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Many improved differential Evolution (DE) algorithms have emerged as a very competitive class of evolutionary computation
more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a
convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform
mutation and hidden adaptation selection (haS) operators.The parameter self-adaptation and uniformmutation operator enhance
the diversity of populations and guarantee ergodicity.The haS can automatically remove some inferior individuals in the process of
the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small
probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals.
The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

1. Introduction

Differential evolution (DE) is a population-based stochastic
real-parameter algorithm for continuous optimization prob-
lems firstly introduced by [1, 2]. Recently, several detailed
surveys of advances in DEwere conducted (i.e., [3, 4]).These,
along with the competitions in the 1996–2012 IEEE Inter-
national Conferences on Evolutionary Computation (CEC),
showed that DE is one of the most powerful stochastic
optimizers. In the last two decades, many outstanding DE
variants have been proposed. Few of these algorithms are
based on convergence theory; therefore few of them, like Elite
Genetic algorithm, guarantee convergence (all the “converge,”
“convergent,” or “convergence” of this papermean the conver-
gence in probability) in the theory for any continuous opti-
mization problems regardless of initial populations.However,
theoretical studies of stochastic algorithms are attracting the
attention of a greater number of researchers. IEEE CEC 2013
held a special session focusing on the theoretical foundations
of bioinspired computation. Aiding algorithm design is one
of the most important purposes of theoretical studies.

As to the convergence theory researches inDE, two trends
are gradually becoming apparent. One is designing improved
DE algorithms based on theoretical foundations. Reference
[5] performed a mathematical modelling and convergence
analysis of continuous multiobjective differential evolution
(MODE) using certain simplifying assumptions. This work
was extended by [6]. Reference [7] proposed a differential
evolution Markov chain algorithm (DE-MC) and proved
that its population sequence is a unique joint stationary
distribution. Reference [8] presented a convergent DE using
a hybrid optimization strategy and a transform function and
proved its convergence by the Markov process. Reference
[9] presented a DE-RW algorithm that applied a random-
walk mechanism to the basic DE variants (the convergence
of DE-RW was not proved, but it can be easily proved
by Theorem 2 in Section 4). The other trend involves the
study of convergence theory as an aid to DE algorithm
design. Reference [10] established asymptotic convergence
behaviour of a basic DE (DE/rand/1/bin) by applying the
concepts of Lyapunov stability theorems. The analysis is
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based on the assumption that the objective function has the
following two properties: (1) the objective function has the
second-order continual derivative in the search space, and
(2) it possesses a unique global optimum within the range
of search. These researches show that the enhancement of
population diversity is an efficient route to the development of
globally convergent DE algorithms. However, a difficult task
associated with increased diversity is how to remove the extra
inferior individuals generated during the evolving process.

This paper proposes a self-adaptive convergent DE algo-
rithm with a hidden adaptation selection, named SaCDEhaS.
This paper then proves that the SaCDEhaS guarantees global
convergence in probability. The SaCDEhaS algorithm is
formed by integrating the basic DE with two extra oper-
ators, that is, a uniform mutation operator and a hidden
adaptation selection (haS) operator. The parameters’ self-
adaptation and use of the uniform mutation operator both
enhance the diversity of populations. The proposed haS
operator automatically eliminates some inferior individuals
that are generated as part of enhancing the population
diversity. Experimental results and comparison studies of
all the bound-constrained and unconstrained optimization
problems posed by the CEC 2011 continuous benchmark
functions for engineering optimization [11] show that (1)
the uniform mutation and haS operators improve algorithm
performance, and (2) SaCDEhaS is competitive with the top
four DE variants on the CEC 2011 competition.

The rest of this paper is organized as follows. Section 2
briefly introduces the basic DE algorithm. Section 3 describes
in detail the proposed algorithm. Section 4 gives a sufficient
condition for the convergence of modified DE and proves
the global convergence of the proposed algorithm.Numerical
experiments are then presented in Section 5, followed by
conclusions in Section 6.

2. Basic Differential Evolution Algorithm

DE is arguably one of the most powerful stochastic real-
parameter optimization algorithms. And it is used for dealing
with continuous optimization problems [12, 13]. This paper
supposes that the objective function to be minimized is 𝑓(𝑥⃗),
𝑥⃗ = (𝑥

1
, . . . , 𝑥

𝐷
) ∈ R𝐷, and the feasible solution space

is Ψ = ∏
𝑗=𝐷
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upper boundary values of𝑥
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, respectively.ThebasicDEworks

through a simple cycle of mutation, crossover, and selection
operators after initialization. There are several main variants
of DE [1, 2]. This paper uses the DE/rand/1/bin strategy;
the strategy is most commonly used in practice. It can be
described in detail as follows.

Initialization. Like any other evolutionary algorithms, DE
starts with initializing a population of 𝑁𝑃 𝐷-dimensional
vectors representing the potential solutions (individuals)
over the optimization search space. We will symbolize each
individual by 𝑥⃗

𝑔
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where 𝑔 = 0, 1, . . . , 𝑔max is the current generation and 𝑔max is
the maximum number of generations. The initial population

(at 𝑔 = 0) should be sufficiently scaled to cover the search
space asmuch as possible. Generally, the initialization of pop-
ulation is carried out by generating uniformly randomizing
vectors within the search space. We can initialize the 𝑗th
dimension of the 𝑖th individual according to

𝑥0
𝑖,𝑗

= 𝐿
𝑗
+ rand(0, 1) ⋅ (𝑈

𝑗
− 𝐿
𝑗
) , (1)

where rand(0, 1) is a uniformly distributed random number
defined in [0, 1] (the same below).

Mutation DE/rand/1/∗. For each target vector 𝑥⃗𝑔
𝑖
, DE creates

a donor vector V⃗𝑔
𝑖
by the mutation operator. The mutation

operator of DE/rand/1/∗ can be formulated as follows:
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Here the indices 𝑟
1
, 𝑟
2
, 𝑟
3
∈ {1, 2, . . . , 𝑚} \ {𝑖} are uniformly

random integersmutually different and distinct from the loop
index 𝑖. And 𝐹 ∈ (0, 1] is a real parameter, called mutation or
scaling factor.

