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Notions of vague filters, subpositive implicative vague filters, and Boolean vague filters of a residuated lattice are introduced and
some related properties are investigated. The characterizations of (subpositive implicative, Boolean) vague filters is obtained. We
prove that the set of all vague filters of a residuated lattice forms a complete lattice andwe find its distributive sublattices.The relation
among subpositive implicative vague filters and Boolean vague filters are obtained and it is proved that subpositive implicative vague
filters are equivalent to Boolean vague filters.

1. Introduction

In the classical set, there are only two possibilities for any
elements: in or not in the set. Hence the values of elements
in a set are only one of 0 and 1. Therefore, this theory cannot
handle the data with ambiguity and uncertainty.

Zadeh introduced fuzzy set theory in 1965 [1] to handle
such ambiguity and uncertainty by generalizing the notion
of membership in a set. In a fuzzy set 𝐴 each element 𝑥 is
associated with a point-value 𝜇

𝐴
(𝑥) selected from the unit

interval [0, 1], which is termed the grade of membership in
the set. This membership degree contains the evidences for
both supporting and opposing 𝑥.

A number of generalizations of Zadeh’s fuzzy set theory
are intuitionistic fuzzy theory, L-fuzzy theory, and vague
theory. Gau and Buehrer proposed the concept of vague
set in 1993 [2], by replacing the value of an element in a
set with a subinterval of [0, 1]. Namely, a true membership
function 𝑡V(𝑥) and a false-membership function 𝑓V(𝑥) are
used to describe the boundaries of membership degree.
These two boundaries form a subinterval [𝑡V(𝑥), 1 − 𝑓V(𝑥)]

of [0, 1]. The vague set theory improves description of the
objective real world, becoming a promising tool to deal with
inexact, uncertain, or vague knowledge. Many researchers
have applied this theory to many situations, such as fuzzy
control, decision-making, knowledge discovery, and fault
diagnosis. Recently in [3], Jun andPark introduced the notion

of vague ideal in pseudo MV-algebras and Broumand Saeid
[4] introduced the notion of vague BCK/BCI-algebras.

The concept of residuated latticeswas introduced byWard
and Dilworth [5] as a generalization of the structure of the
set of ideals of a ring. These algebras are a common structure
among algebras associated with logical systems (see [6–9]).
The residuated lattices have interesting algebraic and logical
properties. The main example of residuated lattices related
to logic is and BL-algebras. A basic logic algebra (BL-algebra
for short) is an important class of logical algebras introduced
by Hajek [10] in order to provide an algebraic proof of the
completeness of “Basic Logic” (BL for short). Continuous t-
norm based fuzzy logics have been widely applied to fuzzy
mathematics, artificial intelligence, and other areas.The filter
theory plays an important role in studying these logical
algebras and many authors discussed the notion of filters of
these logical algebras (see [11, 12]). From a logical point of
view, a filter corresponds to a set of provable formulas.

In this paper, the concept of vague sets is applied to resid-
uated lattices. In Section 2, some basic definitions and results
are explained. In Section 3, we introduce the notion of vague
filters of a residuated lattice and investigate some related
properties. Also, we obtain the characterizations of vague
filters. In Section 4, the smallest vague filters containing a
given vague set are established and we obtain the distributive
sublattice of the set of all vague filters of a residuated lattice.
In Section 5, notions of vague filters, subpositive implicative
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vague filters, and Boolean vague filters of a residuated lattice
are introduced and some related properties are obtained.

2. Preliminaries

We recall some definitions and theorems which will be
needed in this paper.

Definition 1 (see [6]). A residuated lattice is an algebraic
structure (𝐿, ∧, ∨, ∗, → , , 0, 1) such that

(1) (𝐿, ∧, ∨, 0, 1) is a bounded lattice with the least ele-
ment 0 and the greatest element 1,

(2) (𝐿, ∗, 1) is amonoid; that is,∗ is associative and𝑥∗1 =

1 ∗ 𝑥 = 𝑥,

(3) 𝑥 ∗ 𝑦 ≤ 𝑧 if and only if 𝑥 ≤ 𝑦 → 𝑧 if and only if
𝑦 ≤ 𝑥  𝑧, for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

In the rest of this paper, we denote the residuated lattice
(𝐿, ∧, ∨, ∗, → , , 0, 1) by 𝐿, ¬𝑥 = 𝑥 → 0, and ∼ 𝑥 = 𝑥  0.

Proposition 2 (see [6, 9]). Let 𝐿 be a residuated lattice. Then
we have the following properties: for all 𝑥, 𝑦, 𝑧 ∈ 𝐿,

(1) 𝑥 → 𝑥 = 𝑥  𝑥 = 1,

(2) 1 → 𝑥 = 1  𝑥 = 𝑥,

(3) 𝑥 → (𝑦  𝑧) = 𝑦  (𝑥 → 𝑧),

(4) 𝑥 ≤ 𝑦 if and only if 𝑥 → 𝑦 = 1 if and only if 𝑥  𝑦 =

1,

(5) if 𝑥 ≤ 𝑦, then 𝑥 ∗ 𝑧 ≤ 𝑦 ∗ 𝑧, 𝑧 ∗ 𝑥 ≤ 𝑧 ∗ 𝑦,

(6) if 𝑥 ≤ 𝑦, then 𝑧 → 𝑥 ≤ 𝑧 → 𝑦, 𝑧  𝑥 ≤ 𝑧  𝑦,

(7) if 𝑥 ≤ 𝑦, then 𝑦 → 𝑧 ≤ 𝑥 → 𝑧, 𝑦  𝑧 ≤ 𝑥  𝑧,

(8) 𝑥 ≤ (𝑥  𝑦) → 𝑦, 𝑥 ≤ (𝑥 → 𝑦)  𝑦,

(9) 𝑦 → 𝑧 ≤ (𝑥 → 𝑦)  (𝑥 → 𝑧), 𝑦  𝑧 ≤ (𝑥 

𝑦)  (𝑥  𝑧),

(10) 𝑥 → (𝑦  (𝑥 ∗ 𝑦)) = 1, 𝑦  (𝑥 → (𝑥 ∗ 𝑦)) = 1.

Definition 3 (see [6, 9]). Let 𝐹 be a nonempty subset of a
residuated lattice 𝐿. 𝐹 is called a filter if

(F1) 𝑥, 𝑦 ∈ 𝐹 imply 𝑥 ∗ 𝑦 ∈ 𝐹,

(F2) 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝐹 imply 𝑦 ∈ 𝐹.

Theorem 4 (see [6, 9]). A nonempty subset 𝐹 of a residuated
lattice 𝐿 is a filter if and only if

(F3) 1 ∈ 𝐹 and 𝑥, 𝑥 → 𝑦 ∈ 𝐹 imply 𝑦 ∈ 𝐹, or

(F3) 1 ∈ 𝐹 and 𝑥, 𝑥  𝑦 ∈ 𝐹 imply 𝑦 ∈ 𝐹.

Definition 5 (see [11]). Let 𝐹 be a nonempty subset of a
residuated lattice 𝐿. 𝐹 is called a subpositive implicative filter
of 𝐿 if

(SPIF1) 1 ∈ 𝐹,
(SPIF2) ((𝑥 → 𝑦) ∗ 𝑧)  ((𝑦  𝑥) → 𝑥) ∈ 𝐹

and 𝑧 ∈ 𝐹 imply (𝑥 → 𝑦)  𝑦 ∈ 𝐹 for any
𝑥, 𝑦, 𝑧 ∈ 𝐿,

(SPIF3) (𝑧 ∗ (𝑥  𝑦)) → ((𝑦 → 𝑥)  𝑥) ∈ 𝐹

and 𝑧 ∈ 𝐹 imply (𝑥  𝑦) → 𝑦 ∈ 𝐹 for any
𝑥, 𝑦, 𝑧 ∈ 𝐿.

