
A Methodology for Managing Roles in Legacy Systems

Sylvia L. Osborn
Dept. of Computer Science

The Univ. of Western Ontario
London, Ontario, Canada

N6A-5B7

sylvia@csd.uwo.ca

Yan Han
Dept. of Computer Science

The Univ. of Western Ontario
London, Ontario, Canada

N6A-5B7

yhan@csd.uwo.ca

Jun Liu
Dept. of Computer Science

The Univ. of Western Ontario
London, Ontario, Canada

N6A-5B7

jliu@csd.uwo.ca

ABSTRACT
Role-based access control (RBAC) is well accepted as a good
technology for managing and designing access control in sys-
tems with many users and many objects. Much of the re-
search on RBAC has been done in an environment isolated
from real systems which need to be managed. In this pa-
per, we propose a methodology for using an RBAC design
tool we have developed, to manage and effect changes to an
underlying relational database. We also discuss how to sim-
ulate the role graph model on a Unix system, and extend
the methodology just described for relational databases to
managing a Unix system when changes are made to the role
graph.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Access controls;
K.6.5 [Computing Millieux]: Security and Protection

General Terms
Algorithms, Security

Keywords
role-based access control, relational databases

1. INTRODUCTION
Role-based access control models have been discussed for

a number of years [6, 8, 1, 13]. It is well accepted that de-
signing security for situations with many users and many
objects is greatly facilitated by using a role-based design.
Many of these designs are off-line, similar to the way in
which one would use an Entity Relationship model to de-
sign a database before approaching the commercial package
on which one implements the design. The problem with
this approach is that, with systems which have no built-in
role-based facility, one still has to install individual (user,
permission) pairs to correspond to the assigned roles of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03,June 2–3, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

user, and even more worrying, one has to delete all of these
pairs when a user is removed from such a role.

We have developed a role graph model [9]. One could
interface it with every piece of legacy software, as we did
some years ago with DB2 [11]. However we have greatly
improved the tool since then. Recently, the tool has been
enhanced with the option of saving the graphs in an XML
format rather than the ad hoc file formats which were being
used. We envisage the tool being used to initially design
the role graph and group memberships. Then, from time
to time, the security administrator will interact with the
tool to add and delete users, their group memberships, their
role assignments, alter the role graph and possibly the role-
permission assignments. When such a session is finished, a
new version of all of this information can be saved. What we
describe below is how this information can be used to alter
the permissions recorded in some legacy system when the
session with the role graph tool is completed. This change
can be run against a database as a transaction, for example.

Some relational packages (Oracle and Sybase, for exam-
ple) do have roles, and roles are part of the SQL99 standard.
However, one is not forced to use roles, and they can be
mixed in with individual user-permission assignments. The
relational database packages also do not have tools to deal
with role hierarchies. Thus, even if one is using a database
package that has roles, it is better to have a more sophisti-
cated tool to use in designing the access control for a com-
plex environment. It can also be argued that it is, in some
circumstances, better to have all access control managed
by a tool such as the role graph tool, rather than allowing
individual user-permission assignments to take place. The
proposals in this paper assume that this is the case.

We do not deal here with decentralized administration of
roles. In the database environment, we assume that the
database administrator owns all the tables, so that individ-
ual users to not have the ability to circumvent the permis-
sions being managed by the role graph methodology. Sim-
ilarly, in the Unix environment, for centralized control, we
assume that the superuser (or root) owns all the files, and
we use another mechanism to achieve a rich blending of per-
missions for users as can be achieved by the RBAC model.

The paper is organized as follows: Section 2 describes the
Role Graph Tool. Section 3 contains a suggested method-
ology for interfacing the tool with any relational database
system, In Section 4 we describe an experiment we did to
interface the role graph model with a Unix system, and then
discuss how the methodology in Section 3 can be adapted
for a Unix environment. Section 5 concludes the paper.

