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The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune
responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can
be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this
multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and
the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms
that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish
chronic/latent infections.

1. IL-10 and the Complex Interplay between
Its Cellular Sources and Targets

Antiviral immune responses ideally eliminate replicating
virus and viral reservoirs without host damage. However, in
many infections, severe complications could occur due to
excessive immune activation. To prevent host tissue damage,
immunoregulatory cytokines control the magnitude of these
immune responses. IL-10 is a key component of this cytokine
system that regulates and suppresses the expression of
proinflammatory cytokines during the recovery phases of
infections and consequently reduces the damage caused by
inflammatory cytokines [1, 2]. IL-10 binds IL-10R, a dimeric
receptor composed of a high affinity IL-10R1 chain pre-
dominantly expressed on leukocytes and unique to IL-10
recognition, and an ubiquitously expressed IL-10R2 chain
involved in the recognition of other cytokines from the IL-10
family (IL-22, IL-26, IL-28A, IL-28B, and IL-29) [3, 4]. The
interaction of IL-10 with IL-10R triggers the Jak-STAT sig-
naling pathway, leading to STAT1, STAT3, and, in some
instances, STAT5 activation. STAT3 is critical for IL-10 effects
on immune cells [5–7].

As its specific receptor (IL-10R1) expression indicates, IL-
10’s broad spectrum of cellular targets includes virtually all
leukocytes. IL-10 is considered a master negative regulator of

inflammation. Blockade in the IL-10 pathway typically results
in prolonged and exaggerated immune responses to antigens
that can lead to immunopathology. Initially identified as aTh1
inhibitory factor secreted byTh2 cells [8], IL-10 is now known
to be produced by a variety of innate and adaptive immune
cells, including macrophages, dendritic cells (DCs), natural
killer (NK) cells, CD4, CD8, 𝛾𝛿 T cells, and B cells (reviewed
in [4, 9, 10]). Untangling the complex interplay between IL-10
sources and target cells during immune responses remains an
outstanding challenge. For instance, systemic administration
of IL-10 for autoimmune therapy proved to be paradoxically
proinflammatory [11, 12], whereas localized IL-10 delivery
usually proves to be therapeutic [13–15]. Spatial delivery of
IL-10 signaling is therefore crucial to its effects.

Autoimmune diseasemodels in IL-10-deficient mice have
helped elucidate the role of this cytokine in T cell homeostasis
in the periphery. They also highlight the complex link
between IL-10’s source and its role. IL-10-deficient mice de-
velop spontaneous enterocolitis typically driven by microbial
insult and dependent on T cell responses [16–18]. When
these mice are bred in pathogen-free environments or when
MyD88 (a key component for pathogen recognition recep-
tor (PRR) signaling) is also knocked out, colitis does not
occur implicating the gut microflora as a causal agent [16–
20]. IL-10 thus maintains T cell tolerance to commensal
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microflora in the gut. Treg cells are critical in the prevention
of spontaneous colitis in this model [21, 22]. When IL-10
deficiency is restricted to the Treg cell compartment, mice
develop colitis [22]. Although Treg cells are the source of
IL-10 that maintains peripheral tolerance, they also need to
sense IL-10 to provide protection, as IL-10R-deficient Treg
cells cannot impair disease development [23]. Restricting IL-
10 deficiency to myeloid cells does not cause colitis which
confirms thatmacrophages are not themain source of protec-
tive IL-10 in this model [24]. IL-10 produced by macrophages
could however partly contribute to colitis protection, as it
triggers Treg cell protection when anticommensal T cells are
adoptively transferred into a sensitive host [25]. Importantly,
deficiency in IL-10R signaling in macrophages leads to colitis
development [24, 26]. IL-10 signaling appears necessary for
macrophages to trigger their anti-inflammatory functions.
Macrophages thus act as intermediates in the maintenance of
tolerance. IL-10 produced during the initial inflammation in
the gut probably drives IL-10 production by Treg cells, which
in turn limits macrophage-induced activation of anticom-
mensal T cells, maintains peripheral T cell tolerance, and
controls immunopathology.

This well-studied autoimmune model shows how IL-10
produced locally acts as a natural negative feedback mech-
anism that controls inflammation and maintains immune
homeostasis in the periphery. Indeed, IL-10 deficiency aggra-
vates several experimental autoimmune disorders [27–29],
illustrating the central role of this cytokine in immune
regulation.

IL-10 is also important in controlling viral immunity.
Studies using lymphocytic choriomeningitis virus (LCMV)
infections with strains that provoke either acute or persistent
infections have helped understand the role of IL-10 in viral
infections. IL-10 acts as an immunoregulator, inhibiting
proinflammatory responses from innate and adaptive immu-
nity and preventing tissue damage due to exacerbated
adaptive immune response. However, viruses have evolved
mechanisms that exploit the immunoregulatory function
of IL-10 for immune evasion, suppression, and tolerance,
promoting their own survival. As a result, viruses can persist
for life in infected hosts possessing otherwise competent
immune responses.The effects of pleiotropic IL-10 during the
course of infection are nonetheless multiple and the subtle
IL-10-governed mechanisms that balance inflammation and
immunoregulation are still subject to plenty of attention. In
this review, we will discuss the role of IL-10 in immune cells
during acute infections and the IL-10-dependentmechanisms
that viruses use to drive viral persistence.

2. IL-10 in Acute Viral Infection

2.1. Early IL-10 Induction and Effects on Innate Immunity.
During the early phase of infections, viruses typically trig-
ger PRR engagement after pathogens-associated molecular
patterns (PAMPs) or danger-associated molecular patterns
(DAMPs) recognition (reviewed in [30]). PAMP and DAMP
recognition drives the antiviral state in antigen-presenting
cells (APC) and type I IFN production that initiate the innate
immune response. Concomitant to the proinflammatory first

line of defense triggered by PRR signaling, the immunoreg-
ulatory cytokine IL-10 is induced in DCs and macrophages
(Figure 1) [31–37].The regulation of IL-10 production in APC
is complex and depends on cell type [37] and the integration
of secondary activation signals such as type I IFN [34, 38],
PGE2 [39], or CD40 ligation [40] that synergize with PRR
signals. Moreover, IL-10 production in APC can be antago-
nized by the presence of IFN-𝛾 [34, 41]. Inmacrophages, IL-10
production can be maintained through an autocrine IFN-
𝛽 feedback loop [36]. In DC, IL-10 production depends on
subtype-specific preprogrammed cytokine patterns [37, 40].
Kinetic studies indicate that IL-10 could be produced in late
activation phase in APCs [33, 34], which suggests that IL-
10 balances the proinflammatory signals induced by viral
PAMPs. Early IL-10 production by APCs probably limits
excessive inflammation and thus potential tissue damage.