Proposition 6 (see [11]). Let𝐹 be a filter of𝐿.𝐹 is a subpositive
implicative filter if and only if

(SPIF4) (𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥) ∈ 𝐹 imply
(𝑥 → 𝑦)  𝑦 ∈ 𝐹 for any 𝑥, 𝑦 ∈ 𝐿,

(SPIF5) (𝑥  𝑦) → ((𝑦 → 𝑥)  𝑥) ∈ 𝐹 imply
(𝑥  𝑦) → 𝑦 ∈ 𝐹 for any 𝑥, 𝑦 ∈ 𝐿.

Definition 7 (see [1]). Let𝑋 be a nonempty set. A fuzzy set in
𝑋 is a mapping 𝜇 : 𝑋 → [0, 1].

Proposition 8 (see [12]). Let 𝐿 be a residuated lattice. A fuzzy
set 𝜇 is called a fuzzy filter in 𝐿 if it satisfies

(fF1) 𝑥 ≤ 𝑦 imply 𝜇(𝑥) ≤ 𝜇(𝑦),

( fF2) min{𝜇(𝑥), 𝜇(𝑦)} ≤ 𝜇(𝑥 ∗ 𝑦),

for all 𝑥, 𝑦 ∈ 𝐿.

Definition 9 (see [13]). A vague set 𝐴 in the universe of
discourse 𝑋 is characterized by two membership functions
given by

(i) a true membership function 𝑡
𝐴

: 𝑋 → [0, 1],

(ii) a false membership function 𝑓
𝐴

: 𝑋 → [0, 1],

where 𝑡
𝐴
(𝑥) is a lower bound on the grade of membership of

𝑋 derived from the “evidence for 𝑥,” 𝑓
𝐴
(𝑥) is a lower bound

on the negation of 𝑥 derived from the “evidence against 𝑥,”
and 𝑡
𝐴
(𝑥) + 𝑓

𝐴
(𝑥) ≤ 1.

Thus the grade of membership of 𝑥 in the vague set 𝐴

is bounded by a subinterval [𝑡
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] of [0, 1]. This

indicates that if the actual grade of membership of 𝑥 is 𝜇(𝑥),
then 𝑡

𝐴
(𝑥) ≤ 𝜇(𝑥) ≤ 1 − 𝑓

𝐴
(𝑥). The vague set 𝐴 is written

as 𝐴 = {⟨𝑥, [𝑡
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)]⟩ : 𝑥 ∈ 𝑋}, where the interval

[𝑡
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] is called the vague value of 𝑥 in 𝐴, denoted

by 𝑉
𝐴
(𝑥).

Definition 10 (see [13]). A vague set 𝐴 of a set 𝑋 is called

(1) the zero vague set of 𝑋 if 𝑡
𝐴
(𝑥) = 0 and 𝑓

𝐴
(𝑥) = 1 for

all 𝑥 ∈ 𝑋,

(2) the unit vague set of 𝑋 if 𝑡
𝐴
(𝑥) = 1 and 𝑓

𝐴
(𝑥) = 0 for

all 𝑥 ∈ 𝑋,

(3) the 𝛼-vague set of 𝑋 if 𝑡
𝐴
(𝑥) = 𝛼 and 𝑓

𝐴
(𝑥) = 1 − 𝛼

for all 𝑥 ∈ 𝑋, where 𝛼 ∈ (0, 1).

Let 𝐼[0, 1] denote the family of all closed subintervals of
[0, 1]. Nowwedefine the refinedminimum (briefly, imin) and
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an order ≤ on elements 𝐼
1
= [𝑎
1
, 𝑏
1
] and 𝐼

2
= [𝑎
2
, 𝑏
2
] of 𝐼[0, 1]

as
imin (𝐼

1
, 𝐼
2
) = [min {𝑎

1
, 𝑎
2
} ,min {𝑏

1
, 𝑏
2
}] ,

𝐼
1
≤ 𝐼
2

iff 𝑎
1
≤ 𝑎
2
, 𝑏
1
≤ 𝑏
2
.

(1)

Similarly we can define ≥, =, and imax. Then the concept of
imin and imax could be extended to define iinf and isup of
infinite number of elements of 𝐼[0, 1]. It is a known fact that
𝐿 = {𝐼[0, 1], iinf, isup, ≤} is a lattice with universal bounds
zero vague set and unit vague set. For 𝛼, 𝛽 ∈ [0, 1] we now
define (𝛼, 𝛽)-cut and 𝛼-cut of a vague set.

Definition 11 (see [13]). Let 𝐴 be a vague set of a universe 𝑋

with the true-membership function 𝑡
𝐴
and false-membership

function𝑓
𝐴
.The (𝛼, 𝛽)-cut of the vague set𝐴 is a crisp subset

𝐴
(𝛼,𝛽)

of the set 𝑋 given by

𝐴
(𝛼,𝛽)

= {𝑥 ∈ 𝑋 : 𝑉
𝐴 (𝑥) ≥ [𝛼, 𝛽]} ,

where 𝛼 ≤ 𝛽.

(2)

Clearly 𝐴
(0,0)

= 𝑋. The (𝛼, 𝛽)-cuts are also called vague-cuts
of the vague set 𝐴.

Definition 12 (see [13]). The 𝛼-cut of the vague set𝐴 is a crisp
subset 𝐴

𝛼
of the set𝑋 given by 𝐴

𝛼
= 𝐴
(𝛼,𝛼)

. Equivalently, we
can define the 𝛼-cut as 𝐴

𝛼
= {𝑥 ∈ 𝑋 : 𝑡

𝐴
(𝑥) ≥ 𝛼}.

3. Vague Filters of Residuated Lattices

In this section, we define the notion of vague filters of
residuated lattices and obtain some related results.

Definition 13. A vague set 𝐴 of a residuated lattice 𝐿 is called
a vague filter of 𝐿 if the following conditions hold:

(VF1) if 𝑥 ≤ 𝑦, then 𝑉
𝐴
(𝑥) ≤ 𝑉

𝐴
(𝑦), for all 𝑥, 𝑦 ∈ 𝐿,

(VF2) imin{𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦)} ≤ 𝑉

𝐴
(𝑥∗𝑦), for all 𝑥, 𝑦 ∈

𝐿.

That is,
(1) 𝑥 ≤ 𝑦 implies 𝑡

𝐴
(𝑥) ≤ 𝑡

𝐴
(𝑦) and 1−𝑓

𝐴
(𝑥) ≤ 1−𝑓

𝐴
(𝑦),

for all 𝑥, 𝑦 ∈ 𝐿,
(2) min{𝑡

𝐴
(𝑥), 𝑡
𝐴
(𝑦)} ≤ 𝑡

𝐴
(𝑥 ∗ 𝑦) and min{1 − 𝑓

𝐴
(𝑥), 1 −

𝑓
𝐴
(𝑦)} ≤ 1 − 𝑓

𝐴
(𝑥 ∗ 𝑦), for all 𝑥, 𝑦 ∈ 𝐿.

In the following proposition, we will show that the vague
filters of a residuated lattice exist.

Proposition 14. Unit vague set and𝛼-vague set of a residuated
lattice 𝐿 are vague filters of 𝐿.

Proof. Let 𝐴 be a 𝛼-vague set of 𝐿. It is clear that 𝐴 satisfies
(VF1). For 𝑥, 𝑦 ∈ 𝐿 we have

𝑡
𝐴
(𝑥 ∗ 𝑦) = 𝛼 = min {𝛼, 𝛼} = min {𝑡

𝐴 (𝑥) , 𝑡𝐴 (𝑦)} ,

1 − 𝑓
𝐴
(𝑥 ∗ 𝑦)

= 𝛼 = min {𝛼, 𝛼} = min {1 − 𝑓
𝐴 (𝑥) , 1 − 𝑓

𝐴
(𝑦)} .