33

2. THE ROLE GRAPH TOOL
The role graph model, originally proposed by Nyanchama

[7], has had a group graph model added to it [2, 10]. Roles
consist of a role name and a set of privileges, each of which
is an (object, access mode) pair. If the role graph were gov-
erning a relational database application, the table privileges
would be (relation name, access mode) where the access
modes are Insert, Select, Update, Delete etc. If it is gov-
erning a Unix system, the objects are files, and the access
modes are just read, write and execute.

Roles are arranged in a role graph, with two distinguished
roles: MaxRole and MinRole. MaxRole represents all the
privileges in the role graph and need not be assigned to any
user or group. MinRole represents the least privileges as-
signed to anyone in the system. We distinguish between
direct privileges which are those directly assigned to a role,
and effective privileges which consist of the direct privileges
and those inherited from junior roles. The effective priv-
ileges for role r are also denoted by r.rpset. Role graphs
have the following properties:

• there is a single MaxRole,

• there is a single MinRole,

• the graphs are acyclic,

• there is a path from MinRole to every role ri,

• there is a path from every role ri to MaxRole,

• for any two roles ri and rj , if ri.rpset ⊂ rj .rpset, then
there must be a path from ri to rj ,

• by convention we draw the graphs with MaxRole at
the top, MinRole at the bottom, and junior roles lower
on the page than their seniors. We also remove tran-
sitive edges from the display to make the graph less
cluttered.

The operations available in the role graph panel are outlined
in [9].

The Group Graph model allows one to create sets of users,
say to represent committees or people assigned to a project,
who may not have the same job title. To simplify the model,
each individual user is regarded as a group of cardinality 1.
The edges in the group graph are determined by the subset
relationship between two groups. By convention we draw the
group graph with the Base group which contains all users at
the bottom, and the individual user groups at the top.

In Section 4, we will be talking about Unix groups. Unix
groups are also defined to be a set of users. When confusion
is possible, we will say RBAC groups or Unix groups to
distinguish between the two.

Together these models have been incorporated into a tool
written in Java. An image of the tool is shown in Figure
1. With the tool, one can develop a role graph in the right-
hand panel, a group graph in the left hand panel, and make
user/group to role assignments (these would be connections
between nodes in the two panels; they are not explicitly
drawn in the display in the current version of the software).
Each user is shown as a group of cardinality 1 at the top
of the group graph. The privilege information is available
through the roles. When one clicks the mouse over a role,
say VP2, we see the image in Figure 2, i.e. that Sally has

been assigned to this role, and that it has 2 direct privileges
and several effective privileges.

When one clicks the mouse over a group, one sees a display
as in Figure 3, i.e. that the members of the Office5 Group
have been assigned to role L4, and therefore are indirectly
assigned to MinRole.

3. INTERFACING WITH A RELATIONAL
DATABASE

The methodology we propose is this: rather than man-
aging permissions in a relational database using the ad-hoc
role facilities provided in the database package, or just using
straight user-permission assignments, the security adminis-
trator would manage access control using the role graph tool.
When changes are required to the underlying database sys-
tem, the security administrator would use our tool to modify
the group and role graphs, and when done, would cause these
changes to be reflected in the underlying database. The rest
of this section gives some details of our implementation of
this methodology.

The role graph tool was recently enhanced with the abil-
ity to save both graphs and the group-role assignments as
an XML file rather than the ad-hoc formats used previously.
An example of the XML file for the sample role and group
graphs is in Appendix A. This XML conforms to an XML
Schema which has been defined for role and group graphs [3].
In addition to that, we have added a menu choice so that
when the user saves the new group and role graphs, they
have a choice to also effect any changes in an underlying
relational database. An algorithm is run in which the group
and role graphs before the session are compared with the
group and role graphs after the session. The algorithm works
from the XML version of the information, so the graphs do
not have to be reconstructed. The alternative to comparing
the two XML files would be to issue the changes as the role
graph is being modified. The current choice gives a much
more straightforward algorithm, and probably a more effi-
cient one (e.g. the security administrator might make many
changes and then change their mind). With the current im-
plementation, the comparison is made when the role and
group graph changes are completed and a “commit point”
has been reached.