NK and NKT cells are an essential effector arm of
innate immunity that participates in the control of viral
infections [42–45]. IL-10 has been shown to promote NK cell
proliferation, cytokine production, and cytotoxicity in vitro
[46–50], although in some in vivo settings it could modulate
NK cell activity [51, 52]. IL-10 acts as a prosurvival factor in
activated NK cells by inhibiting activation-induced cell death
[53]. The cytokine thus appears to promote activated NK cell
effector function. Interestingly, NK cells are also a source of
IL-10 upon synergistic activation with IL-2 and IL-12 (Fig-
ure 1) [54–57]. IL-10-producing NK cells can control liver
inflammation in acute murine cytomegalovirus (MCMV)
infection [58] and therefore limit immunopathology in some
organs. IL-10-producing NK cells could serve as an early
control for excessive inflammation during the initiation of the
immune response [59, 60], while their viremia-controlling
effector functions aremaintained. IL-10 produced in the early
phase of antiviral innate immunity by APCs and NK cells is
probably a counterbalance to proinflammatory signals that
protect from tissue damage. Although in most cases IL-10
derived from innate immune cells is unlikely to affect the
development of antiviral immunity, this source of IL-10 can
be induced by some viruses to evade immunity, as described
later.

2.2. IL-10 and Antiviral Cellular Responses. To eliminate
intracellular pathogens like viruses the immune system typi-
cally uses cytotoxic CD8+ T lymphocytes (CTL), whose func-
tions are armed by Th1 cells. CD8+ T cells are critical in
antiviral immunity, since they can kill infected cells through
the recognition of viral peptides presented on MHC I
molecules.Th1 cells also recognize viral peptides presented by
APC on MHC-II molecules. Th1 cells provide the “license to
kill” to the virus-specific CD8+ T cells to differentiate into
effector CTLs using professional APC as intermediates [61,
62]. This central mechanism of antiviral immunity can be
modulated by IL-10 at different levels. High IL-10 levels act
as a regulatory trigger that initiate the resolution of the acute
phase of infection in which antiviral T cell populations
contract [63].

2.2.1. IL-10 Production by Antiviral T Cells. Currently it is
well established that virtually all T cell subsets can produce
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Figure 1: IL-10 role in viral infections. During acute infections, proinflammatory signals are produced by DCs after recognition of pathogen
patterns. In parallel, NK cells recognizing pathogen patterns and/or stimulated by proinflammatory signals further enhance inflammation.
In this proinflammatory context, DC can promote antiviral T cell responses that clear the infection. Activation of DC, T cells, and NK cells
also results in the production of the immunoregulatory cytokine IL-10 to balance inflammation. In this context, IL-10 expression controls
immunopathology and leads to the resolution of the inflammation and T cell responses once the pathogen is cleared. During persistent
infections, the virus exploits the production of IL-10 by DCs to exhaust antiviral T cells. High IL-10 levels produced by DCs suppress their
antigen presenting capacity and lead to inefficient T cell activation. Chronic antigen presence further exhausts T cells and induces IL-10
production. T cells therefore become “tolerant” to viral antigens and infection persists. To establish chronicity and latent infections, the virus
produces viral IL-10 homologs that favor anti-inflammatory responses. In human cytomegalovirus infection, cytomegalovirus-encoded IL-10
(cmvIL-10) and latency-associated cytomegalovirus-encoded IL-10 (LAcmvIL-10) are produced in myeloid cells and impair their function.
cmvIL-10 induces hIL-10 production in DCs, macrophages, and monocytes, impairs DC differentiation, and promotes M2 polarization of
macrophages. LAcmvIL-10 also promotes hIL-10 production in DCs and monocytes and impairs monocyte presenting capacity. IL-10 viral
homologs induce human IL-10 (hIL-10) production in myeloid cells that contributes to impairment of their antigen presenting cell (APC)
function. This in turn probably limits anti-CMV T cells responses and promotes IL-10+ T cell development. Impaired APC function permits
chronic infections, while IL-10+ T cells allow latent infections to persist.

IL-10 (reviewed in [64, 65]). IL-10 production appears thus
to be embedded in the activation program of T cells. Indeed,
at the height of the inflammatory response and once cellular
immune responses are mounted, antiviral CD4+ and CD8+ T
cells become themain sources of IL-10 (Figure 1) [66–72].Th1
cells can produce IL-10 [73] in response to intracellular
protozoan [74, 75], LCMV [72, 76], MCMV [77–79], or
influenza [68] infections among others. IL-10 production in
Th1 cells is driven by TCR engagement but is not directly
regulated by T-bet, the master transcription regulator of Th1
cell programming [80, 81]. IL-27 (a proinflammatory
cytokine belonging to the IL-12 family) is a potent inducer of

IL-10 in Th cells [82–85]. Type I IFN can also induce IL-10
expression in CD4+ T cells [86, 87]. IL-10 production in
Th cells therefore depends on secondary environmental
signals upstream of STATs (such as IL-10 itself [5–7] and
proinflammatory cytokines [88]) or SMADs (such as TGF-𝛽
[89]). It should be noted that chronic antigen stimulation
results in IL-10-producing Th1 cells [72, 90, 91] unable to
respond to pathogens. This natural regulatory mechanism
that maintains T cell homeostasis in the periphery can be
used to establish chronic infection as discussed later.

Effector CD8+ T cells can produce IL-10 during the
acute phase of influenza virus [67, 68], respiratory syncytial
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virus [70], coronavirus infection [69], paramyxovirus simian
virus 5 [71], or vaccinia [66] infections. The transcription
factor BLIMP-1 is essential for IL-10 production in effector
and memory CD8+ T cells [92]. BLIMP-1 is induced in
CD8+ T cells through T cell help and can be sustained
by proinflammatory signals (IL-27), T cell growth factors
(IL-2) [92], and antiviral signaling like type I IFN [67]. It
thus appears that antiviral and inflammatory signals elicited
during viral infections trigger activated T cells to produce IL-
10 as a feedback regulatory mechanism that limits excessive
inflammation.