If the element values of the donor vector V⃗
𝑖
exceed the

prespecified upper bound or lower bound, we can change the
element values by the periodic mode rule as follows:
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Crossover DE/∗/bin. This paper uses the binomial crossover
operator, which generates the trial vector 𝑢⃗

𝑖
by mixing

elements of the donor vector V⃗
𝑖
with the target vector 𝑥⃗

𝑖
as

follows:

𝑢
𝑔
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= {

V𝑔
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(4)

Here CR ∈ (0, 1) is the probability of crossover and 𝑗rand is a
random integer in [1, 𝑛].

Selection. The selection operator determines which one
between the target and the trial vector survives to the
next generation. The selection operator for minimization
problems can be formulated as

𝑥⃗
𝑔+1

𝑖
= {

𝑢⃗
𝑔

𝑖
, if 𝑓 (𝑢⃗
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) < 𝑓 (𝑥⃗
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)
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(5)

Thismeans that 𝑥⃗𝑔+1
𝑖

equals the trial vector 𝑢⃗𝑔
𝑖
if and only if 𝑢⃗𝑔

𝑖

is a better cost function value than 𝑥⃗
𝑔

𝑖
; otherwise, the parent

individual 𝑥⃗𝑔
𝑖
is retained to the next generation.

3. Convergent DE Algorithm with Hidden
Adaptation Selection

The proposed SaCDEhaS algorithm is formed by integrating
the basic DE with a self-adaptive parameter control strategy
and an extra trial vector generation strategy, that is, the
uniform mutation operator, and using the haS operator
instead of the selection operator of the basic DE.
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3.1. Self-Adaptive Parameter Control Strategy. The parameter
control strategies of DE have been extensively investigated
over the past decade and some developments have been
reported. Generally, we distinguish between two forms of
setting parameter values: parameter tuning and parameter
control. The former means that the user must find suitable
values for the parameters by tuning the algorithm and then
running the algorithmwith those fixed parameters. Reference
[1] indicated that a reasonable value for𝑁𝑃 could be chosen
between 5 × 𝐷 and 10 × 𝐷 and the effective range of 𝐹 is
usually between 0.4 and 1. A value of CR = 0.9 has been found
to work well across a large range of problems [14].

The latter, that is, parameter control, means that the
values of the parameters are changed during the run. Ref-
erences [15, 16] categorised the change into three classes:
deterministic parameter control, adaptive parameter control,
and self-adaptive parameter control. Reference [17] presented
a randomly self-adaptive parameter control strategy; their
experimental results showed that the SaDE algorithm with
randomly self-adaptive parameter control strategy was better
than, or at least comparable to, the basic DE algorithm and
several competitive evolutionary algorithms reported in the
literature. In particular, the self-adaptive strategy does not
increase the time complexity compared to the basic DE
algorithm. The parameter control strategy is formulated as
follows:

𝐹
𝑔+1
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= {

𝐹
𝑙
+ rand (0, 1) ∗ 𝐹
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Here 𝐹
𝑙
and 𝐹

𝑢
are the lower and upper limits of 𝐹 and both

lie in [0, 1]. 𝜏
1
and 𝜏
2
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1
= 𝜏
2
= 0.1,𝐹

𝑙
= 0.1, and𝐹

𝑢
= 0.9.Then the parameter

𝐹 belongs in [0, 0.9] while the CR belongs in [0, 1].
In a word, a good parameter setting or a good parameter

control strategy can benefit significantly the performance of
DE. Combining the merits of the parameter tuning and the
parameter control, the proposed SaCDEhaS algorithm initial-
izes 𝐹0

𝑖
= 0.6, CR0

𝑖
= 0.9 and then employs the randomly

self-adaptive strategies (6), (7) to change the parameters
𝐹 and CR, respectively. For SaCDEhaS, a good parameter
setting during the initial phase benefits its convergence rate,
while the application of the randomly self-adaptive strategies
during the middle and the latter phases is helpful to keep its
diversity.

3.2. Trial Vector Generation Strategies

3.2.1. Uniform Mutation Operator. After the classical DE
crossover operator, SaCDEhaS creates a variation vector
𝑤⃗
𝑔

𝑖
corresponding to each trial vector 𝑢⃗

𝑔

𝑖
by the uniform

mutation operator. Uniformmutation runs independently on
each element of each trial vector. Each element is replaced
by a feasible solution randomly generated with an auxiliary
convergence probability (𝑃ac), which is a control parameter

taking a small value. The description of uniform mutation is
as follows:
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the formula of the uniformmutation, the variation vector 𝑤⃗𝑔
𝑖

equals the trail vector 𝑢⃗𝑔
𝑖
with probability (1−𝑃ac) and equals

a uniformly distributed random vector in the feasible region
with 𝑃ac.

3.2.2. Hidden Adaptation Selection Operator. After uniform
Mmutation operator, SaCDEhaS has the following hidden
adaptation selection operator (haS) instead of the selection
operator of the basic DE.The haS operator determines which
one between the target 𝑥⃗

𝑔

𝑖
and the variation vector 𝑤⃗

𝑔

𝑖

survives to the next generation or to break the current loop
with the probability 𝑃ac. We formulate the haS operator as
follows:
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𝑖
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rand (0, 1) > 𝑃ac
break, otherwise,

𝑖 = 1, 2, . . . , 𝑁𝑃.

(9)

Here “break” denotes an execution breaking out of the loop
from 𝑖 to𝑁𝑃.

3.3. Pseudocode and Observation. The pseudocode of
SaCDEhaS algorithm (SaCDEhaS/rand/1/bin) is shown in
Algorithm 1.

Observations of SaCDEhaS. (i) How to achieve the conver-
gence: the uniformmutation operatormakes each generation
population ergodic, which assists the algorithm with elitist
selection to reach convergence. The theoretical proof of
convergence for SaCDEhaS will be shown in the following
section.

(ii) How to understand haS operator: the haS operator has
the following characteristics.

(1)The “otherwise” in the expression (9) means 𝑓(𝑤⃗𝑔
𝑖
) ≥

𝑓(𝑥⃗
𝑔

𝑖
) and rand(0, 1) ≤ 𝑃ac. That is to say, for every

inferior variation (trial) solution 𝑤⃗
𝑔

𝑖
, the haS operator forces

SaCDEhaS to break the current loop with a low probability
𝑃ac. So the actual probability of breaking the current loop is
higher if there are more inferior solutions in the variation
population. That is to say, the actual probability is a hidden
adaption and proportional to the number of inferior solutions
in each target population.

