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The effect of tilted harmonic excitation and parametric damping on the chaotic dynamics in an
asymmetric magnetic pendulum is investigated in this paper. The Melnikov method is used to
derive a criterion for transition to nonperiodic motion in terms of the Gauss hypergeometric
function. The regular and fractal shapes of the basin of attraction are used to validate the Melnikov
predictions. In the absence of parametric damping, the results show that an increase of the tilt angle
of the excitation causes the lower bound for chaotic domain to increase and produces a singularity
at the vertical position of the excitation. It is also shown that the presence of parametric damping
without a periodic fluctuation can enhance or suppress chaos while a parametric damping with a
periodic fluctuation can increase the region of regular motions significantly.

1. Introduction

Various nonlinear phenomena have been found in physical systems and chaotic behavior has
been reported in various engineering systems with applications in microelectromechanical
[1–3], electromechanical [4–6], mechanical [7–10], electronic [11–13], and others. Usually,
numerical indicators such as the Lyapunov exponent and bifurcation diagram are used to
determine and study the occurrence of chaos. The Melnikov method [14], on the other
hand, predicts analytically the lower bound in parameter space separating regular and
chaotic dynamics. The Melnikov method has been recently applied in experimental and
theoretical research in various fields of science, including epidemiology [15], biology [16],
and engineering systems [2, 7, 8]. Along these lines, Cicogna and Papoff [17] considered a
Duffing type potential with an additional linear term and estimated the threshold condition
for the appearance of chaos by using a Taylor expansion with respect to the asymmetric
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parameter. The optimal control of chaos was studied by Lenci and Rega [18] for the
Helmholtz-Duffing oscillator. Litak et al. [19] revisited the Melnikov criteria for a driven
system under a single and double well asymmetric potential and expressed the integrals to be
evaluated for the appearance of chaos in terms of logarithm function. Cao et al. [20] applied
the Melnikov theory to a driven Helmholtz-Duffing oscillator and derived the condition for
appearance of fractal basin boundaries. Recently, a magnetic pendulum driven by a high-
frequency excitation under a magnetic potential was considered [21]. This paper aims to
apply the well-known Melnikov theory to a fundamental physical device used in several
engineering systems, namely, a magnetic pendulum, and discuss the possibility of chaos
suppression in the system.

Current literature examines various nontrivial phenomena caused by a high-frequency
excitation in physical systems. Thomsen [22] considered the stiffening, biasing, and
smoothening in such systems, Bartuccelli et al. [23] and Schmitt and Bayly [24] showed
that a high-frequency excitation of a horizontally or vertically shaken pendulum results in
oscillations about a nonzero mean angle. Yabuno et al. [25] considered an inverted pendulum
and showed that a tilt angle of the excitation produces stable equilibrium states different from
the direction of the gravity and the excitation. The symmetry breaking bifurcation due to the
tilt angle was also investigated qualitatively and through experiments by Mann and Koplow
[26]. In a related experimental work,Mann investigated the energy criterion for snap-through
instability and nonperiodic motion.

The effect of a fast parametric excitation on self-excited vibrations in a delayed van
der Pol oscillator was reported in [27, 28]. Fidlen and Juel Thomsen [29] analyzed this effect
on the equilibrium of a strongly damped system comparing to the case of a slightly damped
one. Mann and Koplow [26] showed that a small deviation from either a perfectly vertical
or horizontal excitation will result in symmetry breaking bifurcations opposed to pitchfork
bifurcations obtained for vertical or horizontal excitation. Also, the condition for well escapes
in a bistable configuration of the potential energy has been studied [21]. An earlier work on
magnetic pendulum was done by Moon et al. [30]who showed evidence of homoclinic orbit
and horseshoe chaos in a magnetic pendulum. Kraftmakher [31] reported that parametric
damping has some strong effects on the stabilization dynamics of a pendulum. The effects of
the sinusoidal fluctuation arising from a control strategy was also considered. Recently, Sah
and Belhaq [32] investigated the tilting effect of a fast excitation on self-excited vibrations in
a delayed van der Pol pendulum.