(3)

Thus imin{𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦)} ≤ 𝑉

𝐴
(𝑥 ∗ 𝑦), for all 𝑥, 𝑦 ∈ 𝐿. Hence

it is a vague filter of 𝐿. The proof of the other cases is similar.

Lemma 15. Let 𝐴 be a vague set of a residuated lattice 𝐿 such
that it satisfies (VF1). Then the following are equivalent:

(VF4) imin{VA(x),VA(x → y)} ≤ VA(y),
(VF5) imin{VA(x),VA(x  y)} ≤ VA(y),

for all 𝑥, 𝑦 ∈ 𝐿.

Proof. Suppose that 𝐴 satisfies (VF4). We have 𝑥 ≤ (𝑥 

𝑦) → 𝑦. By (VF1), 𝑉
𝐴
(𝑥) ≤ 𝑉

𝐴
((𝑥  𝑦) → 𝑦). We get that

imin {𝑉
𝐴 (𝑥) , 𝑉𝐴 (𝑥  𝑦)}

≤ imin {𝑉
𝐴
((𝑥  𝑦) → 𝑦) , 𝑉

𝐴
(𝑥  𝑦)}

≤ 𝑉
𝐴
(𝑦) .

(4)

Conversely, if𝐴 satisfies (VF5), then the inequality 𝑥 ≤ (𝑥 →

𝑦)  𝑦 analogously entails (VF4).

Theorem 16. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then 𝐴 is a vague filter if and only if it satisfies (VF4) and

(VF6) 𝑉
𝐴
(𝑥) ≤ 𝑉

𝐴
(1), for all 𝑥 ∈ 𝐿.

Proof. Let 𝐴 be a vague filter of 𝐿. Since 𝑥 ≤ 1, then 𝑉
𝐴
(𝑥) ≤

𝑉
𝐴
(1), for all 𝑥 ∈ 𝐿 by (VF1). We have 𝑥 ∗ (𝑥 → 𝑦) ≤ 𝑦. By

(VF1) and (VF2) we get

imin {𝑉
𝐴 (𝑥) , 𝑉𝐴 (𝑥 → 𝑦)}

≤ 𝑉
𝐴
(𝑥 ∗ (𝑥 → 𝑦)) ≤ 𝑉

𝐴
(𝑦) .

(5)

Hence (VF4) hold.
Conversely, let 𝐴 satisfy (VF4) and (VF6). Since 𝑥 ≤ 𝑦,

then 𝑥 → 𝑦 = 1;

𝑉
𝐴
(𝑦) ≥ imin {𝑉

𝐴
(𝑥 → 𝑦) , 𝑉

𝐴 (𝑥)}

= imin {𝑉
𝐴 (1) , 𝑉𝐴 (𝑥)} = 𝑉

𝐴 (𝑥) .

(6)

Hence 𝑉
𝐴

is order-preserving and (VF1) holds. By
Proposition 2 part (10), 𝑥 → (𝑦  (𝑥 ∗ 𝑦)) = 1. By
(VF4), we have

𝑉
𝐴
(𝑦  (𝑥 ∗ 𝑦))

≥ imin {𝑉
𝐴 (𝑥) , 𝑉𝐴 (𝑥 → (𝑦  (𝑥 ∗ 𝑦)))} = 𝑉

𝐴 (𝑥) .

(7)

By Lemma 15,

𝑉
𝐴
(𝑥 ∗ 𝑦) ≥ imin {𝑉

𝐴
(𝑦  (𝑥 ∗ 𝑦)) , 𝑉

𝐴
(𝑦)}

≥ imin {𝑉
𝐴 (𝑥) , 𝑉𝐴 (𝑦)} .

(8)

Hence (VF2) holds.

Theorem 17. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then 𝐴 is a vague filter if and only if it satisfies (VF5) and
(VF6).
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Definition 18. A vague set 𝐴 of a residuated lattice 𝐿 is called
a vague lattice filter of 𝐿 if it satisfies (VF1) and

(VLF2) imin{𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦)} ≤ 𝑉

𝐴
(𝑥 ∧ 𝑦), for all

𝑥, 𝑦 ∈ 𝐿.

Proposition 19. Let 𝐴 be a vague filter of a residuated lattice
𝐿; then 𝐴 is a vague lattice filter.

In the following example, we will show that the converse
of Proposition 19 may not be true in general.

Example 20. Let {0, 𝑎, 𝑏, 𝑐, 1} such that 0 < 𝑎 < 𝑏, 𝑐 < 1,
where 𝑏 and 𝑐 are incomparable. Define the operations ∗, → ,
and  as follows:

∗ 0 𝑎 𝑏 𝑐 1

0 0 0 0 0 0

𝑎 0 0 0 𝑎 𝑎

𝑏 0 𝑎 𝑏 𝑎 𝑏

𝑐 0 0 0 𝑐 𝑐

1 0 𝑎 𝑏 𝑐 1

→ 0 𝑎 𝑏 𝑐 1

0 1 1 1 1 1

𝑎 𝑐 1 1 1 1

𝑏 𝑐 𝑐 1 𝑐 1

𝑐 0 𝑏 𝑏 1 1

1 0 𝑎 𝑏 𝑐 1

 0 𝑎 𝑏 𝑐 1

0 1 1 1 1 1

𝑎 𝑏 1 1 1 1

𝑏 0 𝑐 1 𝑐 1

𝑐 𝑏 𝑏 𝑏 1 1

1 0 𝑎 𝑏 𝑐 1.

(9)

Then 𝐿 is a residuated lattice. Let 𝐴 be the vague set defined
as follows:

𝐴 = {⟨0, [0.1, 0.2]⟩ , ⟨𝑎, [0.3, 0.4]⟩ , ⟨𝑏, [0.3, 0.4]⟩ ,

⟨𝑐, [0.3, 0.8]⟩ , ⟨0, [0.5, 0.9]⟩} .

(10)

It is routine to verify that𝐴 is a vague lattice filter, but it is not
a vague filter of 𝐿.

Let 𝐵 be the vague set defined as follows:

𝐵 = {⟨0, [0.2, 0.5]⟩ , ⟨𝑎, [0.2, 0.5]⟩ , ⟨𝑏, [0.2, 0.5]⟩ ,

⟨𝑐, [0.4, 0.7]⟩ , ⟨0, [0.7, 0.7]⟩} .

(11)

Then 𝐵 is a vague filter of 𝐿.

In the following theorems, we will study the relationship
between filters and vague filters of a residuated lattice.

Theorem 21. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then 𝐴 is a vague filter of 𝐿 if and only if, for all 𝛼, 𝛽 ∈ [0, 1],
the set 𝐴

(𝛼,𝛽)
is either empty or a filter of 𝐿, where 𝛼 ≤ 𝛽.

Proof. Suppose that 𝐴 is a vague filter of 𝐿 and 𝛼, 𝛽 ∈ [0, 1].
Let 𝐴

(𝛼,𝛽)
̸= 0. We will show that 𝐴

(𝛼,𝛽)
is a filter of 𝐿.

(1) Suppose that 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝐴
(𝛼,𝛽)

. By (VF1),𝑉
𝐴
(𝑦) ≥

𝑉
𝐴
(𝑥) ≥ [𝛼, 𝛽]. Therefor 𝑦 ∈ 𝐴

(𝛼,𝛽)
.