In any relational database, permissions are granted to
users and revoked from users using GRANT and REVOKE
statements. The algorithm creates as output a sequence of
these GRANT and REVOKE statements so that any addi-
tional users or permissions, or any additional pairs resulting
from enhancing the group graph or the role graph are gener-
ated as GRANTs. Also, if any users are deleted or any priv-
ileges are no longer available to a user because of changes
to one of the graphs, this will be the subject of a REVOKE
statement generated by the algorithm. Once this sequence
of GRANTS and REVOKES is built, it can be executed in
the database as a single transaction, so that its results are
seen by other transactions/users all at once.

The algorithm is given in Figure 4. It has run time poly-
nomial in the number of users, the number of roles and the
number of permissions.

4. INTERFACING WITH UNIX
In [12], Sandhu and Ahn describe a way of using the group

mechanism in Unix for access control. They focus on the de-

34

Figure 1: Screen Image of the Role Graph Tool

Figure 2: Image of Role VP2 display

35

Figure 3: Image of Office5 group’s display

centralized administration of access control which is not the
topic of this paper. They also do not deal with the privi-
leges, but seem to assume that the information associated
with each project is a set of files totally under the control of
that role.

In considering the privileges available in a Unix environ-
ment, the objects one can talk about are simply Unix files,
and the operations available on these files are read, write
and execute. The basic Unix mechanism for controlling ac-
cess involves the familiar 9 bits, of which 3 give read, write
and execute permissions for the owner of the file, 3 give the
permissions for the group the file belongs to, and the final 3
give the permissions for all other users. The owner of a file
cannot request, as in a relational database, that they want
to give read permission to a specific user by name, nor can
they give permissions to a group by its (Unix) group name.

Other than the 9 bits, Unix groups are the only other
mechanism provided for dealing with access control in orig-
inal Unix systems. Most modern implementations of Unix
now have access control lists (ACLs). With an access con-
trol list, one can specify an arbitrary number of (groupname,
access mode) or (username, access mode) pairs for each file.

In a recent experiment [5], we looked at simulating role
graphs in Unix.1, i.e. we looked for a way to take an ar-
bitrary role graph and map these permissions onto a Unix
system so that the privileges assigned to a user in the role
graph would be exactly those available in the Unix system,
assuming that by privileges we mean read/write/execute on
Unix files.

We found that Unix groups by themselves could not simu-
late the rich combinations of privileges that a truly arbitrary
role graph demands. Consider the very simple role graph in

1Previously we had looked at taking the file permissions
existing in a Unix system and modeling them as a role graph
[4].

Figure 5. If two different users u1 and u2 own File1 and
File2 respectively, then for other users to be in either role
R1 or role R2, we must associate these users with differ-
ent Unix groups, say G1 and G2. But with the split of the
read and write permissions of File2, this means that File2
would have to belong to 2 groups, and files in Unix have one
group. If (without loss of generality) we assume that Unix
group G1 corresponds to role R1, then the read permission
for File2 cannot be represented by the bits for the owner,
nor for the group because this will not make the read per-
mission available to role R2. If we use the “all other users”
bits to make the read permission available, then users who
are not assigned to role R2 would also get this privilege. The
situation is the same if both files are owned by the superuser
but belong to different groups.

The solution proposed in [5] is to use both groups and
access control lists. Given that we have groups and access
control lists, we now associate each role in a role graph with
a Unix group (which can have the same name as the role),
and for each privilege in the effective privileges of that role,
we add the pair (Group name, access mode) to the ACL for
the file. This solution assumes a centralized administration
of the role graph, and assumes that some superuser is the
owner of all the files being managed by the role graph RBAC
system.

Going back to the methodology described in the previous
section, when the security designer works on the role and
(RBAC) group graphs with the tool, the changes made from
the previous version need to be installed in the Unix system
which is being managed by the role graph. Once again, we
can compare the previous version of the graph with the new
version, by comparing the XML files output by the RBAC
tool. There are two ways we can proceed. The first way is
faithful to the Unix experiment in [5]; the second is simpler
and accomplishes the same access control.