It thus appears from this paper that, parametrically excited magnetic pendulum is
an interesting system from both the mathematical and physical points of view. The present
work was motivated by the experimental work carried out by Mann [21] in which the
basins of attraction have been computed and the influence of parametric excitation on escape
phenomena have been studied. Specifically, we consider the experimental system as in [21]
and we investigate analytically and numerically the tilting effect of the parametric excitation
as well as the time-dependent parametric damping on the basins of attraction and on chaos
domain in the parameter space of the system. In other words, the present paper can be
considered as an extension of the experimental work [21] in adding other effects to the
original system.

To identify the conditions leading to nonperiodic response, Melnikov method is
applied using the Gauss hypergeometric function. The use of this function can be considered
as an extension of the work by Litak et al. [19]. To the best of our knowledge, the effect of
tilted excitation and parametric damping on the appearance of chaos in magnetic pendulum
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has not been addressed. In addition to being of fundamental interest, this paper expects to
impact practical design and control of systems involving a magnetic pendulum.

The paper is organized as follows. In Section 2, the mathematical model and the
corresponding homoclinic orbit are given. In Section 3, the Melnikov theorem is used to
obtain the threshold condition for the appearance of chaos and the basins of attraction are
explored to support the Melnikov results. Attention is focused on the effects of the titling of
the excitation on the chaos occurrence, in the absence of parametric damping. In Section 4,
parametric damping is introduced and its effect is analyzed. Section 5 concludes the work.

2. The Model and Hamiltonian System

A schematic representation of the pendulum is shown in Figure 1 where θ is the angular
deviation, m and L are the mass and the effective length of the pendulum, respectively, A
and Ω are the amplitude and the frequency of the excitation, respectively, and γ is the tilt
angle of the excitation with respect to the gravity direction. Using Newton’s laws it is shown
that the mathematical model describing the angular oscillations of the system can be written
as [21, 26]

d2θ

dτ2
+

c

mL2

dθ

dτ
+
g

L
sin θ +

1
mL2

∂U

∂θ
=

AΩ2

L
cosΩτ cos

(
θ − γ

)
, (2.1)

where θ is the angular deviation, τ is the time, c is the damping coefficient, m and L are
the mass and the effective length of the pendulum, respectively, g is the acceleration due to
gravity, A and Ω are the amplitude and the frequency of excitation, respectively, γ is the tilt
angle of the excitation with respect to the horizontal direction, and U(θ) is a nonsymmetric
potential defining the nonlinear restoring force of the magnet given as [21]

U(θ) =
a1

2
θ2 +

a2

3
θ3 +

a3

4
θ4 + high order terms, (2.2)

where a1, a2, and a3 are physical constants. By expanding cos θ and sin θ up to the third order,
(2.1) becomes in dimensionless form

d2x

dt2
+ λ

dx

dt
+ ηx + αx2 + βx3 = f(t), (2.3)

with

f(t) = rω2
[
ζ0 + ζ1x + ζ2x

2 + ζ3x
3
]
cosωt,

x =
θ

θ0
, t =

τ

T
, λ =

cT

2mL2
, η =

[
g

L
+

a1

mL2

]
T2, α =

a2T
2θ0

mL2
,

r =
A

2L2θ0
, γ =

ω2A

2L2
, ζ0 = cos γ, ζ1 = θ0 sin γ, ζ2 = −θ

2
0

2
cos γ,

β =
[
− g

6L
+

a3

mL2

]
T2θ2

0ζ3 = −θ
3
0

6
sin γ, ω = ΩT,

(2.4)



4 Mathematical Problems in Engineering

θ
Magnet

Magnet

A sin(Ωt)

γ

Figure 1: Schematic representation of the pendulum.