(2) Suppose that 𝑥, 𝑦 ∈ 𝐴
(𝛼,𝛽)

. Then 𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦) ≥

[𝛼, 𝛽]. By (VF2), we have 𝑉
𝐴
(𝑥 ∗ 𝑦) ≥

imin{𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦)} ≥ [𝛼, 𝛽]. Hence 𝑥 ∗ 𝑦 ∈ 𝐴

(𝛼,𝛽)

and then 𝐴
(𝛼,𝛽)

is a filter of 𝐿.

Conversely, suppose that, for all 𝛼, 𝛽 ∈ [0, 1], the sets 𝐴
(𝛼,𝛽)

is either empty or a filter of 𝐿. Let 𝑡
𝐴
(𝑥) = 𝛼

1
, 𝑡
𝐴
(𝑦) = 𝛼

2
,

1 − 𝑓
𝐴
(𝑥) = 𝛽

1
, and 1 − 𝑓

𝐴
(𝑦) = 𝛽

2
. Put 𝛼 = min{𝛼

1
, 𝛼
2
}

and 𝛽 = min{1 − 𝛽
1
, 1 − 𝛽

2
}. Then 𝑡

𝐴
(𝑥), 𝑡
𝐴
(𝑦) ≥ 𝛼 and 1 −

𝑓
𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑦) ≥ 𝛽. Hence 𝑉

𝐴
(𝑦), 𝑉
𝐴
(𝑥) ≥ [𝛼, 𝛽]; that is,

𝑥, 𝑦 ∈ 𝐴
(𝛼,𝛽)

. So 𝐴
(𝛼,𝛽)

̸= 0 and, by assumption, 𝐴
(𝛼,𝛽)

is a
filter of 𝐿. We obtain that 𝑥 ∗ 𝑦 ∈ 𝐴

(𝛼,𝛽)
; that is,

𝑉
𝐴
(𝑥 ∗ 𝑦) ≥ [𝛼, 𝛽]

= [min {𝛼
1
, 𝛼
2
} ,min {1 − 𝛽

1
, 1 − 𝛽

2
}]

= imin {[𝑡
𝐴 (𝑥) , 1 − 𝑓

𝐴 (𝑥)] [𝑡𝐴 (𝑦) , 1 − 𝑓
𝐴
(𝑦)]}

= imin {𝑉
𝐴 (𝑥) , 𝑉𝐴 (𝑦)} .

(12)

Hence (VF2) holds.
Suppose that 𝑥 ≤ 𝑦, 𝑡

𝐴
(𝑥) = 𝛼, and 1 − 𝑓

𝐴
(𝑥) = 𝛽. Hence

𝑥 ∈ 𝐴
(𝛼,𝛽)

. By assumption 𝐴
(𝛼,𝛽)

is a filter. We get that 𝑦 ∈

𝐴
(𝛼,𝛽)

; that is, 𝑉
𝐴
(𝑦) ≥ [𝛼, 𝛽] = [𝑡

𝐴
(𝑥), 1 − 𝑓

𝐴
(𝑥)] = 𝑉

𝐴
(𝑥).

Hence 𝐴 is a vague filter of 𝐿.

The filters like𝐴
(𝛼,𝛽)

are also called vague-cuts filters of 𝐿.

Corollary 22. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then for all 𝛼 ∈ [0, 1], the set 𝐴

𝛼
is either empty or a filter of

𝐿.

Corollary 23. Any filter 𝐹 of a residuated lattice 𝐿 is a vague-
cut filter of some vague filter of 𝐿.

Proof. For all 𝑥 ∈ 𝐿, define

1 − 𝑓
𝐴 (𝑥) = 𝑡

𝐴 (𝑥) = {
1 if 𝑥 ∈ 𝐹

𝛼 otherwise.
(13)

Hence we have 𝑉
𝐴
(𝑥) = [1, 1], if 𝑥 ∈ 𝐹 and 𝑉

𝐴
(𝑥) = [𝛼, 𝛼],

otherwise, where 𝛼 ∈ (0, 1). It is clear that 𝐹 = 𝐴
(1,1)

. Let
𝑥, 𝑦 ∈ 𝐿. If 𝑥, 𝑦 ∈ 𝐹, then 𝑥 ∗ 𝑦 ∈ 𝐹. We have 𝑉

𝐴
(𝑥 ∗ 𝑦) =

[1, 1] = imin{𝑉
𝐴
(𝑥), 𝑉
𝐴
(𝑦)}. If one of 𝑥 or 𝑦 does not belong

to 𝐹, then one of𝑉
𝐴
(𝑥) and𝑉

𝐴
(𝑦) is equal to [𝛼, 𝛼].Therefore

𝑉
𝐴
(𝑥∗𝑦) ≥ [𝛼, 𝛼] = imin{𝑉

𝐴
(𝑥), 𝑉
𝐴
(𝑦)}. Suppose that 𝑥 ≤ 𝑦.

If 𝑥 ∈ 𝐹, then 𝑦 ∈ 𝐹. Hence 𝑉
𝐴
(𝑥) = 𝑉

𝐴
(𝑦). If 𝑥 ∉ 𝐹, then

𝑉
𝐴
(𝑥) = [𝛼, 𝛼]. We have 𝑉

𝐴
(𝑥) ≤ 𝑉

𝐴
(𝑦). Hence 𝐴 is a vague

filter of 𝐿.

In the following proposition, we will show that vague
filters of a residuated lattice are a generalization of fuzzy
filters.

Proposition 24. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then 𝐴 is a vague filter of 𝐿 if and only if the fuzzy sets 𝑡

𝐴
and

1 − 𝑓
𝐴
are fuzzy filters in 𝐿.
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4. Lattice of Vague Filters

Let 𝐴 and 𝐵 be vague sets of a residuated lattice 𝐿. If 𝑉
𝐴
(𝑥) ≤

𝑉
𝐵
(𝑥), for all 𝑥 ∈ 𝐿, then we say 𝐵 containing𝐴 and denote it

by 𝐴 ⪯ 𝐵.
The unite vague set of a residuated lattice 𝐿 is a vague

filter of 𝐿 containing any vague filter of 𝐿. For a vague set,
we can define the intersection of two vague sets 𝐴 and 𝐵 of a
residuated lattice 𝐿 by 𝑉

𝐴∩𝐵
(𝑥) = imin{𝑉

𝐴
(𝑥), 𝑉
𝐵
(𝑥)}, for all

𝑥 ∈ 𝐿. It is easy to prove that the intersection of any family of
vague filters of 𝐿 is a vague filter of 𝐿. Hence we can define a
vague filter generated by a vague set as follows.

Definition 25. Let 𝐴 be a vague set of a residuated lattice 𝐿.
A vague filter 𝐵 is called a vague filter generated by 𝐴, if it
satisfies

(i) 𝐴 ⪯ 𝐵,
(ii) 𝐴 ⪯ 𝐶 that implies 𝐵 ⪯ 𝐶, for all vague filters 𝐶 of 𝐿.

The vague filter generated by 𝐴 is denoted by ⟨𝐴⟩.

Example 26. Consider the vague lattice filter𝐴 in Example 20
which is not a vague filter of 𝐿.Then the vague filter generated
by 𝐴 is

⟨𝐴⟩ = {⟨0, [0.3, 0.4]⟩ , ⟨𝑎, [0.3, 0.4]⟩ ,

⟨𝑏, [0.3, 0.4]⟩ , ⟨𝑐, [0.3, 0.8]⟩ , ⟨0, [0.5, 0.9]⟩} .

(14)

Theorem 27. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then the vague value of 𝑥 in ⟨𝐴⟩ is

𝑉
⟨𝐴⟩ (𝑥) = isup {imin {VA (a1) ,VA (a2) , . . . ,VA (an)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
} ,

(15)

for all 𝑥 ∈ 𝐿.