(2) The haS operator remains the current best solution
of the target population to the next generation. In fact, the
better individuals, function values of which are calculated,
are remained greedily to the next generation according to the
first two formulas in expression (9). Those current trial indi-
viduals, which are abandoned by the “break” strategy in the



4 Mathematical Problems in Engineering

initialize parameters𝑁𝑃, 𝐹, CR, 𝑃ac and population𝑋
while! termination condition do

for 𝑔 = 0 to 𝑔 𝑚𝑎𝑥
for 𝑖 = 0 to 𝑁𝑃

update 𝐹, CR according to formulas (6) and (7)
V⃗𝑔
𝑖
=mutation DE/rand/1 (𝑋, 𝐹)

𝑢⃗
𝑔

𝑖
= crossover DE/∗/bin (𝑥⃗𝑔

𝑖
, V⃗𝑔
𝑖
, 𝐶𝑅)

𝑤⃗
𝑔

𝑖
= uniform mutation (𝑢⃗𝑔

𝑖
, 𝑃ac)

𝑥⃗
𝑔

𝑖
= connotatively adaptive selection (𝑥⃗𝑔

𝑖
, 𝑤⃗𝑔
𝑖
, 𝑃ac)

𝑖 = 𝑖 + 1
end for
𝑔 = 𝑔 + 1

end for
end while

Algorithm 1: Pseudocode of SaCDEhaS (SaCDEhaS/rand/1/bin).

haS operator, do not waste computing overhead to calculate
their function values during the program’s execution. And
the corresponding target individuals are remained to the next
generation regardless of their function values. That is to say,
the individual, which is confirmed as the current best solution
by calculating function values, must be survived to the next
generation.

(3) Since the parameters will be regenerated by formulas
(6) and (7) after the “break” strategy, one could think of
the haS as a triggering strategy of breaking the current loop
and regenerating new parameters. Individuals of a target
population can be divided into two parts, that is, the previous
individuals and the later individuals, by the triggering time. It
is obvious that the previous individuals in a population have
a greater probability to be updated than the later individuals.
In fact, the previous individuals serve two purposes: one is
to provide learning information which determines whether
or not the current loop is stopped, and the other is to
be candidate solutions benefitting the algorithm’s search.
Unlike a simple regeneration strategy of new parameters,
the haS operator does not abandon the previous individuals.
This can speed up the convergence without increasing extra
computing overhead.

(iii) How to achieve the tradeoff between exploration and
exploitation: obviously, population diversity is enhanced by
using the uniform mutation operator and the self-adaptive
technology for parameters. Meanwhile, however, more infe-
rior solutions may be generated. SaCDEhaS employs the
proposed haS operator to minimize the negative influence
made by enhancing population diversity. The minimization
of the negative influence can promote the balance between
the exploration and exploitation ability on some level. In fact,
the “break” strategy in haS operator is designed based on
the randomly self-adaptive strategy. If the randomly gener-
ated parameters are not good and generate many inferior
solutions, the loop will have a higher probability to be
stopped and new parameters will be randomly generated in
the next generation. In the process, the previous individuals’
information of a population is used to determine whether the
loop continues or breaks.

(iv) How to estimate the computing overhead: comparing
with the basic DE, SaCDEhaS has an extra computing
overhead to generate random values in three operators,
that is, in the self-adaptive parameter control strategy, in
the uniform mutation operator, and in the haS operator.
However, the computing overhead of generating random
values is smaller than an objective function evaluation. So [18]
suggests algorithms to estimate their computing overhead by
setting function evaluation times (FEs). As shown in Table 2,
the convergence speed of SaCDEhaS is quicker than that of
SaDE within the same FEs.

4. Proof of Global Convergence for the
Proposed Algorithm

Different definitions of the convergence exist for analysing
asymptotic convergence of algorithms. The following defi-
nition of convergence, that is, convergence in probability, is
used in this paper.

Definition 1. Let {𝑋(𝑡), 𝑡 = 0, 1, 2, . . .} be a population
sequence associated with a random algorithm.The algorithm
has global convergence in probability for a certain optimiza-
tion problem, if and only if

lim
𝑡→∞

𝑝 {𝑋 (𝑡) ∩ 𝑆∗
𝛿

̸= 0} = 1, (10)

where 𝛿 is a small positive real, 𝑆∗
𝛿
denotes an expanded

optimal solution set, 𝑆∗
𝛿

= {𝑥⃗ | |𝑓(𝑥⃗) − 𝑓(𝑥⃗∗)| < 𝛿}, and
𝑥⃗∗ is an optimum of the objective function 𝑓(𝑥⃗).

Several important theorems for the global convergence of
evolutionary algorithms (EAs) have been presented. Rudolph
[19] generalized convergence conditions for binary and
Euclidean search space to a general search space. Under
the convergence condition, the EAs with an elitist selection
strategy converge to the global optimum. The measure asso-
ciated with a Markovian kernel function, which needs to be
calculated in the convergence condition, seems not to be very
convenient. He and Yu [20] introduced several convergence
conditions for EAs. The convergence conditions are based
on certain probability integral of the offspring entering the
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Table 1: Summary of problems with boundary constrains.

Problem Description Dimension Cur.Best
f01 Parameter estimation for frequency-modulated sound waves 6 0.000000𝐸 + 00

f02 Lennard-Jones Potential 30 −2.842253𝐸 + 01

f03 Bifunctional catalyst blend optimal control problem 1 1.151489𝐸 − 05

f04 Optimal control of a nonlinear stirred tank reactor 1 1.377076𝐸 + 01

f05 Tersoff potential function minimization problem, Si(B) 30 −3.684537𝐸 + 01

f06 Tersoff potential function minimization problem, Si(C) 30 −2.916612𝐸 + 01

f07 Spread spectrum radar polyphase code design 20 5.000000𝐸 − 01

f10 Circular antenna array design problem 12 −2.184253𝐸 + 01

f12 Messenger: spacecraft trajectory optimization problem 26 6.710520𝐸 + 00∗∗

f13 HaSsini 2: spacecraft trajectory optimization problem 22 8.398688𝐸 + 00

“Cur.Best” denotes the best function values obtained within 1.5 × 105 FEs on the CEC 2011 competition.
∗∗Marks the fact that the best value is obtained by the proposed algorithm SaCDEhaS.

optimal set. Perhaps, the most convenient theorem for prov-
ing the global convergence of DE variants is the one recently
presented by Hu et al. [21]. It just needs to check whether
or not the probability of the offspring in any subsequence
population entering the optimum solution set is big enough.
The theorem can be described in detail as follows.