where θ0 and T are, respectively, the characteristic angle and the time used to rescale the
modeling equation. It is important to note that the case γ = 0 corresponds to the horizontal
excitation (ζ1 = 0), while the case γ = π/2 corresponds to the vertical excitation (ζ0 = 0). The
signs of η, α, and β change with the characteristic of the magnetic potential; see for instance
the experiment carried out in [21] in which η < 0, α > 0, and β > 0. In order to perform a
general analysis, the dimensionless parameters are used and their values are meaningfully
selected according to the available literature. Without loss of generality, we choose in the rest
of the paper η < 0, α > 0, and β > 0. The following Hamiltonian system, obtained from (2.3)

dx

dt
= y,

dy

dt
= −ηx − αx2 − βx3 (2.5)

leads to the Hamiltonian function

H
(
x, y

)
=

1
2
y2 +

dV (x)
dx

, (2.6)

where V (x) is given by following asymmetric potential

V (x) =
1
2
ηx2 +

1
3
αx3 +

1
4
βx4. (2.7)

This potential has two stable and one unstable equilibrium points given by xl,r
s = (−α ±√

α2 − 4ηβ)/2β and xun = 0, where the letters l and r stand for the left and right hand side,

respectively. It is obvious that V (xun) = 0 and by comparing V (xl
s) and V (xl

s), one concludes
that the left well is always deeper if η < 0 and it is deeper for η > 0 if α < 2

√
ηβ. The

Hamiltonian defined in (2.6) has an hyperbolic fixed point at x = 0 and two elliptic fixed

points at xl,r = (−2α ±
√
4α2 − 18ηβ)/3α leading to the homoclinic orbit given by

xl,r =
−2η

2α/3 ±
√
Δ cosh

√−ηt
,

yl,r =
±2η√−ηΔ sinh

√−ηt
[
2α/3 ±

√
Δ cosh

√−ηt
]2 ,

(2.8)

with Δ = 4α2/9 − 2ηβ.
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Figure 2(a) shows asymmetric potentials and orbits with different depths for the left
and right wells. The shape of the orbits on the left and right sides of the saddle point is
different as shown in Figure 2(b). As the asymmetric term increases, the deepness of the
left well becomes large compared to the right one. In order to analyze the condition for
the appearance of chaos in the magnetic pendulum with a tilted excitation, we apply the
Melnikov method.

3. Melnikov Analysis and Basin of Attraction

In order to perform the Melnikov analysis, the perturbed Hamiltonian equation (2.5) is
rewritten as

d

dt

(
x
y

)
= F

(
x, y

)
+ εG

(
x, y, t − t0

)
, (3.1)

where

F
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)
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(
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)
,
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=

⎛

⎜
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0
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ζix
i

]
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⎞

⎟
⎠,

(3.2)

where t0 being a phase angle, ε is a perturbation parameter, r = εr∗, and λ = ελ∗. In
the rest of the paper, the stars are removed for simplicity. For ε = 0, the homoclinic orbit
connects the unstable point xun and the eigenvalues of the linearized problem around xnu are
real and of opposite sign. For ε /= 0, the Melnikov theorem can be used to detect transverse
intersections between perturbed stable and unstable manifolds in the system. According
to [14], the distance between the perturbed and unperturbed manifolds is given by the
Melnikov function:

M(t0) =
∫+∞

−∞
F
(
x, y

) ×G
(
x, y, t − t0

)
dt, (3.3)

which can be written as
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ζiIi

]

sinω0 + rω2

[
i=3∑
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ζiIi+4

]

cosωt0. (3.4)
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Figure 2: Asymmetric potential and separatrix showing the depth and shape difference between the left
and right side. (a) Asymmetric potential. (b) Asymmetric separatrix. η = −1, β = 0.5, and α = 0.075: blue
line, α = 0.5: black line, and α = 0.75: magenta line.

