
Research Article
Flash-Aware Page Replacement Algorithm

Guangxia Xu,1 Lingling Ren,1 and Yanbing Liu2

1 School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Correspondence should be addressed to Guangxia Xu; 38742571@qq.com

Received 19 May 2014; Accepted 19 July 2014; Published 12 August 2014

Academic Editor: Massimo Scalia

Copyright © 2014 Guangxia Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the limited main memory resource of consumer electronics equipped with NAND flash memory as storage device, an
efficient page replacement algorithm called FAPRA is proposed for NAND flash memory in the light of its inherent characteristics.
FAPRA introduces an efficient victim page selection scheme taking into account the benefit-to-cost ratio for evicting each victim
page candidate and the combined recency and frequency value, as well as the erase count of the block to which each page belongs.
Since the dirty victim page often contains clean data that exist in both themainmemory and theNANDflashmemory based storage
device, FAPRA only writes the dirty data within the victim page back to the NAND flash memory based storage device in order
to reduce the redundant write operations. We conduct a series of trace-driven simulations and experimental results show that our
proposed FAPRA algorithm outperforms the state-of-the-art algorithms in terms of page hit ratio, the number of write operations,
runtime, and the degree of wear leveling.

1. Introduction

Recently, more and more consumer electronics are equipped
with NAND flash memory as storage media due to its
attractive features such as fast data access speed, small
size, shock resistance, low power consumption, increasing
capacity, and decreasing cost [1]. Because the main memory
resource of consumer electronics is very limited and it is not
enough for running applicationswith largememory footprint
requirements or multiple applications at the same time in the
main memory, efficient page replacement algorithms should
be designed for NAND flash memory based storage media
to evict pages that will be least likely to be referenced in
the near future and obtain free page frames in the main
memory.

Traditional page replacement algorithms are designed for
magnetic disk to maximize their page hit ratios under the
assumption that the I/O operation costs of magnetic disk are
equal andmagnetic disk can be overwritten.However, the I/O
operation costs of NAND flash memory are asymmetric and
NAND flash memory only supports the out-of-place update
scheme. Therefore, traditional page replacement algorithms
are not available for use to NAND flash memory based

storage media. In order to improve the performance of
the NAND flash-based storage system, a number of page
replacement algorithms have been designed for the NAND
flash-based storage systems by modifying the original LRU
algorithm to evict the clean pages preferentially. For example,
CFLRU [2], DL-CFLRU/E [3], LRU-WSR [4], and CCF-LRU
[5] are proposed to select the clean pages as the victim pages
preferentially. Therefore, these page replacement algorithms
designed for NAND flash-based storage systems show low
page hit ratios.

In order to keep a high page hit ratio for NAND flash
based storage systems and reduce the number of write
operations to NAND flash based storage systems, this paper
proposes an efficient page replacement algorithm for NAND
flash memory in the light of its unique characteristics, which
is called FAPRA. FAPRA focuses on preventing the serious
degradation of page hit ratio, and reducing the number of
write operations, as well as lowering the degree of wear
leveling of NAND flash memory. The contributions of our
paper can be summarized as follows.
(1) FAPRA introduces an efficient victim page selection

scheme, which takes into account the benefit-to-cost ratio for
evicting each victim page candidate, the combined recency

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 136246, 11 pages
http://dx.doi.org/10.1155/2014/136246



2 Mathematical Problems in Engineering

and frequency value, and the erase count of the block towhich
each page belongs.
(2) Since the dirty victim page often contains clean

data that exist in both the main memory and NAND flash
memory, FAPRA only writes the dirty data within the victim
page back to reduce the redundant write operations in terms
of clean data.

We conduct a series of trace-driven simulations with
real traces and experimental results show that our proposed
FAPRA algorithm outperforms existing page replacement
algorithms designed for NAND flash memory.

The rest of this paper is organized as follows. Section 2
describes the overview of NAND flash memory. In Section 3,
we briefly review the related work. In Section 4, we present
the detailed design of our proposed FAPRA algorithm.
In Section 5, we show performance evaluation. Finally, we
conclude our work in Section 6.

2. Background

NAND flash memory consists of blocks and each block
contains a fixed number of pages. NAND flash memory
performs three basic operations, which are read, write, and
erase operation. Read operation is responsible for reading
data from a target page and write operation is used to write
data to a target page. Erase operation is in charge of erasing
a block. Therefore, the basic unit of read and write operation
is a page, while the basic unit of erase operation is a block, as
listed in Table 1.