Theorem 2 (see [21]). Let {𝑋(𝑡), 𝑡 = 0, 1, 2, . . .} be a
population sequence of a DE variant with a greedy selection
operator. In the 𝑡𝑡ℎ

𝑘
target population𝑋(𝑡

𝑘
), there exists at least

one individual 𝑥⃗, which corresponds to the trial individual 𝑢⃗,
such that

𝑝 {𝑢⃗ ∈ 𝑆∗
𝛿
} ≥ 𝜁 (𝑡

𝑘
) > 0, (11)

and the series ∑∞
𝑘=1

𝜁(𝑡
𝑘
) diverges; then the DE variant holds

global convergence.
Where {𝑡

𝑘
, 𝑘 = 1, 2, . . .} denotes any subsequence of natural

number set, 𝑝{𝑢⃗ ∈ 𝑆∗
𝛿
} is the probability of 𝑢⃗, locating in the

optimal solution set 𝑆∗
𝛿
, 𝜁(𝑡
𝑘
) is a small positive real depending

on 𝑡
𝑘
.
The series ∑∞

𝑘=1
𝜁(𝑡
𝑘
) diverging means that the probability

𝑝{𝑢⃗ ∈ 𝑆∗
𝛿
} is large enough. That is to say, if the probability

of 𝑢⃗ entering into the optimal set, in a certain subsequence
population, is large enough, the DE variant with elitist selection
holds global convergence.

Conclusion. SaCDEhaS converges to the global optima set of
continuous optimization problems, regardless of the initial
population distribution.

Proof. FromTheorem 2, it is needed to prove that SaCDEhaS
satisfies the following two characteristics.

(i) The Selection Operator of SaCDEhaS Is Greedy. SaCDEhaS
algorithm uses the haS selection operator. According to the
characteristic (2) of the “How to understand haS operator”
in Section 3, we can know that the haS selection operator
can remain greedily the current best solution to the next
generation.

(ii) The Probability of Trial Individuals Entering into the
Optimal Solution Set is Large Enough. According to formula

(8), the probability of uniform mutation operator generating
a uniformly distributed random vector equals 𝑃ac. So the
probability

𝑝 {𝑢⃗ ∈ 𝑆∗
𝛿
} ≥ 1 − (1 − 𝑃ac ⋅

𝜇 (𝑆∗
𝛿
)

𝜇 (Ψ)
)

𝑁𝑃

> 0, (12)

where 𝜇(⋅) denotes the measure of a set. Now we set 𝜁(𝑡) ≡

1−(1−𝑃ac ⋅(𝜇(𝑆
∗

𝛿
)/𝜇(Ψ)))𝑁𝑃; then the series∑∞

𝑡=1
𝜁(𝑡) diverges.

So, according to Theorem 2, we can get that the conclu-
sion holds.

Observation of SaCDEhaS’s Convergence. In fact, like the elite
genetic algorithm, SaCDEhaS satisfies the classical conver-
gent model characterized by two aspects: one is the retention
of the current best solution, and the other is the ergodicity of
the population. Especially, the population ergodicity makes
the algorithm have an ability of escaping the local optima.
The uniform mutation operator makes SaCDEhaS satisfy the
second characteristic, while the haS operator makes it meet
the first characteristic.

5. Numerical Experiment

In this section, the performance of SaCDEhaS is tested on the
benchmark function set proposed for theTesting Evolutionary
Algorithms on Real-world Numerical Optimization Problems
CEC 2011 Special Session [22]. Experiments are conducted on
two comparative studies: (1) between SaCDEhaS and a SaDE
algorithm which removes the uniform mutation and haS
operators, and (2) between SaCDEhaS and the top four DE
variants in the CEC 2011 competition. The first comparison
study was implemented to show the effect of the uniform
mutation and haS operators. The second comparison was
to demonstrate the promising performance of the proposed
SaCDEhaS algorithm.

5.1. Problem Definitions and Evaluation Criteria. The bench-
mark consisted of thirteen engineering optimization prob-
lems. Of these, T08, T09, and T11 have equality or inequality
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Figure 1: Test pattern of 𝑃ac on all 10 problems within 1.5 × 105 Fes.

constraints imposed, and the other 10 problems are related
to bound constrained optimization (or unconstrained opti-
mization). These are summarized in Table 1.

According to the evaluation criteria given in the technical
report [22], researchersmust report themean, best, andworst
objective function values obtained over 25 independent runs
after executing their algorithms for 5.0 × 104, 1.0 × 105, and
1.5 × 105 function evaluations (FEs).

5.2. Configuration of Parameters. In our experiments,
SaCDEhaS and SaDE used the same population size.
Depending on the dimensions of the problems, we set the
population sizes for the 10 problems, in order, at 50, 250,

10, 10, 100, 80, 150, 80, 150, and 150. In order to determine
the value of auxiliary convergence probability 𝑃ac, the
experiments tested the performance of SaCDEhaS on all
ten optimization problems with different 𝑃ac values, that is,
{1𝐸 − 5, 1𝐸 − 5, 5𝐸 − 5, 1𝐸 − 4, 5𝐸 − 4, . . . , 1𝐸 − 1}. For each
parameter 𝑃ac value and each problem, SaCDEhaS run 25
times independently within 1.5 × 105 FEs, and the best value
and the mean value of the 25 runs were recorded. According
to all experimental results, we can get that the optimal 𝑃ac
were 1𝐸 − 3, 1𝐸 − 4, 1𝐸 − 1, 1𝐸 − 1, 5𝐸 − 5, 1𝐸 − 5, 5𝐸 − 5,
1𝐸 − 4, 5𝐸 − 5, and 5𝐸 − 3 in order.

As shown in Figure 1, those lines of f3 and f7 were
horizontal, while those lines of the other eight problems were
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Table 2: The best and mean values achieved via SaCDEhaS and SaDE algorithms.