The integrals Jl,r0 and Il,ri , i = 0, . . . , 7 are evaluated hereafter. For the integral Jl,r0 we have

Jl,r0 =
∫+∞

−∞
yl,r
0

2
dt =

∫+∞

−∞

−4η3Δsinh2√−ηt
[
2α/3 ±

√
Δ cosh

√−ηt
]4dt

=
−81η2Δ

√−η
α4

Γ(2)Γ(3/2)√
πΓ(4)

μ4

√
μ2 − 1

Q1
2
(
μ
)
,

(3.5)
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where μ is defined for the left and the right side such that
√
μ2 − 1/μ = ±3

√
Δ/2α, Γ(z) is the

Gamma function and Qn
m(z) is the associated Legendre function of the second kind. Using

the definition, the functional relation of the Gamma function and the associated Legendre
function of the second kind (listed in Appendices A and B), the integral Jl,r0 becomes

Jl,r0 =
η2√−η
15Δ 2F1

(
1, 2;

7
2
; ξ
)
, (3.6)

where ξ = 9ηβ/(9ηβ − 2α2), J2 = −1, and 2F1(a, b, c, z) is the hypergeometric function.
Unfortunately, further simplification of the hypergeometric function can be made only for
some specific values of the argument, see [33] for details. Note that in the absence of the
magnetic potential (α = 0, ξ = 1), the device is under a symmetric Duffing potential and then
the integral becomes [2, 8, 19]

Jl,r0 =
4
(−η)3/2
3β

. (3.7)

TheGauss hypergeometric function, for complex or real argument, can be evaluated using the
Gnu Scientific Library (GSL) via a PYGSL code [34]. In order to evaluate the other integrals,
we define the following functions:
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2
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2
;
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2
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)
,

(3.8)

with ζ0 = −6η/2α, ζ1 = ±9η√−ηΔ/2α2, and a = ω/
√−η. It can be shown (see Appendix C)

that 2F1(a, a, c, z) (a ∈ C, c ∈ R∗
+, z ∈]0, 1[) is always a positive real number.

K2(n, 1, ω) =
∫+∞

−∞
xl,r
0

n
yl,r
0 cosωtdt = 0 (3.9)

is considered as a product of odd and even function.
Thus, one has, for the integral Il,r0 ,

Il,r0 =
∫+∞

−∞
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0 sinωtdt = K1(0, 1, ω)

= ± 4πω2
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2
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(3.10)
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which can be simplified for the symmetric Duffing potential (α = 0) to obtain [2, 19]
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√
2
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2
√−η . (3.11)

For the integral Il,r1 and Il,rj one obtains
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(3.12)

which takes the expression corresponding to the parametrically driven Duffing equation [8]

Il,r1 = −πω
2

β
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ωπ

2
√−η . (3.13)

For the integrals Il,r2 , we obtain, respectively
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(3.14)

Finally, the integral Il,ri , i ∈ (4, 5, 6, 7) are given by

Il,ri =
∫+∞

−∞
xl,ri
0 yl,r

0 cosωtdt = K2(i, 1, ω) = 0. (3.15)

Using the Melnikov criterion [13], one concludes that nonperiodic motions appear when

r > rc =
1
ω2

∣∣∣∣∣∣∣

λJl,r0[∑i=3
i=0 ζiIi

]

∣∣∣∣∣∣∣
. (3.16)
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This criterion defines the threshold value for the appearance of transverse intersection
between the perturbed and unperturbed manifolds. This threshold condition is plotted in
Figure 3 as a function of the excitation frequency ω for different values of the incline γ and
as a function of γ for ω = 1.5 with λ = 0.2, η = −1, α = 0.075, β = 0.5, and for the plus sign in
(3.2).

Figure 3(a) shows a classical result, that is, in the chosen interval ω ∈ [0, 8], the
threshold value of r decreases for small values of the frequency and increases for large
values of the frequency. A singularity is obtained for γ = π/2 (red lines) indicating that the
bifurcation curve splits into two lobes creating a domain of a regular motion near a certain
value of the frequencyω. Figure 3(b) illustrates the effect of the tilted angle of the excitation γ
on the bifurcation curves forω = 1.5. It appears from this figure that the threshold rc increases
with γ until a critical value and then decreases. The domain of periodic motion is larger near
the vertical excitation (γ ≈ π/2) than near the horizontal one (γ = 0).