NAND flashmemory shows several inherent characteris-
tics. Firstly, NAND flash memory presents the erase-before-
write hardware constraint. Namely, once a page is written,
it should be erased in advance before it is written again.
NAND flash memory adopts the out-of-place update scheme
to address this hardware constraint. Secondly, the erase count
of each block is limited, typically 10,000∼100,000 times. If the
erase count of a block exceeds this threshold value, the block
will beworn out and suffer from frequentwrite errors. Finally,
the costs of write operation and read operation of NAND
flash memory are asymmetric in terms of access time and
energy consumption, as shown in Table 1 [6].

3. Related Work

The least recently used algorithm (LRU) is widely used in
most modern operating systems to maximize the page hit
ratio. LRU works on the idea that pages that have been most
heavily used in the past few instructions are most likely to
be used heavily in the next few instructions too. Therefore,
LRU keeps track of the recently referenced time of each
page and evicts the least recently referenced page to improve
the page hit ratio. LRU is customized for magnetic disk
under the assumption that the magnetic disk supports in-
place update scheme and its I/O costs for read and write
operation are equal. ButNANDflashmemory shows different
inherent characteristics, which are the out-of-place update
scheme, as well as the asymmetric I/O costs for read, write,
and erase operation. When LRU is directly implemented
on the NAND flash memory based storage media, LRU

Table 1: The characteristics of NAND flash memory.

Basic
operation

Access
time

Energy
consumption

Access
granularity

Read 47.2 𝜇s 679 nJ Page (512 B)
Write 533 𝜇s 7.66 𝜇J Page (512 B)
Erase 3ms 43.2 𝜇J Block (16 KB)

will evict the least recently referenced page regardless of
whether this page is dirty or not. If the victim page that is
selected each time is dirty, writing the dirty victim page back
to NAND flash memory based storage media will incur a
number of write operations. In order to reduce the number of
write operations, a number of page replacement algorithms
have been studied for NAND flash memory based storage
media by modifying the LRU and evicting the clean pages
preferentially.

Park et al. proposed the first page replacement algorithm
for NAND flash memory, which is called CFLRU [2, 7].
CFLRU divides the LRU list into two regions, which are the
working region and clean-first region, respectively.The pages
in the working region have high likelihood to be referenced
in the near future and most of page hits are generated in this
region, while the clean-first region contains the pages that
are least recently referenced. In order to reduce the number
of write operations, it preferentially evicts the clean pages
within the clean-first region by the LRU order. The page hit
ratio of CFLRU is influenced by the window size of the clean-
first region. Based on CFLRU, Yoo et al. proposed three page
replacement algorithms for NAND flash memory [3], which
are the CFLRU/C, CFLRU/E, and DL-CFLRU/E. CFLRU/C
enhances CFLRU by evicting the dirty page with the lowest
access frequency in the clean-first region while CFLRU/E
improves CFLRU by evicting the dirty page belonging to the
block with the lowest erase count in the clean-first region.
DL-CFLRU/E maintains two page lists, which are the clean
page list and the dirty page list. It first evicts the pages within
the clean page list by the LRU order. If the clean page list is
empty, DL-CFLRU/E evicts the dirty page belonging to the
block with the lowest erase count within the window of the
dirty page list. Jung et al. also proposed a page replacement
algorithm for NAND flash memory called LRU-WSR [4].
It enhances the LRU by delaying the eviction of not-cold
dirty page from the buffer cache to NAND flash memory in
order to reduce the number of write operations and prevent
excessive degradation of the page hit ratio. Li et al. proposed
an efficient buffer replacement algorithm called Cold-Clean-
First LRU (CCF-LRU) for NAND flash memory based
database systems [5], which also introduces a cold-detection
algorithm to divide the victim page candidates into hot and
cold ones. CCF-LRU preferentially evicts the page that is cold
and clean. Shen et al. proposed an adaptive page replacement
algorithm called APRA for NAND flash memory storages
[8]. APRA maintains two LRU lists with the same size. The
first LRU list stores all the victim page candidates and has a
window on the LRUposition.The second LRU list, also called
a ghost list, is just used to store the metadata of the pages
evicted from the first LRU list. APRA uses a learning rule to