Pro. Alg. FEs = 5𝐸4 FEs = 1𝐸5 FEs = 1.5𝐸5

Best Mean Best Mean Best Mean

T01 SaDE 0.0000𝐸 + 00 1.1995𝐸 + 01 0.0000𝐸 + 00 1.1995𝐸 + 01 0.0000𝐸 + 00∗ 1.1995𝐸 + 01

SaCDEhaS 0.0000𝐸 + 00 9.4453𝐸 + 00 0.0000𝐸 + 00 9.4453𝐸 + 00 0.0000𝐸 + 00∗ 9.4453𝐸 + 00

T02 SaDE −2.5473𝐸 + 01 −1.7971𝐸 + 01 −2.8422𝐸 + 01 −2.4597𝐸 + 01 −2.8423𝐸 + 01∗ −2.5210𝐸 + 01

SaCDEhaS −2.6199𝐸 + 01 −1.8424𝐸 + 01 −2.8371𝐸 + 01 −2.4879𝐸 + 01 −2.8423𝐸 + 01∗ −2.6207𝐸 + 01

T03 SaDE 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05∗ 1.1515𝐸 − 05

SaCDEhaS 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05 1.1515𝐸 − 05∗ 1.1515𝐸 − 05

T04 SaDE 1.4750𝐸 + 01 2.0686𝐸 + 01 1.4750𝐸 + 01 2.0686𝐸 + 01 1.4750𝐸 + 01 2.0686𝐸 + 01

SaCDEhaS 1.3815𝐸 + 01 1.6805𝐸 + 01 1.3771𝐸 + 01 1.4971𝐸 + 01 1.3771𝐸 + 01∗ 1.4562𝐸 + 01

T05 SaDE −2.9655𝐸 + 01 −2.4186𝐸 + 01 −3.2728𝐸 + 01 −2.7236𝐸 + 01 −3.3879𝐸 + 01 −2.9448𝐸 + 01

SaCDEhaS −3.0337𝐸 + 01 −2.4001𝐸 + 01 −3.5503𝐸 + 01 −2.8854𝐸 + 01 −3.5962𝐸 + 01 −3.0634𝐸 + 01

T06 SaDE −1.6865𝐸 + 01 — −2.3470𝐸 + 01 — −2.4051𝐸 + 01 —
SaCDEhaS −1.8954𝐸 + 01 −1.6577𝐸 + 01 −2.3229𝐸 + 01 −1.8566𝐸 + 01 −2.6803𝐸 + 01 −2.0694𝐸 + 00

T07 SaDE 6.8042𝐸 − 01 1.1232𝐸 + 00 5.0000𝐸 − 01 9.5787𝐸 − 01 5.0000𝐸 − 01∗ 8.4480𝐸 − 01

SaCDEhaS 5.6924𝐸 − 01 1.2145𝐸 + 00 5.0000𝐸 − 01 8.7375𝐸 − 01 5.0000𝐸 − 01∗ 7.9041𝐸 − 01

T10 SaDE −2.1774𝐸 + 01 −2.1167𝐸 + 01 −2.1780𝐸 + 01 −2.1250𝐸 + 01 −2.1780𝐸 + 01 −2.1299𝐸 + 01

SaCDEhaS −2.1725𝐸 + 01 −2.1122𝐸 + 01 −2.1834𝐸 + 01 −2.1345𝐸 + 01 −2.1835𝐸 + 01 2.6919𝐸 − 01

T12 SaDE 9.4639𝐸 + 00 1.4507𝐸 + 01 8.8193𝐸 + 00 1.3967𝐸 + 01 8.7939𝐸 + 00 1.3823𝐸 + 01

SaCDEhaS 7.4100𝐸 + 00 1.4350𝐸 + 01 7.0985𝐸 + 00 1.3966𝐸 + 01 6.7105𝐸 + 00∗ 2.9544𝐸 + 00

T13 SaDE 1.0625𝐸 + 01 1.8921𝐸 + 01 1.0129𝐸 + 01 1.8378𝐸 + 01 1.0126𝐸 + 01 1.8248𝐸 + 01

SaCDEhaS 9.3750𝐸 + 00 1.9608𝐸 + 01 8.6945𝐸 + 00 1.8808𝐸 + 01 8.6626𝐸 + 00 4.3153𝐸 + 00

“—” denotes that the value is larger than 1𝐸 + 16. ∗Marks that the current best value is obtained.

Table 3: Sign Test of experimental results in Table 2.

Neg. dif. Pos. dif. Tie Total 𝑃 value
On Best Value 3 18 9 30 0.001
On Mean Value 6 20 4 30 0.011
“Neg. dif.” and “Pos. dif.” denote the number of the negative and positive differences, respectively. “𝑃 value” denotes the probability value supporting the null
hypothesis.

crooked. This indicated that the parameter 𝑃ac is insensitive
to the problems f3, f7 and sensitive to the other problems.

5.3. Comparison of SaCDEhaS and SaDE. The results over 25
independent runs for the SaCDEhaS and SaDE algorithms
were recorded in the four Tables (Tables 5, 6, 7, and 8) in
the appendix. In these tables, the best, median, worst, and
mean function values and standard deviations were shown
for FEs of 5.0 × 104, 1.0 × 105, and 1.5 × 105, respectively. The
comparative aspects extracted in Table 2 included the best
and mean values from the tests of SaCDEhaS and SaDE. Sign
Test [23], which is a popular statistical method to compare
the overall performances of algorithms, was then used to
analyze the best values and the mean values in Table 2. As
shown in Table 3, the probability value of supporting the null
hypothesis of Sign Test on the mean values equaled 0.011,
while the probability on the best values was 0.001, which
was less than the significance level 0.05. So we can reject
the null hypothesis; that is to say, the overall performance of
SaCDEhaS is better than SaDE.

In addition, from Table 2, the following are comments on
notable aspects of performance of the two algorithms.

(i) In problem T04, SaDE began to stagnate from the
first stage when FEs are 5.0 × 104 (the mean and
best values were always equal to 2.0686𝐸 + 01 and
1.4750𝐸 + 01, resp.). However, that did not happen to
SaCDEhaS in any of the problems (in the three stages,
the mean values were 1.6805𝐸+01, 1.4971𝐸+01, and
1.4562𝐸+01, resp., and at the second stage, SaCDEhaS
achieved the current best value 1.3771𝐸 + 01).