36

Algorithm: Role-Graph Comparison(R-GG1, R-GG2)

Input: R-GG1 /* the original Role and Group Graphs */
R-GG2 /* the new Role and Group Graphs */

Output: A String representation of the differences of the two graphs,
in the form of SQL Grant and Revoke statements.
Method:

userSet-org = R-GG1.BaseGroup.UserSet;
userSet-new = R-GG2.BaseGroup.UserSet;
for all users u in userSet-org do

for all roles r assigned to u in R-GG1 do
for all effective privileges p assigned to role r in R-GG1 do

add p to u.privs-org
for all users u in userSet-new do

for all roles r assigned to u in R-GG2 do
for all effective privileges p assigned to role r in R-GG2 do

add p to u.privs-new
/* Case 1: users in the original graph, but NOT in the new graph */
for all users u1 in userSet-org do

/* a user in userSet-org, but not in userSet-new, REVOKE ALL privileges from this user */
if (u1 NOT in userSet-new)

for all p in u1.privs-org do
append REVOKE p from u1 instruction to output

/* CASE 2: users in the new graph, NOT in the original graph */
for all users u2 in userSet-new

if (u2 NOT in userSet-org)
for all p in u2.privs-new do

append GRANT p to u2 instruction to output
/* CASE 3: users in both Graphs, compare the privileges */
for all users u1 in userSet-org

/* u1′ is the corresponding user in the new graph */
find the same user in userSet-new – call it u1′

if (u1′ exists)
for all privileges in u1.privs-org - u1′ .privs-new

append REVOKE p from u1 instruction to output
for all privileges in u1′ .privs-new - u1.privs-old

append GRANT p to u1′ instruction to output

Figure 4: Role Graph Comparison Algorithm

In the first case, we need to make several changes to the
algorithm. First, if roles have been added to or deleted from
the role graph, we need to create or delete a Unix group
corresponding to the new/deleted role. This is done with the
Unix groupadd and groupdel commands. This code would
be inserted before “Case 1” in the algorithm. We would
also have to modify the algorithm to add/delete users from
groups.

In the prototype developed in [5], the access control lists
are built up in terms of groups. Therefore, if role R1 were
going to acquire read and write permissions on file F1, the
following Unix command would accomplish this:

setfacl -m g:R1:w F1

The second proposed solution, again using the algorithm
in Section 3, is simpler. Access control ultimately concerns
whether or not individual users can access individual files.
This can be accomplished by issuing individual user permis-
sion additions or deletions. We would not have to create the
Unix groups at all. Instead of issuing the relational database

Grant and Revoke statements relating to a particular user,
we change the output from the algorithm in Figure 4 to issue

setfacl -m u:username:--- filename

to add a permission for user username to read, write or
execute (replacing “---” with, appropriately, r--, -w- or
--x) for file filename. To revoke a permission, the following
command should be substituted for the Revoke statement
in the algorithm:

setfacl -d u:username:--- filename

The changes to the algorithm discussed above to add Unix
groups are not even necessary as the algorithm in Figure 4
will give the appropriate permissions to users assigned to
the roles. Thus, the only change to the algorithm is to re-
place the Grant instructions with setfacl -m commands and
replace the Revoke instructions with setfacl -d commands.
Once the algorithm has generated these commands, they
must then be run in the Unix environment to reflect the
changes made in the RBAC system.

37

Figure 5: Simple Role Graph with 2 Roles

The second solution does leave as much information about
the organization of the access control in the Unix system,
as Unix groups are not created. It is, however, a simpler
solution.

5. CONCLUSIONS
The paper began by describing a tool we have been de-

veloping to manage role and group graphs for access control
for a complex system.