Mathematical Problems in Engineering 3

adaptively and continually revise the size of the window in
response to diverse workloads with different access patterns.
Lin et al. proposed a page replacement algorithm called EPRA
for different kinds of NANDflashmemory with different cost
ratios of write operation to read operation [9]. In EPRA, each
victim page candidate is assigned a weighted value and the
victim page candidate with the least weighted value is evicted.
Ou et al. proposed an efficient buffer management algorithm
called CFDC for NANDflash-based data systems [10]. CFDC
maintains a page list and divides into two regions, which
are the working region and the priority region, respectively.
The working region is used to keep the hot pages that are
frequently and recently revisited, while the priority region
contains the victim page candidates that will be evicted in
the near future. The priority region consists of a clean page
list and a priority queue of dirty-page clusters. It first evicts
the clean pages within the clean page list of the priority
region. If the clean page list is empty, the priority queue is
scanned and the cluster with the lowest priority is evicted. Lin
et al. proposed a greedy page replacement algorithm called
GDLRU for flash-aware swap system [11]. GDLRU introduces
the subpaging technique to divide the dirty pages within the
main memory into a fixed number of subpages. GDLRU also
first evicts the clean pages within the page list. If there is no
clean page within the page list, the dirty page with the least
dirty subpages is selected as a victim page and flushed into
theNANDflash-based storage device. Lin et al. also proposed
an adaptive buffer replacement algorithm called HDC for
NAND flash memory-based databases [12]. Each page is
assigned with a replacing index. HDC selects a page with the
smallest replacing index as a victim page instead of selecting
the clean pages preferentially. Xu et al. proposed a new page
replacement algorithm called CLRU for NAND flash-based
consumer electronics [13]. CLRU reduces the number ofwrite
operations to NAND flash-based storage devices by delaying
the eviction of cold dirty pages and improves the page hit ratio
by first evicting cold pages.

4. Proposed Page Replacement Algorithm

This section presents an efficient page replacement algorithm
called FAPRA for NAND flash memory. Our proposed
FAPRA algorithm focuses on reducing the number of write
operations and runtime, preventing the serious degradation
of page hit ratio and lowering the degree of wear leveling of
NAND flash memory to extend the lifetime of NAND flash
memory. Before describing our proposed FAPRA itself, the
architecture of our NAND flash memory storage system is
explained in the first part of this section. Next, the design
principles, basic idea, and related definitions of our proposed
FAPRA algorithm are given in the second part of this section.
Then, the third part of this section presents the victim
page selection scheme and an example of our proposed
FAPRA algorithm. Finally, the performance overhead of our
proposed FAPRA algorithm is discussed in the fourth part of
this section.

4.1. NAND Flash Memory Storage System Architecture. The
architecture of our NAND flash memory storage system

Linux 2.6.18

Page replacement algorithm

FTL
Address translatorGarbage collector

NAND flash memory

Page 1 Page 2 Page n

Block 1

Page 1 Page 2 Page n

Block m

· · · · · · · · ·

Figure 1: The architecture of our NAND flash memory storage
system.

is shown in Figure 1. The page replacement algorithm is
designed for Linux kernel in the light of the inherent
characteristics of NAND flash memory. Our NAND flash
memory storage system architecture mainly contains the
flash translation layer (FTL), Linux operating system, and
NAND flash memory. FTL is a software module between
the traditional file system and the NAND flash memory
based storage device. FTL [14–16], which provides address
translator and garbage collector, is responsible for hiding
the inherent characteristics of NAND flash memory and
emulating NAND flash memory as a block device.

4.2. Proposed FAPRAAlgorithm. Intensive dirty victim pages
written back to NAND flash memory based storage media
could not only generate a large number of write operations
to NAND flash memory and result in using up the free
space of NAND flash memory based storage media quickly,
but also incur the garbage collection operation with high
energy consumption frequently to reclaimgarbage andobtain
free space for NAND flash memory. Therefore, existing page
replacement algorithms customized forNANDflashmemory
enhance the LRU by preferentially evicting the clean pages
and delaying the eviction of the dirty pages to reduce the
number of write operations.

Because access frequency and hot degree of page could
also influence the page hit ratio of page replacement algo-
rithm like access recency, CFLRU/C considers the access
frequency of each dirty page with the window during the
selection of victim page, while both LRU-WSR andCCF-LRU
introduce cold-detection scheme to divide all the victim page
candidates into hot and cold ones and preferentially evict the
cold pages to improve the page hit ratio.

The erase count of the block can influence the lifetime of
NAND flash memory. If a dirty page belonging to the block
with a large erase count is evicted and written back to NAND
flashmemory, the corresponding flash pages within the block
will be marked invalid and this block will be reclaimed by
garbage collection operation for obtaining free space. In this
case, the erase count of this block will increase and may
exceed the threshold value.

Therefore, the principles for designing an efficient page
replacement algorithm for NAND flash memory based stor-
age media are reducing the number of write operations, as



4 Mathematical Problems in Engineering

C C D D

D D D D
Dirty victim page 

Be divided to a set of 

C Clean subpage

D Dirty subpage

candidate
subpages

Figure 2: The process of divding the dirty main memory page.

well as considering the access recency, access frequency, and
the erase count of the block to which each page belongs when
selecting a victim page. In order to achieve the above design
principles, this paper proposes an efficient page replacement
algorithm called FAPRA forNANDflashmemory in the light
of the unique characteristics of NAND flash memory.