Proof. First, we will prove that ⟨𝐴⟩ is a vague set of 𝐿:

𝑡
⟨𝐴⟩ (𝑥)

= sup {min {𝑡
𝐴
(𝑎
1
) , 𝑡
𝐴
(𝑎
2
) , . . . , 𝑡

𝐴
(𝑎
𝑛
)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

≤ sup {min {1 − 𝑓
𝐴
(𝑎
1
) , 1 − 𝑓

𝐴
(𝑎
2
) , . . . , 1 − 𝑓

𝐴
(𝑎
𝑛
)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

= sup {1 − max {𝑓
𝐴
(𝑎
1
) , 𝑓
𝐴
(𝑎
2
) , . . . , 𝑓

𝐴
(𝑎
𝑛
)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

= 1 − inf {max {𝑓
𝐴
(𝑎
1
) , 𝑓
𝐴
(𝑎
2
) , . . . , 𝑓

𝐴
(𝑎
𝑛
)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
} ,

= 1 − 𝑓
⟨𝐴⟩ (𝑥) .

(16)

Now, we will show that ⟨𝐴⟩ is a vague filter of 𝐿.
(VF1) Suppose that 𝑥, 𝑦 ∈ 𝐿 is arbitrary. For every 𝜀 > 0,

we can take 𝑎
1
, . . . , 𝑎

𝑛
, 𝑏
1
, . . . , 𝑏

𝑚
∈ 𝐿 such that𝑥 ≥ 𝑎

1
∗⋅ ⋅ ⋅∗𝑎

𝑛
,

𝑦 ≥ 𝑏
1
∗ ⋅ ⋅ ⋅ ∗ 𝑏

𝑚
, and

𝑡
⟨𝐴⟩ (𝑥) − 𝜀 < min {𝑡

𝐴
(𝑎
1
) , 𝑡
𝐴
(𝑎
2
) , . . . , 𝑡

𝐴
(𝑎
𝑛
)} ,

𝑡
⟨𝐴⟩

(𝑦) − 𝜀 < min {𝑡
𝐴
(𝑏
1
) , 𝑡
𝐴
(𝑏
2
) , . . . , 𝑡

𝐴
(𝑏
𝑚
)} .

(17)

By Proposition 2 part (4), we have 𝑥 ∗ 𝑦 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
∗ 𝑏
1
∗

⋅ ⋅ ⋅ ∗ 𝑏
𝑚
and then

𝑡
⟨𝐴⟩

(𝑥 ∗ 𝑦)

≥ min {𝑡
𝐴
(𝑎
1
) , . . . , 𝑡

𝐴
(𝑎
𝑛
) , 𝑡
𝐴
(𝑏
1
) , . . . , 𝑡

𝐴
(𝑏
𝑚
)}

= min {min {𝑡
𝐴
(𝑎
1
) , . . . , 𝑡

𝐴
(𝑎
𝑛
)} ,

min {𝑡
𝐴
(𝑏
1
) , . . . , 𝑡

𝐴
(𝑏
𝑚
)}}

> min {(𝑡
⟨𝐴⟩ (𝑥) − 𝜀) , (𝑡

⟨𝐴⟩
(𝑦) − 𝜀)}

= min {𝑡
⟨𝐴⟩ (𝑥) , 𝑡⟨𝐴⟩ (𝑦)} − 𝜀.

(18)

Since 𝜀 > 0 is arbitrary, we obtain that 𝑡
⟨𝐴⟩

(𝑥 ∗ 𝑦) ≥

min{𝑡
⟨𝐴⟩

(𝑥), 𝑡
⟨𝐴⟩

(𝑦)}.
Similarly, we can show that 1 − 𝑓

⟨𝐴⟩
(𝑥 ∗ 𝑦) ≥ min{1 −

𝑓
⟨𝐴⟩

(𝑥), 1 −𝑓
⟨𝐴⟩

(𝑦)}. Hence𝑉
𝐴
(𝑥∗𝑦) ≥ imin{𝑉

𝐴
(𝑥), 𝑉
𝐴
(𝑦)},

for all 𝑥, 𝑦 ∈ 𝐿.
(VF2) Suppose that 𝑥 ≤ 𝑦where 𝑥, 𝑦 ∈ 𝐿. Let 𝑎

1
, . . . , 𝑎

𝑛
∈

𝐿 such that 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
≤ 𝑥. Then 𝑎

1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
≤ 𝑦. And we

get that

𝑉
𝐴
(𝑦) ≥ imin {𝑉

𝐴
(𝑎
1
) , 𝑉
𝐴
(𝑎
2
) , . . . , 𝑉

𝐴
(𝑎
𝑛
)} . (19)

Since 𝑎
1
, . . . , 𝑎

𝑛
∈ 𝐿, where 𝑥 ≥ 𝑎

1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
is arbitrary, then

𝑉
⟨𝐴⟩

(𝑦) ≥ isup {imin {𝑉
𝐴
(𝑎
1
) , 𝑉
𝐴
(𝑎
2
) , . . . , 𝑉

𝐴
(𝑎
𝑛
)} :

𝑥 ≥ 𝑎
1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

= 𝑉
⟨𝐴⟩ (𝑥) .

(20)

Therefore ⟨𝐴⟩ is a vague filter of 𝐿 by Theorem 16. It is clear
that𝐴 ⪯ ⟨𝐴⟩. Now, let𝐶 be a vague filter of𝐿 such that𝐴 ⪯ 𝐶.
Then we have

𝑉
⟨𝐴⟩ (𝑥)

= isup {imin {𝑉
𝐴
(𝑎
1
) , . . . , 𝑉

𝐴
(𝑎
𝑛
)} : 𝑥 ≥ 𝑎

1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

≤ isup {imin {𝑉
𝐶
(𝑎
1
) , . . . , 𝑉

𝐶
(𝑎
𝑛
)} : 𝑥 ≥ 𝑎

1
∗ ⋅ ⋅ ⋅ ∗ 𝑎

𝑛
}

= 𝑉
𝐶 (𝑥) ,

(21)

for all 𝑥 ∈ 𝐿. Hence ⟨𝐴⟩ ⪯ 𝐶 and then ⟨𝐴⟩ is a vague filter
generated by 𝐴.

We denote the set of all vague filters of a residuated lattice
𝐿 by VF(𝐿).
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Corollary 28. (VF(𝐿), ∩, ∨) is a complete lattice.

Proof. Clearly, if {𝐴
𝑖
}
𝑖∈Γ

is a family of vague filters of a
residuated lattice 𝐿, then the infimumof this family is⋂

𝑖∈Γ
𝐴
𝑖

and the supremum is ⋁
𝑖∈Γ

𝐴
𝑖
= ⟨⋃
𝑖∈Γ

𝐴
𝑖
⟩. It is easy to prove

that (IFF(𝐿), ∩, ∨) is a complete lattice.

Let 𝐴 and 𝐵 be vague sets of a residuated lattice 𝐿. Then
𝐴 ∗ 𝐵 is defined as follows:

𝑉
(𝐴∗𝐵) (𝑧) = isup {imin {𝑉

𝐴 (𝑥) , 𝑉𝐵 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦} , (22)

for all 𝑧 ∈ 𝐿.

Theorem 29. Let 𝐴 and 𝐵 be vague sets of a residuated lattice
𝐿. Then 𝐴 ∗ 𝐵 is a vague set of 𝐿.

Proof. Since 𝐴 and 𝐵 are vague sets of 𝐿, we have 𝑡
𝐴
(𝑥) ≤

1 − 𝑓
𝐴
(𝑥) and 𝑡

𝐵
(𝑦) ≤ 1 − 𝑓

𝐵
(𝑦) for all 𝑥, 𝑦 ∈ 𝐿. Thus

𝑡
𝐴∗𝐵 (𝑧) = sup {min {𝑡

𝐴 (𝑥) , 𝑡𝐴 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

≤ sup {min {1 − 𝑓
𝐴 (𝑥) , 1 − 𝑓

𝐴
(𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

≤ 1 − 𝑓
𝐴∗𝐵 (𝑧) .