(ii) SaCDEhaS achieved the current best values on six of
the 10 problems (T1, T2, T3, T4, T7, and T12), while
SaDE achieved them on only four (T1, T2, T3, and
T7). The current best values are marked with star in
Table 2. For problem T12 in particular, the minimum
value achieved by SaCDEhaS was less than any other
reported values in the CEC 2011 competition.

The above analyses indicate that SaCDEhaS outperforms
SaDE on the benchmark set.This shows that the employment
of the uniform mutation and haS operators benefits the
algorithm.
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Table 4: The best and mean values achieved via SaCDEhaS and four improvement DE algorithms within 1.5 × 105 FEs.

Test Fun. SaCDEhaS SAMODE DE-RHC Adap.DE ED-DE-MA

T01 Best 0.000000𝐸 + 00∗ 0.000000𝐸 + 00∗ 5.02𝐸 − 20∗ 0.000000𝐸 + 00∗ 0.0000𝐸 + 00∗

Mean 9.445299𝐸 + 00 1.212025𝐸 + 00 8.91𝐸 + 00 3.852582𝐸 + 00 0.0000𝐸 + 00

T02 Best −2.842253𝐸 + 01∗ −2.842253𝐸 + 01∗ −2.84𝐸 + 01∗ −2.842253𝐸 + 01∗ −2.8423𝐸 + 01∗

Mean −2.487860𝐸 + 01 −2.706978𝐸 + 01 −2.64𝐸 + 01 −2.678273𝐸 + 01 −2.6225𝐸 + 01

T03 Best 1.151489𝐸 − 05∗ 1.151489𝐸 − 05∗ 1.15𝐸 − 05∗ 1.151489𝐸 − 05∗ 1.1515𝐸 − 05∗

Mean 1.151489𝐸 − 05 1.151489𝐸 − 05 1.15𝐸 − 05 1.151489𝐸 − 05 1.1515𝐸 − 05

T04 Best 1.377076𝐸 + 01∗ 1.377076𝐸 + 01∗ 2.00𝐸 + 01 1.432911𝐸 + 01 1.3771𝐸 + 01∗

Mean 1.497052𝐸 + 01 1.394069𝐸 + 01 2.10𝐸 + 01 1.831217𝐸 + 01 1.3774𝐸 + 01

T05 Best −3.596196𝐸 + 01 −3.684393𝐸 + 01 −3.69𝐸 + 01 −3.684537𝐸 + 01∗ −3.6895𝐸 + 01

Mean −2.885426𝐸 + 01 −3.359474𝐸 + 01 −3.58𝐸 + 01 −3.381816𝐸 + 01 −3.3702𝐸 + 01

T06 Best −2.680279𝐸 + 01 −2.916612𝐸 + 01∗ −2.92𝐸 + 01∗ −2.916612𝐸 + 01∗ −2.9166𝐸 + 01∗

Mean −2.030931𝐸 + 01 −2.763470𝐸 + 01 −2.91𝐸 + 01 −2.583055𝐸 + 01 −2.6809𝐸 + 01

T07 Best 5.000000𝐸 − 01∗ 5.000000𝐸 − 01∗ 9.51𝐸 − 01 5.000000𝐸 − 01∗ 5.1940𝐸 − 01

Mean 7.904189𝐸 − 01 8.166238𝐸 − 01 1.15𝐸 + 01 5.000000𝐸 − 01 1.1875𝐸 + 00

T10 Best −2.183457𝐸 + 01 −2.182166𝐸 + 01 −2.05𝐸 + 01 −2.180845𝐸 + 01 −2.1832𝐸 + 01

Mean −2.136730𝐸 + 01 −2.165891𝐸 + 01 −1.83𝐸 + 01 −2.095834𝐸 + 01 −2.1421𝐸 + 01

T12 Best 6.710520𝐸 + 00∗ 6.943215𝐸 + 00 1.58𝐸 + 01 1.239837𝐸 + 01 9.9697𝐸 + 00

Mean 1.381452𝐸 + 01 1.106747𝐸 + 01 1.90𝐸 + 01 2.119566𝐸 + 01 1.4436𝐸 + 01

T13 Best 8.662559𝐸 + 00 8.610634𝐸 + 00 1.42𝐸 + 01 8.621241𝐸 + 00 1.4034𝐸 + 01

Mean 1.854369𝐸 + 01 1.099524𝐸 + 01 2.00𝐸 + 01 1.253713𝐸 + 00 1.6241𝐸 + 01
∗Marks that the current best value is obtained.

Table 5: The function values achieved via SaCDEhaS for test problems (T01–05).

FEs T01 T02 T03 T04 T05

5𝐸4

Best 0.000000𝐸 + 00 −2.619919𝐸 + 01 1.151489𝐸 − 05 1.381528𝐸 + 01 −3.033732𝐸 + 01

Median 1.094227𝐸 + 01 −1.859087𝐸 + 01 1.151489𝐸 − 05 1.536424𝐸 + 01 −2.338909𝐸 + 01

Worst 2.016705𝐸 + 01 −8.547038𝐸 + 00 1.151489𝐸 − 05 2.082830𝐸 + 01 −2.139462𝐸 + 01

Mean 9.445299𝐸 + 00 −1.842434𝐸 + 01 1.151489𝐸 − 05 1.680539𝐸 + 01 −2.400113𝐸 + 01

Std. 6.526244𝐸 + 00 4.593860𝐸 + 00 0.000000𝐸 + 00 2.554046𝐸 + 00 2.250130𝐸 + 00

1𝐸5

Best 0.000000𝐸 + 00 −2.837096𝐸 + 01 1.151489𝐸 − 05 1.377076𝐸 + 01 −3.550334𝐸 + 01

Median 1.094227𝐸 + 01 −2.727041𝐸 + 01 1.151489𝐸 − 05 1.434257𝐸 + 01 −2.827621𝐸 + 01

Worst 2.016705𝐸 + 01 −1.200074𝐸 + 01 1.151489𝐸 − 05 1.911801𝐸 + 01 −2.508282𝐸 + 01

Mean 9.445299𝐸 + 00 −2.487860𝐸 + 01 1.151489𝐸 − 05 1.497052𝐸 + 01 −2.885426𝐸 + 01