2.2.2. IL-10 Uses APC as Intermediate to Modulate T Cell
Responses. Although T cells become the main IL-10 produ
cers during the acute phase of infection, IL-10 effects on T cell
function are usually mediated through paracrine activity on
DCs and macrophages (reviewed in [1, 9]). IL-10 recognition
by APC skews their response towards a noninflammatory
protissue repair phenotype [93–99]. IL-10 is amajor regulator
of the potent APC-derived inflammatory cytokine IL-12 [100]
and promotes expression of its own mRNA in a positive
feedback loop [101]. Exposure to IL-10 also leads to down-
regulation of costimulatory and MHC molecules on APCs
[4, 102, 103] which limits the amount of antigen exposure
T cells can receive. IL-10 also restricts the production of
proinflammatory cytokines and chemokines that permitAPC
trafficking to the lymph nodes, thereby interrupting Th1
differentiation of näıve T cells [103, 104]. These elevated
IL-10 levels impair de novo Th1 stimulation [105, 106] and
trigger the resolution of the acute phase of infection in which
antiviral T cell populations contract [63]. IL-10 therefore acts
as a switch onAPC that controls inflammation and ultimately
interrupts T cell responses once pathogens are cleared.

2.2.3. IL-10 Effects on Antiviral T Cells. Through its effects
on APC, IL-10 can alter antiviral T cell function, although
its effects on Th1 cells and CTLs are very different. Acute
and chronic LCMV infection models have been essential to
comprehend IL-10’s crucial role in controlling antiviral T cell
responses. IL-10 limits cytokine production and proliferation
in antiviral Th1 cells [2, 104, 107]. When IL-10 regulatory
action is removed (through IL-10R blockade or IL-10 defi-
ciency), antiviral Th1 responses can prevent chronic LCMV
infection [2, 31, 104, 107, 108]. IL-10 blockade increases the
amount of Th1 cells in germinal centers [104], promotes
Th1 priming [106], and enhances Th1 effector function and
memory development [104, 107]. IL-10 thus appears central to
the regulation of antiviral Th1 cell responses. Removal of the
IL-10 “brake” onTh responses can lead to immunopathology
following viral infection as illustrated by the increased neu-
rologic disease detected in IL-10-deficient mice during fatal
alphavirus encephalomyelitis [109]. This general regulatory
mechanismprevents host immunopathology and controls the
amplitude of Th1 cell responses during acute viral infections.
This mechanism can nonetheless be exploited by viruses to
promote chronic and persistent infections as discussed later.

In contrast to Th1 cells, CD8+ T cell effector functions
(e.g., cytokine production and cytotoxicity) can be enhanced
by IL-10 addition in vitro [4]. IL-10 blockade prior to

LCMV infection only results in a modest increase in LCMV-
specific CD8+ T cells 8 days after infection [104, 107], which
indicates that IL-10 does not greatly alter antiviral CD8+ T cell
priming. Nonetheless, IL-10 blockade/deficiency facilitates
virus clearance by CD8+ T cells in chronic LCMV infections
[2, 31, 104, 107], which confirms that secondary CD8+ T cell
responses are regulated by IL-10 [105]. It should be noted
that the effects of IL-10 on CD8+ T cells could also depend
on the strength of the antigenic signal, as CD8+ T cells
recognizing different LCMVepitopes appear to have different
IL-10 inhibition thresholds [104].

IL-10 has also been linked to CD8+ T cell memory
differentiation [110, 111]. Recently IL-10 produced byTreg cells
was shown to promote CD8+ T cellmemory differentiation in
LCMV infections by insulating a portion of CD8+ T cells
from inflammatory signals during the resolution phase of
the immune response [112]. Other reports have nonetheless
indicated that IL-10 could impair CD8+ T cell memory devel-
opment in the same infection [104], while others found no
difference in the quality and quantity of CD8+ T cell memory
development after IL-10 blockade [107]. These contradic-
tory results obtained through different approaches (IL-10/
IL-10R antibody blockade, IL-10-deficient mice, or adoptive
transfer of IL-10-sufficient Treg cells) hint at a very delicately
regulated system for CD8 memory development that could
be controlled by T cell signal strength as well as spatial and
temporal IL-10 delivery. This raises the intriguing possibility
for a new facet in IL-10 biology whereby IL-10 dampening of
CD8+ T cell responses could facilitate the differentiation of a
portion of these cells into memory.

2.3. IL-10 and Antiviral Humoral Response. B cell-produced
antibodies represent the other major arm of the adaptive
immunity involved in virus clearance [113]. Most clinically
effective vaccines not only require the induction of cellular
immunity but also the production of neutralizing antibodies
[114, 115]. Nonneutralizing antibodies can also participate
in antiviral immunity as shown in LCMV infections where
virus-specific nonneutralizing antibodies participate in virus
clearance alongside CD4+ and CD8+ T cells [108]. The
importance of B cell responses in viral immunity is also
exemplified by the interference of viruses with humoral
immunity. For instance, Bluetongue virus can affect antiviral
antibody titers early in infection [116], and human immunod-
eficiency virus (HIV) can continuously mutate its antigenic
determinants, a phenomenon known as antigenic drift, to
evade neutralization by antibodies [117, 118].

Since IL-10 regulates B cell survival and differentiation
[4], it could potentially control B cell responses to virus.
IL-10 favors B cell effector function by stimulating plasma
cell differentiation at the expense of B memory cells [4,
119]. Autocrine IL-10 production promotes B cell survival
and Ig class switch [120–122]. In LCMV-infected mice, IL-
10 however does not control B cell differentiation in the
priming phase [104]. Moreover IL-10 blockade does not
affect follicular Th cell numbers, a subpopulation of Th cells
involved in B cell help and necessary for the generation of
high affinity antibodies [104]. It thus appears that IL-10 may
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not directly affect B cell responses, although this has not been
widely studied.