(23)

Hence 𝑡
𝐴∗𝐵

(𝑧) + 𝑓
𝐴∗𝐵

(𝑧) ≤ 1 and then 𝐴 ∗ 𝐵 is a vague set of
𝐿.

Theorem30. Let𝐴 and𝐵 be vague filters of a residuated lattice
𝐿. Then 𝐴 ∗ 𝐵 is a vague filter of 𝐿.

Proof. ByTheorem 29,𝐴∗𝐵 is a vague set of 𝐿. We will prove
that 𝐴 ∗ 𝐵 is a vague filter of 𝐿.

(VF2) Let 𝑧
1

≤ 𝑧
2
and 𝑥 ∗ 𝑦 ≤ 𝑧

1
. We get that

imin{𝑉
𝐴
(𝑥), 𝑉
𝐵
(𝑦)} ≤ 𝑉

𝐴∗𝐵
(𝑧
2
). Since 𝑥 ∗ 𝑦 ≤ 𝑧

1
is arbitrary,

we have

𝑉
𝐴∗𝐵

(𝑧
1
) = isup {imin {𝑉

𝐴 (𝑥) , 𝑉𝐵 (𝑦)} : 𝑧
1
≥ 𝑥 ∗ 𝑦}

≤ 𝑉
𝐴∗𝐵

(𝑧
2
) .

(24)

(VF1) Let 𝑥, 𝑦 ∈ 𝐿. Then

imin {𝑉
𝐴∗𝐵 (𝑥) , 𝑉𝐴∗𝐵 (𝑦)}

= imin {isup {imin {𝑉
𝐴 (𝑎) , 𝑉𝐵 (𝑏)} : 𝑥 ≥ 𝑎 ∗ 𝑏} ,

isup {imin {𝑉
𝐴 (𝑐) , 𝑉𝐵 (𝑑)} : 𝑦 ≥ 𝑐 ∗ 𝑑}}

= isup {isup {imin {𝑉
𝐴 (𝑎 ∗ 𝑐) , 𝑉𝐵 (𝑐 ∗ 𝑑)} :

𝑥 ≥ 𝑎 ∗ 𝑏} : 𝑦 ≥ 𝑐 ∗ 𝑑}

≤ isup {imin {𝑉
𝐴 (𝑎 ∗ 𝑐) , 𝑉𝐵 (𝑐 ∗ 𝑑)} :

𝑥 ∗ 𝑦 ≥ (𝑎 ∗ 𝑏) ∗ (𝑐 ∗ 𝑑)}

≤ isup {imin {𝑉
𝐴 (𝑒) , 𝑉𝐵 (𝑓)} : 𝑥 ∗ 𝑦 ≥ 𝑒 ∗ 𝑓}

= 𝑉
𝐴∗𝐵

(𝑥 ∗ 𝑦) .

(25)

By Definition 13, 𝐴 ∗ 𝐵 is a vague filter of 𝐿.

Theorem31. Let𝐴 and𝐵 be vague filters of a residuated lattice
𝐿 such that𝑉

𝐴
(1) = 𝑉

𝐵
(1). Then𝐴∗𝐵 is the least upper bound

of 𝐴 and 𝐵.

Proof. By Definition 13, we have 𝑉
𝐴
(1) = 𝑉

𝐵
(1) ≥ 𝑉

𝐴
(𝑦) for

all 𝑦 ∈ 𝐿. Let 𝑧 ∈ 𝐿. Since 𝑧 = 1 ∗ 𝑧, we get that

𝑉
𝐴∗𝐵 (𝑧) = isup {imin {𝑉

𝐴 (𝑥) , 𝑉𝐵 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

≥ imin {𝑉
𝐴 (𝑧) , 𝑉𝐵 (1)} ≥ 𝑉

𝐴 (𝑧) .

(26)

Hence 𝐴 ⪯ 𝐴 ∗ 𝐵. Similarly, we can show that 𝐵 ⪯ 𝐴 ∗ 𝐵.
Suppose that 𝐶 is the vague filter of 𝐿 containing 𝐴 and 𝐵.
Then

𝑉
𝐴∗𝐵 (𝑧)

= isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐵 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

≤ isup {imin {𝑉
𝐶 (𝑥) , 𝑉𝐶 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

≤ isup {imin {𝑉
𝐶
(𝑥 ∗ 𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦} = 𝜇

𝐶 (𝑧) .

(27)

Hence 𝐴∗ 𝐵 ⪯ 𝐶; that is, 𝐴∗ 𝐵 is the least upper bound of 𝐴
and 𝐵.

Lemma 32. Let𝐶 be a vague filter of a residuated lattice 𝐿 and
𝑧 ∈ 𝐿. Then

(1) 𝑉
𝐶
(𝑧) = isup{VC(x ∗ y) : z ≥ x ∗ y}, for all 𝑥, 𝑦, 𝑧 ∈ 𝐿;

(2) 𝑉
𝐶
(𝑥 ∗ 𝑦) = imin{VC(x),VC(y)}, for 𝑥, 𝑦 ∈ 𝐿.

Proof. (1) Since 𝑥 ∗ 𝑦 ≤ 𝑧, then 𝑉
𝐶
(𝑥 ∗ 𝑦) ≤ 𝑉

𝐶
(𝑧) by (VF2).

Hence 𝑉
𝐶
(𝑧) ≥ isup{𝑉

𝐶
(𝑥 ∗ 𝑦) : 𝑧 ≥ 𝑥 ∗ 𝑦}. Also, we have

1 ∗ 𝑧 = 𝑧. We obtain that

𝑉
𝐶 (𝑧) = 𝑉

𝐶 (1 ∗ 𝑧) ≤ isup {𝑉
𝐶
(𝑥 ∗ 𝑦) : 𝑧 ≥ 𝑥 ∗ 𝑦} . (28)

(2) It follows from Proposition 2 part (2) and
Definition 13.

Let VFD(𝐿) be the set of all vague filters𝐴 and𝐵 of 𝐿 such
that 𝑉

𝐴
(1) = 𝑉

𝐵
(1).

Theorem 33. (𝑉𝐹𝐷(𝐿), ∩, ∗) is a distributive lattice.
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Proof. Let 𝐴, 𝐵, 𝐶 ∈ VFD(𝐿) be such that 𝐴 ⪯ 𝐶. We will
show that (𝐴 ∗ 𝐵) ∩ 𝐶 = (𝐴 ∗ 𝐶) ∩ (𝐵 ∗ 𝐶). By Lemma 32,

𝑉
(𝐴∗𝐵)∩𝐶 (𝑧)

= imin {(𝑉
𝐴∗𝐵

) (𝑧) , 𝑉𝐶 (𝑧)}

= imin {isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐵 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦} , 𝑉

𝐶 (𝑧)}

= isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐵 (𝑦) , 𝑉

𝐶 (𝑧)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

= isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐵 (𝑦) , 𝑉

𝐶
(𝑥 ∗ 𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

= isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐵 (𝑦) , 𝑉

𝐶 (𝑥) , 𝑉𝐶 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

= isup {imin {𝑉
𝐴 (𝑥) , 𝑉𝐶 (𝑥)} ,

imin {𝑉
𝐵
(𝑦) , 𝑉

𝐶
(𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

= isup {imin {𝑉
𝐴∩𝐶 (𝑥) , 𝑉𝐵∩𝐶 (𝑦)} : 𝑧 ≥ 𝑥 ∗ 𝑦}

= 𝑉
(𝐴∩𝐶)∗(𝐵∩𝐶) (𝑧) .