Existing page replacement algorithms designed for
NAND flash memory write the dirty victim page back to
NAND flash memory fully when a page fault happens [17].
The typical sizes of the main memory page and flash page
are 4KB and 512 B. Therefore, writing a full dirty victim
page back to NAND flash memory will result in eight write
operations. Li et al. reported that the dirty victim page often
contains clean data [6]. In this case, some of these eight write
operations are redundant and the redundant write operations
should be eliminated because thewrite operation is costly and
intensive write operations will use up the free space of NAND
flash memory quickly.

In order to identify the clean data, our proposed FAPRA
algorithm introduces the subpaging technique used by Li
et al. and divides each dirty victim page candidate in themain
memory ito a fixed number of subpages that are of the same
size, as illustrated in Figure 2. The size of each subpage is
equal to that of flash page and each subpage has an additional
flag called dirty flag. If the subpage in the main memory is
different from its copy in the NAND flash memory based
storage device, its dirty flag is set and it is considered as dirty
subpage. If the subpage in the mainmemory is the same as its
copy, its dirty flag keeps unset and it is called clean subpage.

As illustrated in Figure 3, FAPRA maintains two page
lists, which are the mixed page list and full dirty page list.
The mixed page list contains all the clean pages and the
partial dirty pages, while the full dirty page list links all
the full dirty pages. The page in which all the subpages are
dirty is considered as full dirty page, while the dirty page in
which partial subpages are clean is referred to as partial dirty
page.

We define the benefit-to-cost ratio for evicting a victim
page candidate as the free space saved for NAND flash
memory based storage device to the cost for reading the dirty
subpages and writing them back to NAND flash memory
based storage device. Then, the benefit-to-cost ratio for
evicting the victim page candidate 𝑃 is denoted by BCR(𝑃)
and expressed as follows:

BCR (𝑃) = 1 − 𝑢
1 + 𝑢

(1)

C1 PD1 PD2 C2 C3 PD3Mixed page list

FD1 FD2 FD3 FD4 FD5 FD6Full dirty page list

Clean page

Partial dirty page

FD Full dirty page

PD

C

Figure 3: The example of FAPRA.

with

𝑢 =
𝑛

𝑚
, (2)

where 𝑢 is the percentage of dirty subpages within the victim
page candidate 𝑃. 𝑚 and 𝑛 are the total number of subpages
and the number of dirty subpages within the victim page
candidate 𝑃, respectively. The terms 1 − 𝑢 and 1 + 𝑢 represent
the free space of NAND flash memory that is saved and the
cost for reading the whole victim page candidate in order to
read dirty subpages and writing them back to NAND flash
memory based storage device. The benefit-to-cost ratio for
evicting a clean victim page candidate is 1 because it has
no dirty subpages, while that for evicting a full victim page
candidate is 0 because all the subpages within it are dirty. It
can be seen that evicting a dirty page is much more costly
than evicting a clean page.

The combined recency and frequency value of the victim
page candidate 𝑃 is denoted by CRFV(𝑃) and is calculated as
follows:

CRFV (𝑃) =
𝑘

∑
𝑖=1

𝐹 (𝑡𝑐 𝑡 − 𝑡𝑝𝑖 𝑡) (3)

with

𝐹 (𝑥) = (
1

√2
)

𝑥

, (4)

where 𝑡𝑐 𝑡 is the current time and {𝑡𝑝1 𝑡, 𝑡𝑝2 𝑡, . . . , 𝑡𝑝𝑖 𝑡, . . . ,
𝑡𝑝𝑘 𝑡} are the recently referenced times of the victim page
candidate 𝑃. The system time is designed to be an integer
value and is incremented by one on each page reference.
The combined recency and frequency value of each page
considers access recency and access frequency of each page to
quantify the likelihood that the page will be referenced in the
near future. Because of the combined recency and frequency
value, the page hit ratio of page replacement algorithm can be
improved.

4.3.The Victim Page Selection Scheme. Our proposed FAPRA
algorithm introduces an efficient victim page selection
scheme to select a victim page for replacing, which is called
BCE and takes into account the benefit-to-cost ratio for
evicting each victim page candidate, the combined recency



Mathematical Problems in Engineering 5

Algorithm VictimPageSelection
Input: Mixed page list; Full dirty page list
Output: Victim page
(1) if (the mixed page list is not empty)
(2) for (each page within the mixed page list)
(3) victim page =The page with the biggest selecting index value;
(4) end for
(5) end if
(6) else
(7) for (each page within the full dirty page list)
(8) victim page = the full dirty page with the biggest selecting index value;
(9) end for
(10) end else

Algorithm 1: The pseudocode for the victim page selection scheme.

and frequency value of each victim page candidate, and the
erase count of the block to which each page belongs. BCE
assigns a selecting index value to each victim page candidate
within the mixed page list, which is calculated as follows:

SIV (𝑃) = BCR (𝑃) × 1

CRFV (𝑃)
×
𝜀max − 𝜀min + 1

𝑃erase count − 𝜀min + 1
,

(5)

where SIV(𝑃) is the selecting index value of themainmemory
page 𝑃 and 𝑃erase count is the erase count of the block to which
themainmemory page 𝑃 belongs. 𝜀max is themaximum erase
count of all blocks in the NAND flash memory, while 𝜀min is
the minimum erase count of all blocks in the NAND flash
memory.