B cells could nonetheless be a source of IL-10 that could
modify antiviral responses. IL-10 expression in B cells can be
triggered byTLR engagement [123–125] and increaseswhenB
cells are activated in a context mimicking T cell and DC help,
that is, through anti-Ig antibody, anti-CD40 antibody, and
IL-12 [126]. Type I IFN that are typically produced during
antiviral responses can also enhance TLR-induced IL-10
production in B cells [127, 128]. These reports indicate that
IL-10 production is an integral part of B cell activation
programming. However, the factors driving IL-10 production
in B cells during immune responses are not fully understood.

A B regulatory cell population (Breg) has been described
[129, 130] and can be a principal source of IL-10. No precise
Breg cell markers have so far been defined (reviewed in
[131, 132]), but these cells are potent inhibitors of autoimmune
inflammation through their IL-10 production [133, 134]. Breg
cells can suppress Listeria monocytogenes [135] or Salmonella
typhimurium [136] clearance. These cells can therefore also
modulate responses to infections. The observation that Breg
cells can be therapeutic in allergy [137] indicates that IL-
10 produced by Breg cells could have systemic activity. IL-
10-producing Breg cell numbers increase in coxsackie virus-
induced acute myocarditis model [138]. In MCMV murine
infections, IL-10 expression in B cells can suppress MCMV-
specific CD8+ T cells responses [139, 140]. Moreover, IL-10-
producing Breg cells could promote chronic MCMV brain
infection [141]. In HIV patients, IL-10-producing Breg cells
are elevated in peripheral blood of untreated patients and
can suppress virus-specific CD4+ and CD8+ T cell activity
in vitro [142]. Similarly, in chronic hepatitis B virus (HBV)
patients, IL-10-producing B cells are elevated in the periphery
and suppress HBV-specific CD8+ T cell responses [143]. IL-
10-producing B cells have therefore the capacity to create an
immunoregulatory milieu unsuitable for cellular immunity.
The localized effects of IL-10 on T cells however suggest that B
cell-derived IL-10would probably affect effector T cell activity
in specific settings. Further work will be required to clarify
both how B cell-derived IL-10 influences antiviral responses
and how IL-10 modulates antiviral B cell responses.

2.4. IL-10 and Virus Clearance. Although IL-10 acts as an
immune brake on inflammation, its overall effects on antiviral
immune responses can be complex and depend on the virus,
site of infection, timing of the antiviral immune response,
and so forth. For instance, high IL-10 plasma levels could be
protective in early responses to HIV but become detrimental
during acute infection as they promote virus persistence
[144].

In some settings, IL-10 expression can contribute to virus
clearance. In influenza infections, coproduction of IL-10 and
IFN-𝛾 facilitates anti-influenza antibody accumulation in the
lungmucosa [145].Thus IL-10 not only limits immunopathol-
ogy in this case but also supports adaptive immunity. In
cutaneous vaccinia virus infections, IL-10-producing T cells
have been linked to lesion control [66], which suggests that
local IL-10 effects may be multiple and depend on the organ
and microenvironment.

IL-10’s supportive role for effective virus clearance is
very apparent in CNS infections. Virus-induced encephalitis
results from an excessive immune-induced inflammation
designed to control viral infection. IL-10-deficiency aggra-
vates this immunopathology in Flavivirus or Coronavirus
infections with CNS tropism [63, 146–149]. In these CNS
infections, IL-10 usually improves virus control, although this
outcome probably results from direct and indirect effects of
the cytokine. In CNS immune responses to the coronavirus
mouse hepatitis virus, CD4+ T cells and CD8+ T cells are the
initial sources of IL-10 [63]. Once the viral load is con-
trolled, IL-10-producing CD8+ T cells diminish while IL-10-
producing CD4+ T cells remain [63]. IL-10 produced during
the immune response peak could enhance CD8 activity while
limiting APC-driven inflammation. During this resolution
phase, natural CD4+ CD25+ Treg cells are the main source
of IL-10. However transition in the IL-10 source from natural
Treg cells to T regulatory 1- (Tr1-) like CD4+ CD25− cells
could be a sign of CNS viral persistence [63] and indicate
chronic antigen stimulation. In infection with the Flavivirus
Japanese Encephalitis virus, IL-10-producing CD4+ Foxp3+
natural Treg cells improve survival in a murine model proba-
bly by controlling the immunopathology [148]. In other
organs, modulation of immunopathology by IL-10 during
infection is not solely reliant on Treg cell activity. In MCMV
acute infection, NK cells are the main IL-10 source that mod-
ulates immunopathology in liver [58], while IL-10-producing
Breg cells probably participate in neuroinflammation control
[141]. IL-10 regulatory mechanisms are therefore essential to
control severe inflammatory responses produced by viral
infections and can thereby, albeit indirectly, be essential for
virus clearance.

In an adequate acute immune response, IL-10 presence
should not affect virus clearance; however sustained expres-
sion during immune priming or secondary responses can
favor persistence or chronic infections. This fine balance
between the inflammatory response crucial to virus clearance
and the IL-10-mediated immune regulation necessary for T
cell homeostasis and host tissue protection can be subverted
by viruses to allow replication and spreading.

3. IL-10 in Chronic Viral Infections

Persistent or chronic viral infections are not cleared by the
host immune response and result in long-term equilibrium
between the host and the virus. Several factors can contribute
to this persistence such as viral immune evasionmechanisms,
impaired viral clearance facilitated by the host-regulated
immunosuppression, or, as for herpesviruses, manipulation
of the host immune environment to enable persistence
(latency). We will next review different mechanisms used by
viruses to induce chronicity or persistence, in which either
host IL-10 is involved as a regulating cytokine or viruses have
evolvedmechanisms that mimic IL-10 function, such as IL-10
viral homologs.