One of the problems with adopting RBAC methodology
in existing installations has been that legacy systems have to
be retrofitted with the new access control features. What we
have proposed in this paper is a methodology in which a tool
to manage role and group graphs is used to design the access
control for a complex system, after which the mechanisms
already available in the legacy system can be used to execute
a sequence of security-related statements to make the corre-
sponding privileges available to users precisely as designed
in the role graph system. We showed how this can be done
for a standard relational database package. We also dis-
cussed how the original Unix security provisions make truly
arbitrary role graphs impossible to simulate, but that with
a Unix system with Access Control Lists, one can use the
same methodology to manage access control as proposed for
databases, i.e. designing the access control using the RBAC
tool, and then executing a sequence of setfacl instructions
to make the privileges available to users as designed in the
RBAC tool.

6. ACKNOWLEDGEMENTS
The following students have worked on the current ver-

sion of the software for the role graph and group graph tool:
Rizwan Qureshi, He Peng, Kefeng Yan and Yan Shi. Many
thanks go to David Wiseman in the UWO Computer Sci-
ence Department for answering questions about Unix. Sin-
cere thanks also go to Dave Martin of the UWO Computer
Science Department for his help with the final paper. The
financial support of the Natural Sciences and Engineering
Research Council of Canada is greatfully acknowledged.

7. REFERENCES
[1] D. Ferraiolo, J. Cugini, and D. Kuhn. Role-based

access control (RBAC): Features and motivations. In
Proceedings 11th Annual Computer Security
Applications Conference, 1995.

[2] Y. Guo. User/group administration for RBAC.
Master’s thesis, Dept. of Computer Science, The
University of Western Ontario, 1999.

[3] Y. Han. An XML model for RBAC for interaction
with relational databases. Master’s thesis, The
University of Western Ontario, 2003.

[4] L. Hua and S. Osborn. Modeling UNIX access control
with a role graph. In Proceedings of International
Conference on Computers and Information, June 1998.

[5] J. Liu. Mapping the role graph model to UNIX.
Master’s thesis, The University of Western Ontario,
2002.

[6] F. Lochovsky and C. Woo. Role-based security in
database management systems. In C. Landwehr,
editor, Database Security: Status and Prospects.
North-Holland, 1988.

[7] M. Nyanchama. Commercial Integrity, Roles and
Object Orientation. PhD thesis, Department of
Computer Science, The University of Western
Ontario, London, Canada, Sept. 1994.

[8] M. Nyanchama and S. L. Osborn. Access rights
administration in role-based security systems. In
J. Biskup, M. Morgenstern, and C. E. Landwehr,
editors, Database Security, VIII, Status and Prospects
WG11.3 Working Conference on Database Security,
pages 37–56. North-Holland, 1994.

[9] M. Nyanchama and S. L. Osborn. The role graph
model and conflict of interest. ACM TISSEC,
2(1):3–33, 1999.

[10] S. Osborn and Y. Guo. Modeling users in role-based
access control. In Fifth ACM Workshop on Role-Based
Access Control, pages 31–38, Berlin, Germany, July
2000.

[11] S. Osborn, L. Reid, and G. Wesson. On the
interaction between role based access control and
relational databases. In P. Samarati and R. Sandhu,
editors, Proceedings of the Tenth Annual IFIP WG
11.3 Working Conference on Database Security.
Chapman & Hall, Aug. 1996.

[12] R. Sandhu and G.-J. Ahn. Decentralized group
hierarchies in UNIX: An experiment and lessons
learned. In National Information Systems Security
Conference, 1998.

[13] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29:38–47, Feb. 1996.

38

APPENDIX

A. A SAMPLE XML FILE
The following is the XML file corresponding to the graphs in Figure 1.

<?xml version="1.0" encoding="UTF-8"?>
<RBAC xmlns="http://www.csd.uwo.ca/rolegraph"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.csd.uwo.ca/rolegraph. ./RoleGraph_1106.xsd">

<GroupGraph>
<Base>

<UserSet>Bob Lisa Sally George Homer </UserSet>
<SubGroupSet>Office5 LH GS Engineers </SubGroupSet>

</Base>
<Group>

<GName>Engineers</GName>
<UserSet>Bob Lisa Sally</UserSet>

</Group>
<Group>

<GName>GS</GName>
<UserSet>George Sally</UserSet>

</Group>
<Group>

<GName>Office5</GName>
<UserSet>George Bob</UserSet>
<AssignedRole>L4</AssignedRole>