Std. 6.526244𝐸 + 00 4.034637𝐸 + 00 0.000000𝐸 + 00 1.321138𝐸 + 00 2.685251𝐸 + 00

1.5𝐸5

Best 0.000000𝐸 + 00 −2.842253𝐸 + 01 1.151489𝐸 − 05 1.377076𝐸 + 01 −3.596196𝐸 + 01

Median 1.094227𝐸 + 01 −2.744682𝐸 + 01 1.151489𝐸 − 05 1.410267𝐸 + 01 −3.042736𝐸 + 01

Worst 2.016705𝐸 + 01 −1.200229𝐸 + 01 1.151489𝐸 − 05 1.753947𝐸 + 01 −2.528275𝐸 + 01

Mean 9.445299𝐸 + 00 −2.620730𝐸 + 01 1.151489𝐸 − 05 1.456192𝐸 + 01 −3.063443𝐸 + 01

Std. 6.526244𝐸 + 00 3.355820𝐸 + 00 0.000000𝐸 + 00 9.726881𝐸 − 01 2.326170𝐸 + 00

5.4. Comparison of SaCDEhaS with Other Improved DE
Variants. The CEC 2011 competition results are available
on the homepage of Suganthan [11]. Four of the top six
algorithms belong to the DE family. SAMODE [24] turned
out to be the best of these, followed by DE-RHC [25],
Adap. DE [26], and ED-DE algorithm [27]. In order to
fully evaluate the performance of the proposed SaCDEhaS
algorithm, we now compare it with the four top algorithms,
for all the box-constrained global optimization problems of
the benchmark function set for the CEC 2011 Special Session.
Table 4 shows the best and mean values in the test instances

for the SaCDEhaS, SAMODE, DE-RHC, Adap. DE, and ED-
DE algorithm.

From Table 4, we comment on the performance of these
algorithms as follows.

(i) SaCDEhaS obtained the current best values in six of
the 10 problems (T1, T2, T3, T4, T7, and T12), while
SaCDEhaS, SAMODE, DE-RHC, Adap. DE, and ED-
DE obtained the current best values in six (T1, T2, T3,
T4, T6, and T7), four (T1, T2, T3, and T6), six (T1, T2,
T3, T5, T6, and T7), and five problems (T1, T2, T3, T4,
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Table 6: The function values achieved via SaCDEhaS for test problems (T06, 07, 10, 12, 13).

FEs T06 T07 T10 T12 T13(150, 5𝐸 − 3)

5𝐸4

Best −1.895433𝐸 + 01 5.692406𝐸 − 01 −2.172491𝐸 + 01 7.410013𝐸 + 00 9.374999𝐸 + 00

Median −1.659496𝐸 + 01 1.151573𝐸 + 00 −2.134481𝐸 + 01 1.473892𝐸 + 01 2.078702𝐸 + 01

Worst −1.320473𝐸 + 01 1.815681𝐸 + 00 −1.921022𝐸 + 01 2.024237𝐸 + 01 2.534618𝐸 + 01

Mean −1.657655𝐸 + 01 1.214532𝐸 + 00 −2.112168𝐸 + 01 1.434990𝐸 + 01 1.960803𝐸 + 01

Std. 1.338433𝐸 + 00 3.291907𝐸 + 00 6.140559𝐸 − 01 2.789373𝐸 + 00 4.562423𝐸 + 00

1𝐸5

Best −2.322918𝐸 + 01 5.000000𝐸 − 01 −2.183449𝐸 + 01 7.098511𝐸 + 00 8.694516𝐸 + 00

Median −1.846216𝐸 + 01 8.538244𝐸 − 01 −2.137892𝐸 + 01 1.449314𝐸 + 01 1.922921𝐸 + 01

Worst −1.482346𝐸 + 01 1.380470𝐸 + 00 −2.065842𝐸 + 01 2.017225𝐸 + 01 2.515676𝐸 + 01

Mean −1.856559𝐸 + 01 8.737516𝐸 − 01 −2.134460𝐸 + 01 1.396631𝐸 + 01 1.880750𝐸 + 01

Std. 1.957858𝐸 + 00 2.038954𝐸 − 01 2.879415𝐸 − 01 2.876316𝐸 + 00 4.369647𝐸 + 00

1.5𝐸5

Best −2.680279𝐸 + 01 5.000000𝐸 − 01 −2.183457𝐸 + 01 6.710520𝐸 + 00 8.662559𝐸 + 00

Median −1.946277𝐸 + 01 8.082074𝐸 − 01 −2.138188𝐸 + 01 1.435571𝐸 + 01 1.901252𝐸 + 01

Worst −1.678506𝐸 + 01 1.044074𝐸 + 00 −2.065842𝐸 + 01 2.017119𝐸 + 01 2.515676𝐸 + 01

Mean −2.030931𝐸 + 01 7.904189𝐸 − 01 −2.136730𝐸 + 01 1.381452𝐸 + 01 1.854369𝐸 + 01

Std. 2.069445𝐸 + 00 1.644569𝐸 − 01 2.691909𝐸 − 01 2.954389𝐸 + 00 4.315291𝐸 + 00

Table 7: The function values achieved via SaDE for test problems (T01–05).

FEs T01 T02 T03 T04 T05

5𝐸4

Best 0.000000𝐸 + 00 −2.547346𝐸 + 01 1.151489𝐸 − 05 1.474962𝐸 + 01 −2.965491𝐸 + 01

Median 1.230606𝐸 + 01 −1.651099𝐸 + 01 1.151489𝐸 − 05 2.107781𝐸 + 01 −2.339049𝐸 + 01

Worst 2.069471𝐸 + 01 −1.017972𝐸 + 01 1.151489𝐸 − 05 2.410711𝐸 + 01 −2.124083𝐸 + 01

Mean 1.199518𝐸 + 01 −1.797113𝐸 + 01 1.151489𝐸 − 05 2.068582𝐸 + 01 −2.418576𝐸 + 01

Std. 6.105013𝐸 + 00 4.391106𝐸 + 00 3.000000𝐸 − 16 2.138599𝐸 + 00 2.181301𝐸 + 00

1𝐸5

Best 0.000000𝐸 + 00 −2.842249𝐸 + 01 1.151489𝐸 − 05 1.474962𝐸 + 01 −3.272771𝐸 + 01