(29)

5. Subpositive Implicative Vague Filters

Definition 34. Let 𝐴 be a vague subset of a residuated lattice
𝐿. 𝐴 is called a subpositive implicative vague filter of 𝐿 if

(VF6) 𝑉
𝐴
(𝑥) ≤ 𝑉

𝐴
(1), for all 𝑥 ∈ 𝐿,

(SVF1) imin{𝑉
𝐴
(((𝑥 → 𝑦) ∗ 𝑧)  ((𝑦  𝑥) →

𝑥)), 𝑉
𝐴
(𝑧)} ≤ 𝑉

𝐴
((𝑥 → 𝑦)  𝑦) for any

𝑥, 𝑦, 𝑧 ∈ 𝐿,
(SVF2) imin{𝑉

𝐴
((𝑧 ∗ (𝑥  𝑦)) → ((𝑦 → 𝑥) 

𝑥)), 𝑉
𝐴
(𝑧)} ≤ 𝑉

𝐴
((𝑥  𝑦) → 𝑦) for any

𝑥, 𝑦, 𝑧 ∈ 𝐿.

Proposition 35. Let 𝐴 be a vague filter of a residuated lattice
𝐿. Then 𝐴 is a subpositive implicative vague filter of L if and
only if it satisfies

(SVF3) 𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)) ≤

𝑉
𝐴
((𝑥 → 𝑦)  𝑦) for any 𝑥, 𝑦 ∈ 𝐿,

(SVF4) 𝑉
𝐴
((𝑥  𝑦) → ((𝑦 → 𝑥)  𝑥)) ≤

𝑉
𝐴
((𝑥  𝑦) → 𝑦) for any 𝑥, 𝑦 ∈ 𝐿.

Proposition 36. Let𝐴 be a subpositive implicative vague filter
of a residuated lattice 𝐿. Then 𝐴 is a vague filter of 𝐿.

Proof. We have imin{𝑉
𝐴
(𝑥  𝑦), 𝑉

𝐴
(𝑥)} = imin{𝑉

𝐴
((𝑦 →

𝑦) ∗ 𝑥)  ((𝑦  𝑦) → 𝑦), 𝑉
𝐴
(𝑥)} ≤ 𝑉

𝐴
((𝑦 → 𝑦) 

𝑦) = 𝑉
𝐴
(𝑦). By (VS1) andTheorem 17, 𝐴 is a vague filter of a

residuated lattice 𝐿.

The relation between subpositive implicative vague filter
and its level subset is as follows.

Theorem 37. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then𝐴 is a subpositive implicative vague filter of 𝐿 if and only if

for all𝛼, 𝛽 ∈ [0, 1], the set𝐴
(𝛼,𝛽)

is either empty or a subpositive
implicative filter of 𝐿, where 𝛼 ≤ 𝛽.

Proof. Suppose that𝐴 is a subpositive implicative filter vague
set of 𝐿 and 𝛼, 𝛽 ∈ [0, 1]. Let 𝐴

(𝛼,𝛽)
̸= 0. Since 𝐴 is a vague

filter, then𝐴
(𝛼,𝛽)

is a filter of 𝐿 byTheorem 21. Now, let (𝑥 →

𝑦)  ((𝑦  𝑥) → 𝑥) ∈ 𝐴
(𝛼,𝛽)

. Then 𝑉
𝐴
((𝑥 → 𝑦) 

((𝑦  𝑥) → 𝑥)) ≥ [𝛼, 𝛽]. By (SVF3), 𝑉
𝐴
((𝑥 → 𝑦) 

𝑦) ≥ [𝛼, 𝛽]; that is, (𝑥 → 𝑦)  𝑦 ∈ 𝐴
(𝛼,𝛽)

. Similarly, we can
show that𝐴

(𝛼,𝛽)
satisfies (SVF4). Hence𝐴

(𝛼,𝛽)
is a subpositive

implicative filter of 𝐿.
Conversely, let 𝑡

𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)) =

𝛼 and 1 − 𝑓
𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)) = 𝛽. Thus

𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)) ≥ [𝛼, 𝛽]. We get that

(𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥) ∈ 𝐴
(𝛼,𝛽)

. So 𝐴
(𝛼,𝛽)

̸= 0.
Thus (𝑥 → 𝑦)  𝑦 ∈ 𝐴

(𝛼,𝛽)
; that is, 𝑉

𝐴
((𝑥 → 𝑦)  𝑦) ≥

[𝛼, 𝛽] = 𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)). Similarly, we can

prove that 𝐴 satisfies (SVF4).

In the following theorems, we obtain some characteriza-
tions of subpositive implicative vague filter.

Theorem 38. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then 𝐴 is a subpositive implicative vague filter of 𝐿 if and only
if it satisfies

(SVF5) imin{VA((y → z)  (x → y)),VA(x)} ≤

VA(y) for any 𝑥, 𝑦, 𝑧 ∈ 𝐿,
(SVF6) imin{VA((y  z) → (x  y)),VA(x)} ≤

VA(y) for any 𝑥, 𝑦, 𝑧 ∈ 𝐿.

Proof. Let 𝐴 be a subpositive implicative vague filter of 𝐿. By
Proposition 2 part (3), we have imin{𝑉

𝐴
((𝑦 → 𝑧)  (𝑥 →

𝑦)), 𝑉
𝐴
(𝑥)} = imin{𝑉

𝐴
(𝑥 → ((𝑦 → 𝑧)  𝑦)), 𝑉

𝐴
(𝑥)} ≤

𝑉
𝐴
((𝑦 → 𝑧)  𝑦). By Proposition 2 part (7), (𝑦 → 𝑧) 

𝑦 ≤ 𝑧  𝑦 ≤ (𝑦 → 𝑧)  ((𝑧  𝑦) → 𝑦). We get that
𝑉
𝐴
((𝑦 → 𝑧)  𝑦) ≤ 𝑉

𝐴
(𝑧  𝑦) ≤ 𝑉

𝐴
((𝑦 → 𝑧)  ((𝑧 

𝑦) → 𝑦)) ≤ 𝑉
𝐴
((𝑧  𝑦) → 𝑦). Hence imin{𝑉

𝐴
((𝑦 →

𝑧)  𝑦), 𝑉
𝐴
(𝑧  𝑦)} ≤ imin{𝑉

𝐴
((𝑧  𝑦) → 𝑦), 𝑉

𝐴
(𝑧 

𝑦)} ≤ 𝑉
𝐴
(𝑦). Thus it satisfies (SVF5). Similarly, we can

prove (SVF6). Conversely, let 𝐴 satisfy (SVF5) and (SVF6);
𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥)) = imin{𝑉

𝐴
([((𝑥 → 𝑦) 

𝑦) → 1]  [(𝑥 → 𝑦)  ((𝑦  𝑥) → 𝑥) → ((𝑥 →

𝑦)  𝑦)]), 𝑉
𝐴
(1)} ≤ 𝑉

𝐴
((𝑥 → 𝑦)  𝑦). Similarly, we

can prove that (SVF5) holds. Hence 𝐴 is a vague subpositive
implicative filter.

Theorem 39. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then 𝐴 is a subpositive implicative vague filter of 𝐿 if and only
if it satisfies

(SVF7) 𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥)) ≤

𝑉
𝐴
((𝑦  𝑥) → 𝑥) for any 𝑥, 𝑦 ∈ 𝐿;

(SVF8) 𝑉
𝐴
((𝑥  𝑦) → ((𝑦  𝑥) → 𝑥)) ≤

𝑉
𝐴
((𝑦 → 𝑥)  𝑥) for any 𝑥, 𝑦 ∈ 𝐿.