3.1. Persistent Viral Infections. Persistent infections such as
those established by hepatitis C virus (HCV), HBV, and
HIV are of particular interest in human health due to their
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high rates of morbidity and mortality as well as the lack of
efficient therapies. Impaired viral clearance can result from
viral evasion of the immune response or be assisted by the
host-regulated immunosuppression. More precisely, CD4+ T
cells and CD8+ T cells lose their effector functions and are
unable to control viral infections, a phenomenon called T
cell exhaustion [150] (Figure 1). CD8+ T cells lose the ability
to produce antiviral cytokines, to kill infected cells, and to
proliferate in response to antigen stimulation [151]. Similarly,
CD4+ T cells show impaired cytokine production and lack
of proliferation [90]. This loss of T cell function has been
described in persistent infections with HCV, HBV, HIV, and
LCMV, suggesting that a conserved mechanism of immuno-
suppression may downregulate T cell function. These mech-
anisms produce gene expression changes in T cells, includ-
ing inhibitory receptor induction [152, 153], production of
soluble factors such as TGF-𝛽 [154], or elevated systemic
IL-10 levels [2, 155, 156]. The programmed death-1 (PD-
1)/PD-ligand(L)1 inhibitory pathway actively suppresses T
cell responses and can also participate in the establishment of
persistent infections [106, 152]. Although PD-1 contributes to
T cell exhaustion, a common characteristic of these persistent
infections is elevated IL-10. This has been described for HCV
and HIV infections in which high IL-10 levels in the
early/acute phase are associated with progression to persis-
tence [157–160], which suggests that this is an evolutionarily
conserved mechanism in persistent viral infections with
clinical relevance.

Studies on LCMV persistent infection have helped eluci-
date the mechanisms by which IL-10 can mediate persistent
infections. Infection of adult mice with Armstrong (Arm)
LCMV strain results in acute infections that are efficiently
cleared within 7–10 days by anti-LCMV CD8+ CTLs. By
contrast, the LCMV clone 13 (Cl13) induces a persistent
infection that suppresses cellular and humoral responses.
Cl13 infection of DCs results in cell loss in this compartment
during the first week of infection and plays a relevant role in
establishing persistence [161–163]. Among the different host
factors that play a role in immunosuppression in Cl13
infections, it has been documented that IL-10 production is
highly increased in serum. Neutralization of IL-10 activity by
treatment with anti-IL-10R antibody rescues T cell responses
and consequently virus clearance occurs [2, 31]. Similarly,
Cl13-infected IL-10−/− mice show increased T cell function
and viral clearance [2, 31]. Thus, IL-10 induces immunosup-
pression that leads to viral persistence.

IL-10 mechanism of action in viral persistence involves
complex cellular cross-talks and interplay between the
cytokine source and its target. IL-10+ DCs increase in fre-
quency during the acute phase of Cl13 infection and then
declinewith time [164].Thus during the acute phase andup to
the time that T cell exhaustion is initiated, DCs are the main
cellular source of IL-10. Increased IL-10 production by DCs
has also been reported during HIV, HCV, and foot-and-
mouth disease virus infections, specifically inducing loss of
T cell responses [165–170]. Within the DC populations, IL-10
production is higher in CD8𝛼− DCs and those expressing
high CCR7 levels, a receptor required for DC migration to T

cell areas in secondary lymphoid tissues [171]. IL-10 produc-
tion in these DCs therefore increases the likelihood for IL-10
exerting its regulatory influence on T cells. A similar scenario
has been described for HIV in which IL-10-induced immune
dysfunction has been related to the modification of DC
populations able to gain access to areas where the quality
of adaptive immune responses can be profoundly modulated
[167]. This mistimed virus-induced IL-10 production by DCs
therefore promotes persistent/chronic infections by affecting
the inflammatory balance necessary to mount effective T cell
responses.

In later stages of chronic Cl13 infection in mice (i.e., from
day 8 after infection and throughout the course of disease),
NK cells and virus-specific T cells also play a large role
in producing IL-10 [72]. In the T cell compartment, virus-
specific CD4+ T cells become the main IL-10 overproducers.
These data are in linewith data fromother nonviral infections
such as Leishmania [172], malaria [74], or Toxoplasma [75], in
which IL-10 produced by T cells has a high impact on disease
outcome.

This induction of IL-10 production in CD4+ T cells is
probably a homeostatic mechanism that limits Th-induced
inflammation [173]. IL-10 is induced in Th1 cells obtained
fromLCMV-nonchronically infectedmice after antigen reex-
posure [72], and chronic antigen exposure can lead to the dif-
ferentiation of IL-10-producing self-regulatory Th1 cells [90,
91, 174]. Repeated antigen exposure could thus convert virus-
specific Th cells into IL-10-producing self-regulatory Th1
cells, a mechanism that could further feed LCMV chronic
infections. These self-regulatory Th1 cells can prevent DC
maturation and suppress Th1 cell differentiation [102]. This
negative feedback mechanism can thus be used by LCMV
to suppress Th1 effector function. Similar to self-regulatory
Th1 cells, Tr1-like cells have been identified as the main IL-10
producers in HIV infections [175]. Tr1-like cells can also be
generated through repeated TCR stimulation in the presence
of IL-10 [176], but only when APC are present in the culture
[177]. The DC-T cell cross-talk in the presence of high IL-10
levels can thus give rise to IL-10-producing T cells that limit T
cell immunity. Hepatitis C virus (HCV) chronically infected
patients show an increase in IL-10 production by NK cells
[158]. In this case, IL-10-producing NK cells could produce
a DC-NK cell cross-talk that impairs adaptive immune
response and contributes to chronic infections. It is thus
apparent that chronic viral infections often use the regulatory
role of IL-10 on T cells and APC to cause T cell exhaustion
and deactivate antiviral T cell immunity. Blockade of IL-
10R with antibody treatment rescues T cell function and
contributes to clearance of persistent infections, suggesting
that therapeutic strategies that neutralize IL-10 activity could
help control persistent infections, such as HCV, together with
other molecular therapies.