Because the benefit-to-cost ratio for evicting each full
dirty page is 0, the selecting index value of the full dirty page
cannot be defined as (5). We define the selecting index value
of the full dirty page 𝑃 by not considering the benefit-to-cost
ratio for evicting each full dirty page and it is calculated as
follows:

1

CRFV (𝑃)
×
𝜀max − 𝜀min + 1

𝑃erase count − 𝜀min + 1
. (6)

When the number of free page frames in the main mem-
ory is less than the threshold value, our proposed FAPRA
algorithm is triggered. FAPRA first scans the mixed page list
and selects the page with the biggest selecting index value as
victim. If themixed page list is empty, FAPRA changes to scan
the full dirty page list and evicts the full dirty page with the
biggest selecting index value. The pseudocode for the victim
page selection scheme in the proposed algorithm is shown in
Algorithm 1.

A full dirty victim page written back to NAND flash
memory based storage media often generates a large num-
ber of redundant write operations that write clean data to
NAND flash memory. These redundant write operations
could accelerate the speed of using up the free space ofNAND
flash memory and incur the garbage collection operation
with high energy consumption frequently to reclaim garbage.
Moreover, the write operation to NAND flash memory is

costly. Therefore, FAPRA checks the status of the victim
page after it is selected as victim page. If it is a clean page,
FAPRA just erases it from main memory and makes the
corresponding page frame free. If it is a dirty page, FAPRA
continues to check the status of each subpage within the
victim page and onlywrites the dirty subpages back toNAND
flash memory based storage media. After that, FAPRA erases
the whole dirty victim page from main memory and makes
the corresponding page frame free. In order to lower the
degree of wear leveling and extend the lifetime of NAND
flash memory based storage device, FAPRA writes the dirty
subpages back to the free block with the least erase count
within the NAND flash memory.

For instance, a dirty victim page contains two clean
subpages and six dirty subpages as shown in Figure 2. FAPRA
is adopted to only write the six dirty subpages within the
victim page back to the NAND flash memory based storage
media; two write operations are eliminated.

4.4. Performance Overhead Discussion. The performance
overhead of FAPRA is analyzed in this part. Li et al. tested five
commonly used applications and they found that the dirty
victim page in these applications often contains a significant
amount of clean data. All the tested applications have one
clean subpage at least except gqview [6]. It indicates that the
average number of clean subpages within each dirty page
in most applications is at least 1. The increasing time cost
for setting and checking dirty flags is calculated as (2 ×
𝑛 × 𝐶𝑎), where 𝐶𝑎 is the average memory access time. The
saved time cost for writing the clean subpages back to is
calculated as ((𝑚−𝑛)×𝐶𝑤), where𝐶𝑤 is the time cost for one
write operation to NAND flash memory. According to [6, 7],
𝐶𝑎 and 𝐶𝑤 are approximately equal to 2.56 𝜇s and 533 𝜇s,
respectively. Since 1 ≤ 𝑛 ≤ 7, the maximum time cost for
setting and checking dirty flags is 35.84 𝜇s and the minimum
saved time cost for writing the clean subpages back to NAND
flash memory is 533 𝜇s. Apparently, the saved time cost for
writing the clean subpages back to NAND flash memory is
much more than that for setting and checking the dirty flags
and the performance overhead of our proposed FAPRA is
negligible.



6 Mathematical Problems in Engineering

0
10
20
30
40
50
60
70
80
90

5 10 15 20 25 30 35 40 45 50
Memory size (%)

Pa
ge

 h
it 

ra
tio

 (%
)

(a) Writer

0
5

10
15
20
25
30
35
40

Pa
ge

 h
it 

ra
tio

 (%
)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(b) Calc

20
25
30
35
40
45
50
55
60

Pa
ge

 h
it 

ra
tio

 (%
)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(c) Firefox

10

15

20

25

30

35

40

45

Pa
ge

 h
it 

ra
tio

 (%
)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(d) Viewnior

10

20

30

40

50

60

Pa
ge

 h
it 

ra
tio

 (%
)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(e) Xmms

5

10

15

20

25

30

35

40

Pa
ge

 h
it 

ra
tio

 (%
)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(f) Foxit Reader

Figure 4: The page hit ratio for different traces.