</Group>
<Group>

<GName>LH</GName>
<UserSet>Homer Lisa</UserSet>

</Group>
</GroupGraph>
<RoleGraph>

<Privilege>
<PName>SELECT_Payroll</PName>
<PObject>Payroll</PObject>
<PAccess>SELECT</PAccess>

</Privilege>
<Privilege>

<PName>SELECT_Employee</PName>
<PObject>Employee</PObject>
<PAccess>SELECT</PAccess>

</Privilege>
<Privilege>

<PName>INSERT_Employee</PName>
<PObject>Employee</PObject>
<PAccess>INSERT</PAccess>

</Privilege>
<Privilege>

<PName>UPDATE_Employee</PName>
<PObject>Employee</PObject>
<PAccess>UPDATE</PAccess>

</Privilege>
<Privilege>

<PName>INSERT_Payroll</PName>
<PObject>Payroll</PObject>
<PAccess>INSERT</PAccess>

</Privilege>
<Privilege>

<PName>UPDATE_Payroll</PName>
<PObject>Payroll</PObject>
<PAccess>UPDATE</PAccess>

</Privilege>
<Privilege>

<PName>DELETE_Payroll</PName>
<PObject>Payroll</PObject>
<PAccess>DELETE</PAccess>

</Privilege>
<Privilege>

<PName>DELETE_Employee</PName>
<PObject>Employee</PObject>
<PAccess>DELETE</PAccess>

</Privilege>

39

<Privilege>
<PName>SELECT_OfficePool</PName>
<PObject>OfficePool</PObject>
<PAccess>SELECT</PAccess>

</Privilege>
<Privilege>

<PName>DELETE_OfficePool</PName>
<PObject>OfficePool</PObject>
<PAccess>DELETE</PAccess>

</Privilege>
<MaxRole>

<ImmJunior>L3 VP1 VP2</ImmJunior>
</MaxRole>
<MinRole>

<ImmSenior>S1 S2 President L4</ImmSenior>
<AssignedGroup>Office5</AssignedGroup>

</MinRole>
<Role>

<RName>S1</RName>
<DirPrivilege>SELECT_Employee INSERT_Employee</DirPrivilege>
<ImmSenior>L2 L3</ImmSenior>

</Role>
<Role>

<RName>S2</RName>
<DirPrivilege>SELECT_Payroll INSERT_Payroll</DirPrivilege>
<ImmSenior>L1</ImmSenior>

</Role>
<Role>

<RName>President</RName>
<DirPrivilege>SELECT_Payroll SELECT_Employee</DirPrivilege>
<ImmSenior>L3</ImmSenior>
<AssignedGroup>Lisa</AssignedGroup>

</Role>
<Role>

<RName>L1</RName>
<DirPrivilege>Delete_Payroll </DirPrivilege>
<ImmSenior>L3 VP2</ImmSenior>
<AssignedGroup>Bob</AssignedGroup>

</Role>
<Role>

<RName>L2</RName>
<DirPrivilege>UPDATE_Employee </DirPrivilege>
<ImmSenior>VP1</ImmSenior>

</Role>
<Role>

<RName>L3</RName>
<ImmSenior>MaxRole</ImmSenior>

</Role>
<Role>

<RName>L4</RName>
<DirPrivilege>SELECT_OfficePool </DirPrivilege>
<ImmSenior>VP2</ImmSenior>
<AssignedGroup>Office5</AssignedGroup>

</Role>
<Role>

<RName>VP1</RName>
<DirPrivilege>DELETE_Employee </DirPrivilege>
<ImmSenior>MaxRole</ImmSenior>
<AssignedGroup>George</AssignedGroup>

</Role>
<Role>

<RName>VP2</RName>
<DirPrivilege>UPDATE_Payroll

DELETE_OfficePool</DirPrivilege>
<ImmSenior>MaxRole</ImmSenior>
<AssignedGroup>Sally</AssignedGroup>

</Role>
</RoleGraph>

</RBAC>

40