3.2. Viral IL-10 Homologs in Chronic and Latent Infections.
Latency is a mode of persistent or chronic infection in which
the viral genome is retained in the host cell, but with a pro-
found restriction on gene expression that results in the pro-
duction of few viral antigens and no viral particles (reviewed
in [178]). Under appropriate conditions, the expression of the
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viral genome can be induced and infectious particles are pro-
duced. To establish latency, viruses have developed immune
evasion mechanisms that allow for persistence. Among these
mechanisms, largeDNAviruses encode for protein homologs
of cytokines and chemokines or express viral factors that alter
host cytokine production [179, 180]. Members of the rep-
resentative latency-inducing Herpesviridae family, such as
human cytomegalovirus (HCMV) [181], Epstein-Barr virus
(EBV) [182], ovine herpesvirus 2 [183], and equine her-
pesvirus 2 [184], encode for IL-10 homologs. Among the
best-characterized IL-10 homologs are the cytomegalovirus-
encoded IL-10, termed cmvIL-10, and the latency-associated
cmvIL-10, termed LAcmvIL-10 [181, 185] (Figure 1). HCMV is
a 𝛽-herpesvirus that infects a majority of the world’s pop-
ulation. Following primary infection, HCMV establishes a
lifelong latent infection in cells of the myeloid lineage from
where it can later be reactivated to produce infectious prog-
eny [186]. HCMV success in infecting host’s cells and causing
disease relies partially on a number of virally encoded
proteins that are homologs of cellular cytokines, chemokines,
and their receptors [181], in which the IL-10 homolog plays an
important role. During productive infection cmvIL-10 tran-
scripts are expressed from the gene UL111A [185, 187]. This
gene also encodes for the splice variant LAcmvIL-10, which
has been associated with latency [188]. cmvIL-10 protein
shares 27% amino acid identity with hIL-10 but retains the
ability to bind the hIL-10 receptor [187]. Therefore, cmvIL-10
mediates immunomodulatory functions similar to hIL-10
such as inhibiting proinflammatory cytokine production,
decreasing MHC-I and MHC-II expression in monocytes
[189], and impairing monocyte-derived DCs maturation
[190].

Another immunomodulatory mechanism of action for
cmvIL-10 resides in its ability to alter macrophage polariza-
tion. Depending on the signal they received, monocytes and
macrophages become polarized to either M1 proinflamma-
tory or M2 anti-inflammatory subsets [191]. M1 macrophages
have a proinflammatory effect with a relevant role in defense
against intracellular pathogens. By contrast, M2 macro-
phages show increased phagocytic activity and suppress
proinflammatory cytokine production. cmvIL-10 modulates
macrophage polarization and promotes an M2 phenotype
[192] characterized by downregulation of MHC-II, upregu-
lation of molecules associated with anti-inflammatory func-
tions, and poor activation of CD4+ T cells.

Viral IL-10 homologs probably shape the immune re-
sponse in the early phase of infection by promoting anti-in-
flammatory signals. cmvIL-10 induces the upregulation of
hIL-10 in monocytes, macrophages, and DCs, thereby
amplifying IL-10-mediated immunosuppression and favoring
chronicity [193]. Viral Rhesus CMV IL-10 homolog is critical
for establishing chronic infections, yet during latent phase a
better correlation was observed with cell-derived IL-10 levels
than with viral homolog [194]. IL-10-producing CD4+ T cells
are also linked to HCMV and MCMV persistence [77, 79,
195]. These data indicate that CMV mostly uses endogenous
IL-10 signaling to maintain persistence. Taken together these
mechanisms enhance the ability of HCMV to establish a

primary productive infection and contribute to productive
chronic infection.

By contrast, the function of LAcmvIL-10 is much more
limited. While both cmvIL-10 and LAcmvIL-10 suppress
MHC-II expression on monocytes, LAcmvIL-10 does not
impair DCmaturation nor does it suppress proinflammatory
cytokine production [196, 197]. LAcmvIL-10 can also upreg-
ulate hIL-10 in latently infected myeloid cells, although it
probably uses a different activation mechanism to cmvIL-10,
as LAcmvIL-10 and cmvIL-10 interact differently with the IL-
10 receptor and trigger distinct signaling events [196].

Another well-known example of herpesvirus encoding an
IL-10 homolog is EBV. EBV is a 𝛾-herpesvirus carried by a
high percentage of the human population. EBV infections are
mostly asymptomatic, but in some cases EBV induces
mononucleosis or B cell and epithelial-cell malignancies
[198]. One of the strategies used by EBV to establish latent
infections is to produce a viral IL-10 (vIL-10) encoded by the
BCRF1 gene, classified as a late gene but expressed in B cells
early after infection [199]. vIL-10 has been shown to bind to
and signal through the human IL-10 receptor, similarly to
cmvIL-10 [200], although its affinity for the IL-10 receptor is
1000-fold lower than that of hIL-10 [201]. The lower receptor
affinity of vIL-10 compared to hIL-10 does not allow vIL-10 to
stimulate the proliferation of thymocytes or mast cells [202,
203], but it retains the capacity to suppress proinflammatory
cytokine production and enhance B-cell viability. During
EBV infection vIL-10 seems to play a role only during acute
infection, during which it protects infected B cells by altering
cytokine production, inhibiting CD4 and NK cell responses,
and ultimately facilitating EBV dissemination [199, 204].

4. Concluding Remarks

IL-10’s main function is to prevent immunopathology during
inflammatory responses. IL-10 can be produced by virtually
all immune cells and in turn IL-10 canmodulate the response
of these cells. Untangling the complex interactions of this
pleiotropic cytokine remains an outstanding challenge for
immunologists. IL-10 is so central to immune response reg-
ulation that viruses exploit this pathway to evade immunity
and establish persistent/latent infections. IL-10 effects in the
course of viral infections depend on its spatial and temporal
delivery. IL-10 can impair T cell priming in the early stages
of adaptive immunity, a mechanism that viruses use to
promote their persistence by infecting APC and inducing IL-
10 production. The effects of IL-10 on the immune response
during acute infections are more subtle. The cytokine is
produced in high amounts by antiviral effector T cells at
this stage. IL-10 prevents tissue damage in this phase while
probably not affecting effector function of antiviral CD8+ T
cells. IL-10 does however negatively regulate Th1 responses
by downmodulating antigen presenting capacity of APC.This
regulatory mechanism promotes inflammation resolution
when the pathogen clears. Mistiming of IL-10 production at
this stage can impair antiviral T cell responses, favoring an
early resolution phase that can lead to chronic infection.
Chronic antigen exposure in this phase can exhaust antiviral
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T cells and switch their phenotype to IL-10-producing cells
unable to reactivate when presented again with the antigen.