5. Performance Evaluation

In this section, we compare the performance of our proposed
FAPRA algorithm with those of the state-of-the-art algo-
rithms, which are LRU, CFLRU, DL-CFLRU/E, LRU-WSR,
CCF-LRU, APRA, EPRA, and CLRU by conducting trace-
driven simulation with real traces. LRU is customized for
magnetic disk and other algorithms are designed for NAND
flash memory. The performance metrics that our simulation
experiment is performed to test are the page hit ratio, the
number of write operations, runtime, and the degree of wear
leveling.

5.1. Experiment Setup. We conduct the trace-driven simula-
tion with the real traces. Our simulator contains a demand
paging system. The virtual memory reference traces are
collected using the Valgrind toolset, which is a powerful
memory profiling tool [18]. These traces are captured when
executing six different applications on Linux 2.6.18 running
on an x86-based PC.The characteristics of traces used in our
simulation are also shown in Table 2.

In our simulation, we assume that the demand paging
system has a 533MHzmicroprocessor, 32MB SDRAM, 2MB
NOR flash memory, and 64MB NAND flash memory. The



Mathematical Problems in Engineering 7

0

10000

20000

30000

40000

50000

60000

5 10 15 20 25 30 35 40 45 50
Memory size (%)

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

(a) Writer

30000

40000

50000

60000

70000

80000

90000

100000

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(b) Calc

12500

15000

17500

20000

22500

25000

27500

30000

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(c) Firefox

120000
140000
160000
180000
200000
220000
240000
260000
280000
300000

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(d) Viewnior

60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(e) Xmms

70000

90000

110000

130000

150000

170000

190000

210000

230000

Th
e n

um
be

r o
f w

rit
e o

pe
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(f) Foxit Reader

Figure 5: The number of write operations for different traces.

Table 2: Workloads used in our simulations and their characteristics.

Workload Memory footprint Ratio of read count to write count Memory references
Total I/O requests Instruction read Data read Data write

Writer 27.95MB 4.22 : 1 4,540,417 973,956 2,696,020 870,441
Calc 38.61MB 2.17 : 1 10,797,948 1,439,745 5,951,252 3,406,951
Firefox 37.42MB 5.49 : 1 4,028,737 1,963,639 1,444,658 620,440
Viewnior 20.37MB 1 : 1.35 27,204,428 842,574 10,751,502 15,610,352
Xmms 19.2MB 1 : 5.13 2,793,764 155,465 300,301 2,337,998
Foxit Reader 35.42MB 1 : 1.5 9,842,423 1,877,086 2,053,107 5,912,230



8 Mathematical Problems in Engineering

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25 30 35 40 45 50
Memory size (%)

Ru
nt

im
e (

m
s)

(a) Writer

0

5000

10000

15000

20000

25000

30000

Ru
nt

im
e (

m
s)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(b) Calc

0
1000
2000
3000
4000
5000
6000
7000
8000

Ru
nt

im
e (

m
s)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(c) Firefox

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e (

m
s)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(d) Viewnior

0

1000

2000

3000

4000

5000

6000

7000

Ru
nt

im
e (

m
s)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(e) Xmms

0

5000

10000

15000

20000

25000

30000

Ru
nt

im
e (

m
s)

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(f) Foxit Reader

Figure 6: The runtime for different traces.

size of a virtual memory page is set to 4KB, which is common
to most modern operating systems including Linux. We also
assume that the Linux operating system and the X Window
System occupy about 16MB main memory space in terms of
SDRAM and only the remaining 16MB SDRAM is available
for use to each application. The FTL in our simulation is
log-based NFTL [19] and it adopts the cost-benefit garbage
collection policy [20] to reclaim garbage. For NAND flash
memory, we determine the simulation parameters of NAND
flash memory by referring to the Samsung K9F1208R0B flash

chip [21] in our simulator. The page size and block size of
this flash chip are 512 B and 16KB, respectively. The limited
number of erase cycles of this flash chip is 100,000.The other
information of this flash chip is listed in Table 1. As the size
of window has influence on the page hit ratios of CFLRU and
DL-CFLRU/E, then we set 𝑤1 = 0.2 for CFLRU and 𝑤2 for
DL-CFLRU/E.