To test the validity of the Melnikov predictions, we investigate the regular or irregular
(fractal) shape of the basins of attraction [14]. A basin with smooth shape will suggest regular
dynamics of the systemwhile a fractal basin will indicate nonregular dynamic. The basins are
plotted using a simplified criterion which distinguish solutions of mean value displacement.
This is done by scanning the initial values x0 and y0 of x and y in [−3.5, 3.5] × [−3.5, 3.5]
domain, solving numerically (2.3) and collecting the initial conditions which attract the
dynamics in the right (for instance) well of the potential (marked region of the basin). The
unmarked region represents the domain for which the system dynamics is attracted to the
other well. In a more detailed approach, a larger number of basins would illustrate other
signatures of the system response hidden in the figure. The effect of γ on the shape of
the basins of attraction of Figure 4 are plotted for the values of Figure 3(a). The graph of
Figure 4(a) is plotted for r = 0.05, ω = 1.5, and γ = π/2 showing a regular behavior of the
systemwhich is consistent with the Melnikov prediction. Figure 4(b) shows how the shape of
the basin becomes fractal for r = 0.1 > rc. The fractal shape is more pronounced as r increases
as illustrated in Figure 4(c) (r = 0.15) and Figure 4(d) (r = 0.2). Choosing r close to the
critical value rc may not lead to the same conclusion as illustrated in Figure 4(b) since the
Melnikov function is a first-order approximation [14]. These results show that the final state
of the system highly depends upon initial conditions and the tilt angle is the key parameter.
This strong dependency of the system upon initial conditions was obtained experimentally
by Mann [21] for a perfectly horizontal excitation based on energy criterion analysis.

4. Effect of Parametric Damping

The idea of controlling a pendulum via feedback parametric damping was recently
investigated experimentally by Kraftmakher [31]. In his experiment, the voltage was
collected through a coil, amplified and reinjected in the system for the purpose of control.
In such a process the system may experience fluctuations arising as noise, lost signal, and
additional resonant excitation. These fluctuations can be modeled as a harmonic function of
time. In such a situation, (2.3) under parametric damping can be written as

d2x

dt2
+ [λ ± Γ1x + Γ2 sin ω̃t]

dx

dt
+ ηx + αx2 + βx3 = f(t), (4.1)
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Figure 3: Critical amplitude r for the appearance of nonperiodic motion as function of the system
parameters for λ = 0.2, η = −1, α = 0.075, and β = 0.5. The domain under a line is where a periodic
motion is guaranteed. Blue line γ = 0, red line γ = π/2, and green line γ = π/4. (a) r as function of the
driving frequency ω; (b) r as function of the tilt angle γ for ω = 1.5.

where Γ1 and Γ2 are the feedback gains of parametric damping. The plus sign is taken for
negative feedback and the minus is for positive feedback [26]. By applying the Melnikov
theorem, one obtains

M(t0) =
∫+∞

−∞
F
(
x, y

) ×G∗(x, y, t − t0
)
dt, (4.2)
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Figure 4: Evolution of the shape of the basin of attraction of the right well as r increases for ω = 1.5, γ =
π/2, and the value of Figure 2. (a) r = 0.05, (b) r = 0.1, (c) r = 0.15, and (d) r = 0.2. The basins have
been obtained using a simplified criterion which distinguish solution of mean value of displacement. The
marked region corresponds to the region for which the dynamics is attracted in the right well.

with

G∗(x, y, t − t0
)
=

⎛

⎜
⎝

0

−[λ∗ ± Γ∗1x + Γ∗2 sin ω̃(t − t0)
]
y + r∗ω2

[
i=3∑

i=0

ζix
i

]

cosω(t − t0)

⎞

⎟
⎠, (4.3)

Γ1 = εΓ∗1 and Γ2 = εΓ∗2.
From (4.2), the Melnikov function reads

M(t0) = −
[
λJl,r0 ± Γ1J

l,r
2 + Γ2J

l,r
2 sin ω̃t0 + Γ2J

l,r
3 cos ω̃t0

]