IL-10 blockade, an attractive therapy to treat chronic
infection, should be approached with caution since, for
instance, IL-10 can be necessary for virus clearance in CNS
infection where it controls immunopathology. IL-10 could
also play a role in antiviral CD8+ T cellmemory development;
thus IL-10 blockade could prove detrimental to establish
long-term CD8+ T cell memory. Targeting the fine balance
between inflammation and resolution controlled by IL-10 will
therefore require spatial and temporal refinement of delivery
approaches. A better understanding at the basic level of IL-
10 sources and IL-10 effects on the different components of
immunity during infections will allow for precise therapeutic
targeting of this pathway.
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[18] R. Kühn, J. Löhler, D. Rennick, K. Rajewsky, and W. Müller,
“Interleukin-10-deficient mice develop chronic enterocolitis,”
Cell, vol. 75, no. 2, pp. 263–274, 1993.

[19] S. Rakoff-Nahoum, L. Hao, and R. Medzhitov, “Role of toll-
like receptors in spontaneous commensal-dependent colitis,”
Immunity, vol. 25, no. 2, pp. 319–329, 2006.

[20] N. Hoshi, D. Schenten, S. A. Nish et al., “MyD88 signalling
in colonic mononuclear phagocytes drives colitis in IL-10-
deficient mice,” Nature Communications, vol. 3, article no. 1120,
2012.

[21] H. H. Uhlig, J. Coombes, C. Mottet et al., “Characterization of
Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells
during cure of colitis,” Journal of Immunology, vol. 177, no. 9, pp.
5852–5860, 2006.

[22] Y. P. Rubtsov, J. P. Rasmussen, E. Y. Chi et al., “Regulatory T cell-
derived interleukin-10 limits inflammation at environmental
interfaces,” Immunity, vol. 28, no. 4, pp. 546–558, 2008.

[23] A. Chaudhry, R. M. Samstein, P. Treuting et al., “Interleukin-
10 signaling in regulatory T cells is required for suppression of
Th17 cell-mediated inflammation,” Immunity, vol. 34, no. 4, pp.
566–578, 2011.

[24] E. Zigmond, B. Bernshtein, G. Friedlander et al., “Macrophage-
restricted interleukin-10 receptor deficiency, but not IL-10



Journal of Immunology Research 9

deficiency, causes severe spontaneous colitis,” Immunity, vol. 40,
no. 5, pp. 720–733, 2014.

[25] M. Murai, O. Turovskaya, G. Kim et al., “Interleukin 10 acts on
regulatory t cells to maintain expression of the transcription
factor foxp3 and suppressive function in mice with colitis,”
Nature Immunology, vol. 10, no. 11, pp. 1178–1184, 2009.

[26] D. S. Shouval, A. Biswas, J. A. Goettel et al., “Interleukin-10
receptor signaling in innate immune cells regulates mucosal
immune tolerance and anti-inflammatory macrophage func-
tion,” Immunity, vol. 40, no. 5, pp. 706–719, 2014.

[27] A. M. Beebe, D. J. Cua, and R. De Waal Malefyt, “The
role of interleukin-10 in autoimmune disease: systemic lupus
erythematosus (SLE) andmultiple sclerosis (MS),”Cytokine and
Growth Factor Reviews, vol. 13, no. 4-5, pp. 403–412, 2002.

[28] H. Hata, N. Sakaguchi, H. Yoshitomi et al., “Distinct con-
tribution of IL-6, TNF-𝛼, IL-1, and IL-10 to T cell-mediated
spontaneous autoimmune arthritis in mice,” Journal of Clinical
Investigation, vol. 114, no. 4, pp. 582–588, 2004.

[29] X. Bai, J. Zhu, G. Zhang et al., “IL-10 suppresses experimental
autoimmune neuritis and down-regulates TH1-type immune
responses,” Clinical Immunology and Immunopathology, vol. 83,
no. 2, pp. 117–126, 1997.

[30] S. Tartey and O. Takeuchi, “Pathogen recognition and Toll-
like receptor targeted therapeutics in innate immune cells,”
International Reviews of Immunology, pp. 1–17, 2017.

[31] M. Ejrnaes, C. M. Filippi, M. M. Martinic et al., “Resolution of
a chronic viral infection after interleukin-10 receptor blockade,”
Journal of ExperimentalMedicine, vol. 203, no. 11, pp. 2461–2472,
2006.

[32] S. S. M. Ng, A. Li, G. N. Pavlakis, K. Ozato, and T. Kino,
“Viral infection increases glucocorticoid-induced interleukin-
10 production through ERK-mediated phosphorylation of the
glucocorticoid receptor in dendritic cells: potential clinical
implications,” PLOS ONE, vol. 8, no. 5, Article ID e63587, 2013.

[33] R. Samarasinghe, P. Tailor, T. Tamura, T. Kaisho, S. Akira, and
K. Ozato, “Induction of an anti-inflammatory cytokine, IL-10,
in dendritic cells after toll-like receptor signaling,” Journal of
Interferon and Cytokine Research, vol. 26, no. 12, pp. 893–900,
2006.

[34] M. Javad Aman, T. Tretter, I. Eisenbeis et al., “Interferon-𝛼
stimulates production of interleukin-10 in activated CD4+ T
cells and monocytes,” Blood, vol. 87, no. 11, pp. 4731–4736, 1996.

[35] E. Y. Chang, B. Guo, S. E. Doyle, and G. Cheng, “Cutting edge:
involvement of the type I IFNproduction and signaling pathway
in lipopolysaccharide-induced IL-10 production,” Journal of
Immunology, vol. 178, no. 11, pp. 6705–6709, 2007.

[36] M. J. Pattison, K. F. MacKenzie, and J. S. C. Arthur, “Inhibition
of JAKs in macrophages increases lipopolysaccharide-induced
cytokine production by blocking IL-10-mediated feedback,”
Journal of Immunology, vol. 189, no. 6, pp. 2784–2792, 2012.

[37] A. Boonstra, R. Rajsbaum, M. Holman et al., “Macrophages
and myeloid dendritic cells, but not plasmacytoid dendritic
cells, produce IL-10 in response to MyD88- and TRIF-
dependent TLR signals, and TLR-independent signals,” Journal
of Immunology, vol. 177, no. 11, pp. 7551–7558, 2006.

[38] A.Howes, C. Taubert, S. Blankley et al., “Differential Production
of Type I IFN Determines the Reciprocal Levels of IL-10 and
Proinflammatory Cytokines Produced by C57BL/6 and BALB/c
Macrophages,” The Journal of Immunology, vol. 197, no. 7, pp.
2838–2853, 2016.