5.2. Simulation Results. Figure 4 shows the page hit ratios of
nine page replacement algorithms. Figure 4(a) to Figure 4(c)



Mathematical Problems in Engineering 9

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35 40 45 50
Memory size (%)

Th
e d

eg
re

e o
f w

ea
r l

ev
el

in
g

(a) Writer

300

600

900

1200

1500

1800

2100

Th
e d

eg
re

e o
f w

ea
r l

ev
eli

ng

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(b) Calc

400

600

800

1000

1200

1400

Th
e d

eg
re

e o
f w

ea
r l

ev
eli

ng

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(c) Firefox

1000
1400
1800
2200
2600
3000
3400
3800
4200
4600
5000

Th
e d

eg
re

e o
f w

ea
r l

ev
eli

ng

5 10 15 20 25 30 35 40 45 50
Memory size (%)

(d) Viewnior

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Th
e d

eg
re

e o
f w

ea
r l

ev
el

in
g

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(e) Xmms

0
500

1000
1500
2000
2500
3000
3500
4000

Th
e d

eg
re

e o
f w

ea
r l

ev
eli

ng

5 10 15 20 25 30 35 40 45 50
Memory size (%)

LRU
CFLRU
DL-CFLRU/E
LRU-WSR
CCF-LRU

APRA 
EPRA
CLRU
FAPRA

(f) Foxit Reader

Figure 7: The degree of wear leveling for different traces.

show that the page hit ratio of LRU is higher than that
of other algorithms including our proposed FAPRA algo-
rithm, because Writer, Calc, and Firefox are read-intensive
applications and all the page replacement algorithms pref-
erentially evict the clean pages except LRU. However, the
page hit ratio of our proposed FAPRA algorithm is higher
than that of other algorithms designed for NAND flash
memory because our proposed FAPRA algorithm considers
the combined recency and frequency value of each page
when selecting a victim page. Figure 4(d) to Figure 4(f) show
that the page hit ratio of our proposed FAPRA algorithm is

higher than that of other algorithms including the original
LRU algorithm. The Viewnior, Xmms, and Foxit Reader
are write-intensive applications. Existing page replacement
algorithms proposed for NAND flash memory first evict
the clean pages and delay the eviction of dirty pages,
so existing page replacement algorithms outperform the
original LRU algorithm. Our proposed FAPRA algorithm
considers the access recency and frequency of each page
and then it shows a higher page hit ratio than other
page replacement algorithms designed for NAND flash
memory.



10 Mathematical Problems in Engineering

Figure 5 shows the number of write operations generated
by nine page replacement algorithms. Although existing page
replacement algorithms designed for NAND flash memory
first evict the clean pages, they do not find the existence of
clean data within the dirty block and write the whole dirty
block back to the NAND flash memory. However, the victim
page selection scheme introduced by our proposed FAPRA
algorithm considers the benefit-to-cost ratio for evicting each
page.Moreover, FAPRAonly writes the dirty subpages within
the victim page back to NAND flash memory. Therefore,
FAPRA incurs the least write operations to NAND flash
memory in all cases.

Figure 6 shows the runtime for different traces. The
runtime is highly influenced by the page hit ratio and the
number of write operations.The higher page hit ratio and less
write operations are, the less runtime consumed is. Because
FAPRA has higher page hit ratio and less write operations
than other algorithms designed for NAND flash memory,
FAPRA takes the least runtime.

Figure 7 shows the degree of wear leveling for different
traces. All the existing page replacement algorithms designed
for NAND flash memory and the original LRU algorithm
do not consider the erase count of the block to which each
page belongs during the selection of a victim page. However,
our proposed FAPRA algorithm considers the erase count of
the block to which each page belongs during the selection
of a victim page and writes the dirty subpages back to the
free block with the least erase count, so it can be seen that
FAPRA significantly improves the degree of wear leveling
from Figure 7.

6. Conclusions

This paper presents an efficient page replacement algo-
rithm called FAPRA for NAND flash memory based storage
devices. Our proposed FAPRA algorithm divides each dirty
victim page candidate in the main memory into subpages of
the same size that is equal to that of flash page. The subpages
are classified into dirty subapges and clean subpages. When
the number of free page frames is lower than a threshold
value, FAPRA introduces an efficient victim page selection
scheme,which takes into consideration the benefit-to-cost for
evicting each victim page candidate, the combined recency
and frequency value of each victim page candidate, and
the erase count of the block to which each page belongs
when selecting a victim page. Since the dirty victim page
often contains clean data, FAPRA does not write the clean
subpageswithin the victimpage back toNANDflashmemory
based storage media in order to reduce the redundant write
operations.We conducted a series of trace-driven simulations
and obtained encouraging results.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation (Grant no. 61309032), Project Supported by
Program for Innovation Team Building at Institutions of
Higher Education in Chongqing (Grant no. KJTD201310),
the Natural Science Foundation of Chongqing (Grant no.
cstc2012jjA40053), the Chongqing Medical Research Project
(Grant no. 2013-1-049), and the Scientific Research Fund
of Chongqing University of Posts and Telecommunications
(Grant no. A2012-12).