Median 1.230606𝐸 + 01 −2.602234𝐸 + 01 1.151489𝐸 − 05 2.107781𝐸 + 01 −2.584935𝐸 + 01

Worst 2.069471𝐸 + 01 −1.819737𝐸 + 01 1.151489𝐸 − 05 2.410711𝐸 + 01 −2.371424𝐸 + 01

Mean 1.199518𝐸 + 01 −2.459705𝐸 + 01 1.151489𝐸 − 05 2.068582𝐸 + 01 −2.723624𝐸 + 01

Std. 6.105013𝐸 + 00 3.451965𝐸 + 00 3.000000𝐸 − 16 2.138599𝐸 + 00 2.564945𝐸 + 00

1.5𝐸5

Best 0.000000𝐸 + 00 −2.842253𝐸 + 01 1.151489𝐸 − 05 1.474962𝐸 + 01 −3.387944𝐸 + 01

Median 1.230606𝐸 + 01 −2.648390𝐸 + 01 1.151489𝐸 − 05 2.107781𝐸 + 01 −2.856424𝐸 + 01

Worst 2.069471𝐸 + 01 −1.820793𝐸 + 01 1.151489𝐸 − 05 2.410711𝐸 + 01 −2.575636𝐸 + 01

Mean 1.199518𝐸 + 01 −2.529978𝐸 + 01 1.151489𝐸 − 05 2.068582𝐸 + 01 −2.944785𝐸 + 01

Std. 6.105013𝐸 + 00 3.419653𝐸 + 00 3.000000𝐸 − 16 2.138599𝐸 + 00 2.562794𝐸 + 00

and T6), respectively. The success rate of SaCDEhaS
achieving the current best values was not less than
that of the other four algorithms.

(ii) SaCDEhaS found the current best value of
6.710520𝐸 + 00 in problem T12, which was lower
than the value (6.943215𝐸+ 00) obtained on the CEC
2011 competition.

(iii) However, considering only the mean values, SaCDE-
haS did not dominate.Thebest-performing algorithm
was SAMODE.

We can state from the above that the proposed SaCDEhaS
algorithm is promisingwhen compared to similar algorithms.

6. Conclusion

This paper presents a self-adaptive convergent DE algorithm,
SaCDEhaS, for continuous engineering optimization prob-
lems. SaCDEhaS is formed by integrating the basic DE with
a self-adaptive parameter control strategy and two extra
operators, that is, uniform mutation and hidden adaptation
selection (haS) operators. The haS operator automatically
controls the algorithm to break the current loop at a low
probability. The breaking probability is proportional to the
number of inferior individuals of every trial population. To
some degree, this alleviates the negative effects associated
with enhancement of the diversity. The theoretical proof of
this paper demonstrated that these improvements enhance
the diversity of populations and guarantee the algorithm’s
global convergence in probability.



10 Mathematical Problems in Engineering

Table 8: The function values achieved via SaDE for test problems (T06, 07, 10, 12, 13).

FEs T06 T07 T10 T12 T13

5𝐸4

Best −1.686549𝐸 + 01 6.804249𝐸 − 01 −2.177440𝐸 + 01 9.463884𝐸 + 00 1.062508𝐸 + 01

Median −1.173179𝐸 + 01 1.042188𝐸 + 00 −2.136835𝐸 + 01 1.545941𝐸 + 01 2.000271𝐸 + 01

Worst — 1.738322𝐸 + 00 −1.798882𝐸 + 01 1.901426𝐸 + 01 2.434862𝐸 + 01

Mean — 1.123239𝐸 + 00 −2.116746𝐸 + 01 1.450659𝐸 + 01 1.892074𝐸 + 01

Std. — 3.236158𝐸 − 01 8.397006𝐸 − 01 2.463023𝐸 + 00 3.421109𝐸 + 00

1𝐸5

Best −2.346968𝐸 + 01 5.000000𝐸 − 01 −2.177983𝐸 + 01 8.819336𝐸 + 00 1.012878𝐸 + 01

Median −1.456034𝐸 + 01 9.747225𝐸 − 01 −2.141695𝐸 + 01 1.452319𝐸 + 01 1.934751𝐸 + 01

Worst — 1.444171𝐸 + 00 −1.799526𝐸 + 01 1.865872𝐸 + 01 2.343274𝐸 + 01

Mean — 9.578726𝐸 − 01 −2.125042𝐸 + 01 1.396713𝐸 + 01 1.837846𝐸 + 01

Std. — 2.224497𝐸 − 01 8.395020𝐸 − 01 2.467759𝐸 + 00 3.401275𝐸 + 00

1.5𝐸5

Best −2.405059𝐸 + 01 5.000000𝐸 − 01 −2.177985𝐸 + 01 8.793885𝐸 + 00 1.012562𝐸 + 01

Median −1.495897𝐸 + 01 8.691929𝐸 − 01 −2.146233𝐸 + 01 1.437097𝐸 + 01 1.905806𝐸 + 01

Worst — 1.274259𝐸 + 00 −1.825312𝐸 + 01 1.861175𝐸 + 01 2.328276𝐸 + 01

Mean — 8.448028𝐸 − 01 −2.129898𝐸 + 01 1.382334𝐸 + 01 1.824810𝐸 + 01

Std. — 1.715784𝐸 − 01 8.041711𝐸 − 01 2.485077𝐸 + 00 3.370184𝐸 + 00

The experimental studies were carried out on the all
bound-constrained and unconstrained optimization prob-
lems in the CEC 2011 competition, which included 10 global
engineering optimization problems. Comparison between
SaCDEhaS and SaDE (which did not use the uniform muta-
tion and haS operators) indicated the advantages of simulta-
neously using these two operators in SaCDEhaS. SaCDEhaS
was also compared with the top four DE variants in the CEC
2011 competition. The results indicate the competitiveness of
the proposed SaCDEhaS.

In the proposed algorithm, SaCDEhaS, the additional
auxiliary convergence probability 𝑃ac was used. Tests of the
effects of different sets of 𝑃ac on the benchmarks indicated
that the performance of SeCDEhaS is sensitive to 𝑃ac when
finding the best set of parameters. We will investigate the
adaptive or self-adaptive strategy of the parameter 𝑃ac in
future work.
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