+ rω2

[
i=3∑

i=0

ζiIi

]

sinωt0 + rω2

[
i=3∑

i=0

ζiIi+4

]

cosωt0,

(4.4)
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in which

Jl,r1 =
∫+∞

−∞
xl,r
0 yl,r

0 dt = ± η3√−η
105Δ3/2 2

F1

(
3
2
,
5
2
;
9
2
; ξ
)
,

Jl,r2 =
∫+∞

−∞
yl,r2
0 cos ω̃t dt = − 81η3Δ

4α2√−η

∫+1

−1

sinh2u cosau
(1 − v2)[1 + κ coshu]

dv,

(4.5)

with κ = ±(3
√
Δ/2α), u = tanh−1v, a = ω̃/

√−η, and

Jl,r3 =
∫+∞

−∞
yl,r2
0 sin ω̃t dt = 0, (4.6)

as a product of even and odd function. Thus the Melnikov function becomes

M(t0) = −
[
λJl,r0 ± Γ1J

l,r
2 + Γ2J

l,r
2 sin ω̃t0

]
+ rω2

[
i=3∑

i=0

ζiIi

]

sinωt0. (4.7)

In the absence of the periodic feedback fluctuation (Γ2 = 0), the threshold condition for
the appearance of chaos of the asymmetric pendulum with parametric damping and tilted
excitation is given by

r > rc =
1
ω2

∣∣∣∣∣∣∣

λJl,r0 ± Γ1J
l,r
1[∑i=3

i=0 ζiIi
]

∣∣∣∣∣∣∣
. (4.8)

Figure 5 illustrates the effect of the parametric damping component (Γ1) on the threshold of
Figure 3 in the absence of the harmonic fluctuation (Γ2 = 0). In this figure, the red line is
plotted for a positive feedback (Γ1 = −0.5), the green line is for a negative feedback (Γ1 =
0.5), and the blue line corresponds to the case without feedback gain (Γ1 = 0). The graphs
show that the negative feedback is effictive for enhancement of chaos by increasing the bound
value delimiting chaotic domain, while the positive feedback is effictive in suppressing chaos
by decreasing the threshold curve for chaos. A rapid analysis of (4.8) shows clearly that rc
increases with Γ1 (negative feedback) and linearly decreases with Γ1 (positive feedback).

In the presence of the periodic fluctuation in the parametric damping (Γ2 /= 0), one
obtains from (4.7) the following under resonance conditions

λJl,r0 ± Γ1J
l,r
2 =

[

Γ2J
l,r
2 + rω2

[
i=3∑

i=0

ζiIi

]]

sin ω̃t0. (4.9)

Hence, the periodic motion is guaranteed if

∣∣∣∣∣∣∣

λJl,r0 ± Γ1J
l,r
2

Γ2J
l,r
2 + rω2

[∑i=3
i=0 ζiIi

]

∣∣∣∣∣∣∣
< 1. (4.10)
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Figure 5: Effect of the parametric damping on the threshold condition for chaos with Γ2 = 0 and the values
of Figure 2. (a) Effect with γ = π/2 in (r, ω) plane. (b) Effect with ω = 1.5 in (r, γ) plane. The green
line corresponds to the negative feedback (Γ1 = 0.5). The red line corresponds to the positive feedback
(Γ1 = −0.5). The blue line corresponds to the case without control (Γ1 = 0).

Figure 5 shows the effect of the feedback gain Γ1 on the domain of chaotic dynamics for
r = 0.2 and γ = π/2. It can be seen from the plots that by decreasing the feedback gain from
Γ1 = 0 (Figure 6(a)) to Γ1 = −0.75 (Figure 6(c)), the area of regular motions (marked domain)
increases.

