely determines that the limit of the Riemann
solutions to system (9) and (11) when 𝜖 → 𝜖

2

in the case
(𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

) is just the delta shock solution of (9) and
(11) in the case (𝑢

+

, 𝜌
+

) ∈ 𝑆
𝛿

, where the curve 𝑆
𝛿

is actually the
boundary between the regions IV(𝑢

−

, 𝜌
−

) and V(𝑢
−

, 𝜌
−

).

Theorem 10. In the case 𝑢
−

> 𝑢
+

, for each fixed 𝜖 ∈ (𝜖
2

, 𝜖
1

),
assume that (𝑢𝜖, 𝜌𝜖) is a solution containing the shock wave 𝑆
and contact discontinuity 𝐽 of (9) and (11)with Riemann initial
data, constructed in Section 3.2. Then, (𝑢𝜖, 𝜌𝜖) converges in the
sense of distributions, when 𝜖 → 𝜖

2

, and the limit functions
𝜌 and 𝜌𝑢 are the sum of step function and a 𝛿-measure with
weights

(𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝑡, (𝑢
𝛿

[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝑡,

(79)

respectively, and then form a delta shock solutions of (9) and
(11) when 𝜖 → 𝜖

2

.

Proof. When (𝑢
+

, 𝜌
+

) ∈ IV(𝑢
−

, 𝜌
−

), let 𝜉 = 𝑥/𝑡; then for each
fixed 𝜖 > 0, the Riemann solutions are determined by

(𝑢
𝜖

, 𝜌
𝜖

) (𝜉) =

{
{

{
{

{

(𝑢
−

, 𝜌
−

) , −∞ < 𝜉 < 𝜎
𝜖

,

(𝑢
𝜖

∗

, 𝜌
𝜖

∗

) , 𝜎
𝜖

< 𝜉 < 𝜏
𝜖

,

(𝑢
+

, 𝜌
+

) , 𝜏
𝜖

< 𝜉 < ∞,

(80)
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which satisfy

∫

∞

−∞

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫

∞

−∞

𝜌
𝜖

(𝜉) 𝜙 (𝜉) 𝑑𝜉 = 0,

∫

∞

−∞

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫

∞

−∞

𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) 𝜙 (𝜉) 𝑑𝜉 = 0,

(81)

for any test function 𝜙 ∈ 𝐶∞
0

(−∞,∞).
The first integral in (81) can be decomposed into

{∫

𝜎

𝜖

−∞

+∫

𝜏

𝜖

𝜎

𝜖

+∫

∞

𝜏

𝜖

} (𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉.

(82)

The sum of the first and the last terms in (82) is

∫

𝜎

𝜖

−∞

(𝜉 − (𝑢
−

− 𝜖𝑝
−

)) 𝜌
−

𝜙
󸀠

(𝜉) 𝑑𝜉

+ ∫

∞

𝜏

𝜖

(𝜉 − (𝑢
+

− 𝜖𝑝
+

)) 𝜌
+

𝜙
󸀠

(𝜉) 𝑑𝜉

= −𝜌
−

(𝑢
−

− 𝜖𝑝
−

) 𝜙 (𝜎
𝜖

) + 𝜌
+

(𝑢
+

− 𝜖𝑝
+

) 𝜙 (𝜏
𝜖

)

+ 𝜌
−

𝜎
𝜖

𝜙 (𝜎
𝜖

) − 𝜌
+

𝜏
𝜖

𝜙 (𝜏
𝜖

)

− 𝜌
−

∫

𝜎

𝜖

−∞

𝜙 (𝜉) 𝑑𝜉 − 𝜌
+

∫

∞

𝜏

𝜖

𝜙 (𝜉) 𝑑𝜉.