References

[1] M. Lin, S. Chen, G. Live, and Z. Zhou, “Optimised Linux swap
system for flash memory,” Electronics Letters, vol. 47, no. 11, pp.
641–642, 2011.

[2] S. Y. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: a
replacement algorithm for flash memory,” in Proceedings of
the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, pp. 234–241, October 2006.

[3] Y. S. Yoo, H. Lee, Y. Ryu, and H. Bahn, “Page replacement
algorithms for NAND flash memory storages,” in Computa-
tional Science and Its Applications-ICCSA 2007, vol. 4705 of
Lecture Notes in Computer Science, pp. 201–212, Springer, Berlin,
Germany, 2007.

[4] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-WSR:
integration of LRU and writes sequence reordering for flash
memory,” IEEE Transactions on Consumer Electronics, vol. 54,
no. 3, pp. 1215–1223, 2008.

[5] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: a new buffer
replacement algorithm for flashmemory,” IEEE Transactions on
Consumer Electronics, vol. 55, no. 3, pp. 1351–1359, 2009.

[6] H.-L. Li, C.-L. Yang, and H.-W. Tseng, “Energy-aware flash
memory management in virtual memory system,” IEEE Trans-
actions on Very Large Scale Integration Systems, vol. 16, no. 8, pp.
952–964, 2008.

[7] C. Park, J. Kang, S. Park, and J. Kim, “Energy-aware demand
paging on NAND flash-based embedded storages,” in Pro-
ceedings of the 2004 International Symposium on Lower Power
Electronics and Design (ISLPED ’04), pp. 338–343, August 2004.

[8] B. Shen, X. Jin, Y. H. Song, and S. S. Lee, “APRA: adaptive page
replacement algorithm for NAND flash memory storages,” in
Proceedings of the International Forum on Computer Science-
Technology and Applications (IFCSTA '09), vol. 1, pp. 11–14,
Chongqing, China, December 2009.

[9] M. W. Lin, S. Y. Chen, and Z. Zhou, “An efficient page replace-
ment algorithm for NAND flash memory,” IEEE Transactions
on Consumer Electronics, vol. 59, no. 4, pp. 779–785, 2013.

[10] Y. Ou, T. Härder, and P. Jin, “CFDC: a flash-aware buffer
management algorithm for database systems,” in Advances in
Databases and Information Systems, vol. 6295 of Lecture Notes
in Computer Science, pp. 435–449, Springer, Berlin, Germany,
2010.

[11] M. Lin, S. Chen, and G. Wang, “Greedy page replacement
algorithm for flash-aware swap system,” IEEE Transactions on
Consumer Electronics, vol. 58, no. 2, pp. 435–440, 2012.

[12] M. Lin, S. Chen, G. Wang, and T. Wu, “HDC: an adaptive
buffer replacement algorithm for NAND flash memory-based
databases,” Optik, vol. 125, no. 3, pp. 1167–1173, 2014.



Mathematical Problems in Engineering 11

[13] G. Xu, F. Lin, and Y. Xiao, “CLRU: a new page replacement
algorithm for NAND flash-based consumer electronics,” IEEE
Transactions on Consumer Electronics, vol. 60, no. 1, pp. 38–44,
2014.

[14] T. Z. Wang, D. Liu, Y. Wang, and Z. Shao, “FTL2: a hybrid
flash translation layer with logging for write reduction in flash
memory,” ACM SIGPLAN Notices, vol. 48, no. 5, pp. 91–100,
2013.

[15] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “MNFTL: an
efficient flash translation layer for MLC NAND flash memory
storage systems,” in Proceedings of the 48th ACM/EDAC/IEEE
Design Automation Conference (DAC ’11), pp. 17–22, June 2011.

[16] D. Liu, Y. Wang, Z. Qin, Z. Shao, and Y. Guan, “A space
reuse strategy for flash translation layers in SLC NAND flash
memory storage systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1094–1107,
2012.

[17] O. Kwon, H. Bahn, and K. Koh, “FARS: a page replacement
algorithm for NAND flash memory based embedded systems,”
in Proceedings of the IEEE 8th International Conference on
Computer and Information Technology (CIT ’08), pp. 218–223,
July 2008.

[18] N. Nethercote and J. Seward, “Valgrind: a program supervision
framework,” Electronic Notes in Theoretical Computer Science,
vol. 89, no. 2, pp. 47–69, 2003.

[19] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-
efficient flash translation layer for compactflash systems,” IEEE
Transactions on Consumer Electronics, vol. 48, no. 2, pp. 366–
375, 2002.

[20] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory
based file system,” in Proceedings of the USENIX Technical
Conference, pp. 155–164, 1995.

[21] Samsung Electronics Company, Datasheet of Samsung
K9F1208R0B NAND Flash 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