Figure 7 illustrates the influence of the incline of the excitation γ on the chaotic domain
for the given value Γ1 = −0.5. The plots in this figure indicate that as γ increases from
horizontal (γ = 0, Figure 7(a)) to vertical (γ = π/2, Figure 7(c)), the area of regular motions
decreases with a singularity at γ = π/2 as shown in Figures 3(b) and 7(c).
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Figure 6: Effect of sinusoidal fluctuation on the control strategy for r = 0.2, γ = π/2, and the values of
Figure 4(a) in (ω,Γ2) plan. (a) Γ1 = 0, (b) Γ1 = −0.5, and (c) Γ1 = −0.75. The marked domain corresponds
to the area of regular motion.

5. Conclusion

The effect of a tilted parametric excitation and of parametric damping with periodic
fluctuation on the appearance of chaos in an asymmetric magnetic pendulum was examined.
The analysis was carried out using the Melnikov method to derive the analytical condition
for chaotic motions. These analytical predictions were tested and validated by exploring the
fractal and regular shapes of the basins of attraction. It was shown that in the absence of
the parametric damping components (Γ1 = 0, Γ2 = 0), the incline angle of the excitation can
influence the chaotic dynamic of the magnetic pendulum. In other words, as the tilt angle of
the excitation increases from horizontal (γ = 0) to the vertical (γ = π/2) position, the domain
of regular motion increases (Figure 2). This suggests that stability can be gained when the
tilting excitation approaches the vertical position, which is consistent with the results given
in [32].

Furthermore, in the presence of the incline of the excitation and of the parametric
damping without periodic fluctuation (Γ1 /= 0, Γ2 = 0), the results show that a positive
feedback gain (Γ1 = −0.5) enlarges the domain of periodicity while a negative feedback gain
(Γ1 = 0.5) extends the region of chaotic regime (Figure 5). On the other hand, in the case
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Figure 7: Effect of sinusoidal fluctuation on the control strategy for r = 0.2, Γ1 = −0.5, and the values of
Figure 4(a) in (ω,Γ2) plan. (a) γ = 0, (b) γ = π/4, and (c) γ = π/2. The marked domain corresponds to the
area of regular motion.

where the parametric damping with harmonic fluctuation is introduced, the area of regular
motions increases with decreasing the feedback gain Γ1 (Figure 6) and this area increases by
increasing the incline from a horizontal to a vertical direction, as expected (Figure 7).

The results of this work show that chaotic dynamics can be controlled in an
asymmetric magnetic pendulum by acting either on the incline of parametric excitation or
on feedback gains of a parametric damping, or on both. This provides some interesting
possibilities for controlling the dynamics in asymmetric magnetic pendulums.

Appendices

A. Functional Relation of the Gamma Function Γ

Consider the following:

Γ(z + 1) = zΓ(z),

Γ(1 + Ja)Γ(1 − Ja) =
πa

sinhπa
,
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Γ
(
1 + Ja

2

)
Γ
(
1 − Ja

2

)
=

π

coshπa
,

Γ
(
n +

1
2

)
= (2n − 1)!

√
n

2n
,

Γ(n) = (n − 1)!.

(A.1)

B. Functional Relation between the Associated Lengendre Function of
the Second Kind and the Gauss Hypergeometric Function

Consider

Qν
μ(z) =

eJνπΓ
(
ν + μ + 1

)
Γ(1/2)

21+μΓ
(
μ + 3/2

)
(
z2 − 1

)ν/2
z−μ−ν−12F1

(
μ + ν + 2

2
,
μ + ν + 1

2
;μ +

3
2
;
1
ξ

)
.

(B.1)

C. Properties of the Gauss Hypergeometric Function

Consider

2F1(a, b, c, z) =
+∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1, (C.1)

and the Pochhammer symbol is defined as

(a)n = a(a + 1)(a + 2) · · · (a + n − 1), (a)0 = 1, (C.2)

then, if a = b, one has

2F1(a, a, c, z) =
+∞∑

n=0

(a)n(a)n
(c)n

zn

n!
, |z| < 1, (C.3)

this last expression of 2F1(a, a, c, z) is always a positive real number.
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