[39] K. F. MacKenzie, K. Clark, S. Naqvi et al., “PGE2 induces
macrophage IL-10 production and a regulatory-like pheno-
type via a protein kinase A-SIK-CRTC3 pathway,” Journal of
Immunology, vol. 190, no. 2, pp. 565–577, 2013.

[40] A. D. Edwards, S. P. Manickasingham, R. Spörri et al.,
“Microbial recognition via toll-like receptor-dependent and -
independent pathways determines the cytokine response of
murine dendritic cell subsets to CD40 triggering,” Journal of
Immunology, vol. 169, no. 7, pp. 3652–3660, 2002.

[41] X. Hu, P. K. Paik, J. Chen et al., “IFN-𝛾 suppresses IL-10
production and synergizes with TLR2 by regulating GSK3 and
CREB/AP-1 proteins,” Immunity, vol. 24, no. 5, pp. 563–574,
2006.

[42] M. G. Brown, A. O. Dokun, J. W. Heusel et al., “Vital involve-
ment of a natural killer cell activation receptor in resistance to
viral infection,” Science, vol. 292, no. 5518, pp. 934–937, 2001.

[43] H. E. Farrell, K. Bruce, C. Lawler et al., “Type 1 interferons and
NK cells limit murine cytomegalovirus escape from the lymph
node subcapsular sinus,” PLOS Pathogens, vol. 12, no. 12, Article
ID e1006069, 2016.

[44] C. Lawler, C. S. Tan, J. P. Simas, P. G. Stevenson, and R.
M. Longnecker, “Type I interferons and NK cells restrict
gammaherpesvirus lymph node infection,” Journal of Virology,
vol. 90, no. 20, pp. 9046–9057, 2016.

[45] O. Chijioke, A. Müller, R. Feederle et al., “Human natural killer
cells prevent infectious mononucleosis features by targeting
lytic epstein-barr virus infection,” Cell Reports, vol. 5, no. 6, pp.
1489–1498, 2013.

[46] C. Qian, X. Jiang, H. An et al., “TLR agonists promote ERK-
mediated preferential IL-10 production of regulatory dendritic
cells (diffDCs), leading to NK-cell activation,” Blood, vol. 108,
no. 7, pp. 2307–2315, 2006.

[47] S. Mocellin, M. Panelli, E.Wang et al., “IL-10 stimulatory effects
on humanNK cells explored by gene profile analysis,”Genes and
Immunity, vol. 5, no. 8, pp. 621–630, 2004.

[48] G. Cai, R. A. Kastelein, and C. A. Hunter, “IL-10 enhances NK
cell proliferation, cytotoxicity and production of IFN-𝛾 when
combined with IL-18,” European Journal of Immunology, vol. 29,
no. 9, pp. 2658–2665, 1999.

[49] W. E. Carson, M. J. Lindemann, R. Baiocchi et al., “The func-
tional characterization of interleukin-10 receptor expression on
human natural killer cells,” Blood, vol. 85, no. 12, pp. 3577–3585,
1995.

[50] Y. Shibata, L. A. Foster, M. Kurimoto et al., “Immunoregulatory
roles of IL-10 in innate immunity: IL-10 inhibits macrophage
production of IFN-𝛾-inducing factors but enhances NK cell
production of IFN-𝛾,” Journal of Immunology, vol. 161, no. 8, pp.
4283–4288, 1998.

[51] B.-C. Chiu, V. R. Stolberg, and S. W. Chensue, “Mononuclear
phagocyte-derived IL-10 suppresses the innate IL-12/IFN-𝛾 axis
in lung-challenged aged mice,” Journal of Immunology, vol. 181,
no. 5, pp. 3156–3166, 2008.

[52] M. J. Scott, J. J. Hoth, M. Turina, D. R. Woods, and W.
G. Cheadle, “Interleukin-10 suppresses natural killer cell but
not natural killer T cell activation during bacterial infection,”
Cytokine, vol. 33, no. 2, pp. 79–86, 2006.

[53] M. A. Stacey, M. Marsden, E. C. Y. Wang, G. W. G. Wilkinson,
and I. R. Humphreys, “IL-10 restricts activation-induced death
of NK cells during acute murine cytomegalovirus infection,”
Journal of Immunology, vol. 187, no. 6, pp. 2944–2952, 2011.



10 Journal of Immunology Research

[54] J. H. Bream, R. E. Curiel, C.-R. Yu et al., “IL-4 synergistically
enhances both IL-2- and IL-12-induced IFN-𝛾 expression in
murine NK cells,” Blood, vol. 102, no. 1, pp. 207–214, 2003.

[55] M. Bodas, N. Jain, A. Awasthi et al., “Inhibition of IL-2 induced
IL-10 production as a principle of phase-specific immunother-
apy,” Journal of Immunology, vol. 177, no. 7, pp. 4636–4643, 2006.

[56] M. J. Loza and B. Perussia, “The IL-12 signature: NK cell
terminal CD56+high stage and effector functions,” Journal of
Immunology, vol. 172, no. 1, pp. 88–96, 2004.

[57] L. R. Grant, Z.-J. Yao, C. M. Hedrich et al., “Stat4-dependent,
T-bet-independent regulation of IL-10 in NK cells,” Genes and
Immunity, vol. 9, no. 4, pp. 316–327, 2008.

[58] P. J. Gaddi, M. J. Crane, M. Kamanaka, R. A. Flavell, G. S. Yap,
and T. P. Salazar-Mather, “IL-10 mediated regulation of liver
inflammation during acute murine cytomegalovirus infection,”
PLoS ONE, vol. 7, no. 8, Article ID e42850, 2012.

[59] S.-H. Lee, K.-S. Kim, N. Fodil-Cornu, S. M. Vidal, and C.
A. Biron, “Activating receptors promote NK cell expansion
for maintenance, IL-10 production, and CD8 T cell regulation
during viral infection,” Journal of Experimental Medicine, vol.
206, no. 10, pp. 2235–2251, 2009.

[60] A. Maroof, L. Beattie, S. Zubairi, M. Svensson, S. Stager, and P.
M. Kaye, “Posttranscriptional regulation of Il10 gene expression
allows natural killer cells to express immunoregulatory func-
tion,” Immunity, vol. 29, no. 2, pp. 295–305, 2008.
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