(83)

Letting 𝜖 → 𝜖
2

in (83), we have

lim
𝜖→𝜖

2

(∫

𝜎

𝜖

−∞

+∫

∞

𝜏

𝜖

) (𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

= ([𝜌 (𝑢 − 𝜖𝑝)] − 𝑢
𝛿

[𝜌]) 𝜙 (𝑢
𝛿

)

− ∫

∞

−∞

𝜌
0

(𝜉 − 𝑢
𝛿

) 𝜙 (𝜉) 𝑑𝜉,

(84)

where 𝜌
0

(𝜉) = 𝜌
−

+ [𝜌]𝐻(𝜉 − 𝜎) and 𝐻 is the Heaviside
function.

The second term in (82) can be calculated by

∫

𝜏

𝜖

𝜎

𝜖

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉

= −𝜌
𝜖

∗

(𝑢
𝜖

∗

− 𝜖𝑝 (𝜌
𝜖

∗

)) (𝜙 (𝜎
𝜖

) − 𝜙 (𝜏
𝜖

))

− 𝜌
𝜖

∗

∫

𝜏

𝜖

𝜎

𝜖

𝜙𝜉 𝑑𝜉 + 𝜌
𝜖

∗

(𝜏
𝜖

𝜙𝜏
𝜖

− 𝜎
𝜖

𝜙 (𝜎
𝜖

)) .

(85)

By lim
𝜖→𝜖

2

𝑢
𝜖

∗

= lim
𝜖→𝜖

2

𝜎
𝜖

= lim
𝜖→𝜖

2

𝜏
𝜖

= 𝑢
𝛿

= 𝑢
−

, we
obtain

lim
𝜖→𝜖

2

∫

𝜏

𝜖

𝜎

𝜖

(𝜉 − (𝑢
𝜖

(𝜉) − 𝜖𝑝 (𝜌
𝜖

))) 𝜌
𝜖

(𝜉) 𝜙
󸀠

(𝜉) 𝑑𝜉 = 0. (86)

Then, from (81)
1

, (84), and (86), we get that

lim
𝜖→𝜖

2

∫

∞

−∞

(𝜌
𝜖

(𝜉) − 𝜌
0

(𝜉 − 𝑢
𝛿

)) 𝜙 (𝜉) 𝑑𝜉

= (𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜙 (𝑢
𝛿

)

(87)

holds for any test function 𝜙 ∈ 𝐶∞
0

(−∞,∞).
With the same reason as above, we have

lim
𝜖→𝜖

2

∫

∞

−∞

(𝜌
𝜖

(𝜉) 𝑢
𝜖

(𝜉) − 𝜌
0

𝑢
0

(𝜉 − 𝑢
𝛿

)) 𝜙 (𝜉) 𝑑𝜉

= (𝑢
𝛿

[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝜙 (𝑢
𝛿

) .

(88)

Finally, we study the limits of 𝜌𝜖 and 𝜌𝜖𝑢𝜖 as 𝜖 → 𝜖
2

, by
tracing the time-dependence of weights of the 𝛿-measure.

Let 𝜑(𝑥, 𝑡) ∈ 𝐶
∞

0

((−∞,∞) × [0,∞)) and set 𝜑(𝜉, 𝑡) :=
𝜑(𝜉𝑡, 𝑡)); then we obtain

lim
𝜖→𝜖

2

∫

∞

0

∫

∞

−∞

𝜌
𝜖

(

𝑥

𝑡

) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= lim
𝜖→𝜖

2

∫

∞

0

𝑡 (∫

∞

−∞

𝜌
𝜖

(𝜉) 𝜑 (𝜉, 𝑡) 𝑑𝜉) 𝑑𝑡.

(89)

On the other hand,

lim
𝜖→𝜖

2

∫

∞

−∞

𝜌
𝜖

(𝜉) 𝜑 (𝜉, 𝑡) 𝑑𝜉

= ∫

∞

−∞

𝜌
0

(𝜉 − 𝑢
𝛿

) 𝜑 (𝜉, 𝑡) 𝑑𝜉

+ (𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝜉, 𝑡)

= 𝑡
−1

∫

∞

−∞

𝜌
0

(𝑥 − 𝑢
𝛿

𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥

+ (𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑢
𝛿

𝑡, 𝑡) .

(90)

By (89) and (90), we get

lim
𝜖→𝜖

2

∫

∞

0

∫

∞

−∞

𝜌
𝜖

(

𝑥

𝑡

) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

∞

0

∫

∞

−∞

𝜌
0

(𝑥 − 𝑢
𝛿

𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

0

𝑡 (𝑢
𝛿

[𝜌] − [𝜌 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑥, 𝑡) 𝑑𝑡.

(91)

With the same reason as before, we obtain

lim
𝜖→𝜖

2

∫

∞

0

∫

∞

−∞

𝜌
𝜖

(

𝑥

𝑡

) 𝑢
𝜖

(

𝑥

𝑡

) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫

∞

0

∫

∞

−∞

𝜌
0

𝑢
0

(𝑥 − 𝑢
𝛿

𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

0

𝑡 (𝑢
𝛿

[𝜌𝑢] − [𝜌𝑢 (𝑢 − 𝜖𝑝)]) 𝜑 (𝑥, 𝑡) 𝑑𝑡.

(92)

Thus the result has been obtained.
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When 𝑢
−

> 𝑢
+

and 0 < 𝜖 < 𝜖
2

, (𝑢
+

, 𝜌
+

) ∈ V(𝑢
−

, 𝜌
−

). So
the Riemann solution of (9) and (11) consists of a delta shock
wave besides the constant states (𝑢

±

, 𝜌
±

). We want to observe
the behavior of strength and propagation speed of the delta
shock wave when 𝜖 decreases and finally tends to zero.

For 𝜌
+

̸= 𝜌
−

, letting 𝜖 → 0 in (45), we have

lim
𝜖→0

𝑢
𝛿

(𝜖) =

√𝜌
+

𝑢
+

+ √𝜌
−

𝑢
−

√𝜌
+

+ √𝜌
−

,

lim
𝜖→0

𝜔 (𝑡, 𝜖) = √𝜌
−

𝜌
+

(𝑢
−

− 𝑢
+

) 𝑡.

(93)

For the special situation 𝜌
+

= 𝜌
−

, by (46), we can obtain the
same result as above.

From the above discussion, we can conclude that the limit
of the strength and propagation speed of the delta shock wave
in Riemann solution of system (9) and (11) are in accordance
with those of transport equations (8) with the same Riemann
initial data. That is to say, the delta shock solution to system
(9) and (11) converges to the delta shock solution to transport
equations (8) as pressure vanishes.

Combining the results of the above, when (𝑢
+

, 𝜌
+

) ∈

IV(𝑢
−

, 𝜌
−

), we conclude that the shock wave and a contact
discontinuity coincide as a delta shock wave when 𝜖 →

𝜖
2

. As 𝜖 continues to drop and goes to zero eventually, the
delta shock solution is nothing but the Riemann solution to
transport equations (8).

5. Conclusion

So far, the discussion for limit of Riemann solutions to the
nonsymmetric system of Keyfitz-Kranzer type with both
the polytropic gas and generalized Chaplygin gas has been
completed. From the above analysis, as the pressure vanishes,
there appear delta shock wave, vacuum state, and contact
discontinuity when 𝑢

−

> 𝑢
+

, 𝑢
−

< 𝑢
+

, and 𝑢
−

= 𝑢
+

,
respectively. For the polytropic gas, different from cases of
some other systems such as Euler equations or relativistic
Euler equations, the delta shock wave is not the one of
transport equations as parameter 𝜖 tends to zero. For the
generalized Chaplygin gas, the delta shock wave appears as
parameter 𝜖 tends to 𝜖

2

, depending only on the Riemann
initial data. Then as 𝜖 becomes smaller and goes to zero at
last, the delta shockwave solution is the exact one of transport
equations.
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