Proof. Let (SVF7) and (SVF8) hold. We will show that 𝐴

satisfies (SVF5) and (SVF6). We have imin{𝑉
𝐴
((𝑦 → 𝑧) 

(𝑥 → 𝑦)), 𝑉
𝐴
(𝑥)} = imin{𝑉

𝐴
(𝑥 → ((𝑦 → 𝑧) 

𝑦)), 𝑉
𝐴
(𝑥)} ≤ 𝑉

𝐴
((𝑦 → 𝑧)  𝑦) ≤ 𝑉

𝐴
((𝑦 → 𝑧) 
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((𝑧 → 𝑦)  𝑦)) ≤ 𝑉
𝐴
((𝑧  𝑦) → 𝑦)). Also, we have

𝑉
𝐴
((𝑦 → 𝑧)  𝑦) ≤ 𝑉

𝐴
(𝑧  𝑦). Since 𝐴 is a vague

filter, 𝑉
𝐴
((𝑦 → 𝑧)  𝑦) ≤ imin{𝑉

𝐴
(𝑧  𝑦), 𝑉

𝐴
((𝑧 

𝑦) → 𝑦)} ≤ 𝑉
𝐴
(𝑦). Hence 𝐴 satisfies (SVF5). Analogously,

we can prove that𝐴 satisfies (SVF6). Hence𝐴 is a subpositive
implicative vague filter of 𝐿 byTheorem 38. Conversely, let 𝐴
be a subpositive implicative vague filter of 𝐿. We have

[((𝑦  𝑥) → 𝑥) → 1]

 [((𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥))

→ ((𝑦  𝑥) → 𝑥) ]

= [(𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥)]

→ [((𝑦 → 𝑥)  𝑥)  ((𝑦 → 𝑥)  𝑥)]

= (𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥) .

(30)

We get that 𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥)) =

imin{𝑉
𝐴
((𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥)),𝑉

𝐴
([((𝑦  𝑥) →

𝑥) → 1]  [((𝑥 → 𝑦)  ((𝑦 → 𝑥)  𝑥)) → ((𝑦 

𝑥) → 𝑥)])} ≤ 𝑉
𝐴
((𝑦  𝑥) → 𝑥) by (SVF5). Similarly, we

can prove that (SVF8) holds.

Theorem 40. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then 𝐴 is a subpositive implicative vague filter of 𝐿 if and only
if it satisfies

(SVF9) 𝑉
𝐴
((𝑥 → 𝑦)  𝑥) ≤ 𝑉

𝐴
(𝑥) for any 𝑥, 𝑦 ∈ 𝐿,

(SVF10) 𝑉
𝐴
((𝑥  𝑦) → 𝑥) ≤ 𝑉

𝐴
(𝑥) for any 𝑥, 𝑦 ∈ 𝐿.

Proof. Let 𝐴 be a subpositive implicative vague filter of 𝐿.
Then 𝐴 satisfies (SVF5) and (SVF6):

𝑉
𝐴
((𝑥 → 𝑦)  𝑥)

= imin {𝑉
𝐴
(1 → ((𝑥 → 𝑦)  𝑥)) , 𝑉

𝐴 (1)}

= imin {𝑉
𝐴
((𝑥 → 𝑦)  (1 → 𝑥)) , 𝑉𝐴 (1)}

≤ 𝑉
𝐴 (𝑥) .

(31)

Similarly, we can prove that (SVF10) holds. Conversely, let
𝐴 satisfy (SVF9) and (SVF10). We will show that 𝐴 satisfies
(SVF5) and (SVF6); imin{𝑉

𝐴
((𝑦 → 𝑧)  (𝑥 →

𝑦)), 𝑉
𝐴
(𝑥)} = imin{𝑉

𝐴
((𝑥 → (𝑦 → 𝑧)  𝑦)), 𝑉

𝐴
(𝑥)} ≤

𝑉
𝐴
((𝑦 → 𝑧)  𝑦) ≤ 𝑉

𝐴
(𝑦). Hence 𝐴 satisfies (SVF5).

Similarly, we can prove (SVF7) holds. Therefore 𝐴 is a
subpositive implicative vague filter of L byTheorem 38.

Theorem 41. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then 𝐴 is a subpositive implicative vague filter of 𝐿 if and only
if it satisfies

(SVF11) 𝑉
𝐴
(¬𝑥  𝑥) ≤ 𝑉

𝐴
(𝑥) for any 𝑥 ∈ 𝐿,

(SVF12) 𝑉
𝐴
(∼ 𝑥 → 𝑥) ≤ 𝑉

𝐴
(𝑥) for any 𝑥 ∈ 𝐿.

Proof. Let 𝐴 be a subpositive implicative vague filter of 𝐿.
Then (SVF11) and (SVF12) follow by (SVF9) and (SVF10).
Conversely, since 0 ≤ 𝑦, then 𝑥 → 0 ≤ 𝑥 → 𝑦. Hence

(𝑥 → 𝑦)  𝑥 ≤ ¬𝑥  𝑥 by Proposition 2 part (6).
Therefore 𝑉

𝐴
((𝑥 → 𝑦)  𝑥) ≤ 𝑉

𝐴
(¬𝑥  𝑥) ≤ 𝑉

𝐴
(𝑥).

Similarly, we can prove that (SVF10) holds. Hence 𝐴 is a
subpositive implicative vague filter of 𝐿 byTheorem 40.

The extension theorem of subpositive implicative vague
filters is obtained from the following theorem.

Theorem 42. Let 𝐴 and 𝐵 be two vague filters of a residuated
lattice 𝐿 which satisfies 𝐴 ≤ 𝐵 and 𝑉

𝐴
(1) = 𝑉

𝐵
(1). If 𝐴 is a

subpositive implicative vague filter of L, so 𝐵 is.

Proof. Suppose that 𝑢 = (𝑥 → 𝑦)  𝑥. Then

1 = 𝑢 → 𝑢 = 𝑢 → ((𝑥 → 𝑦)  𝑥)

= (𝑥 → 𝑦)  (𝑢 → 𝑥) = 1.

(32)

We have (𝑥 → 𝑦)  (𝑢 → 𝑥) ≤ ((𝑢 → 𝑥) → 𝑦) 

(𝑢 → 𝑥). Therefore 𝑉
𝐴
(((𝑢 → 𝑥) → 𝑦)  (𝑢 → 𝑥)) =

𝑉
𝐴
(1). By (SVF10), 𝑉

𝐴
(1) = 𝑉

𝐴
(((𝑢 → 𝑥) → 𝑦)  (𝑢 →

𝑥)) ≤ 𝑉
𝐴
(𝑢 → 𝑥). Hence 𝑉

𝐴
(𝑢 → 𝑥) = 𝑉

𝐴
(1) = 𝑉

𝐵
(1).

Since 𝐴 ≤ 𝐵, then 𝑉
𝐵
(𝑢 → 𝑥) ≥ 𝑉

𝐴
(𝑢 → 𝑥) = 𝑉

𝐵
(1).

We get that 𝑉
𝐵
((𝑥 → 𝑦)  𝑥) = 𝑉

𝐵
(𝑢) = imin{𝑉

𝐵
(𝑢 →

𝑥), 𝑉
𝐵
(𝑢)} ≤ 𝑉

𝐵
(𝑥). Similarly, we can show that 𝐺 satisfies

(SVF11). Hence 𝐺 is a vague subpositive implicative filter of
𝐿, by Theorem 40.

Definition 43. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
𝐴 is called a vague Boolean filter of 𝐿 if

(BVF1) 𝑉
𝐴
(𝑥 ∨ ¬𝑥) = 𝑉

𝐴
(1), for all 𝑥 ∈ 𝐿,

(BVF2) 𝑉
𝐴
(𝑥∨ ∼ 𝑥) = 𝑉

𝐴
(1), for all 𝑥 ∈ 𝐿.

Similar to Theorem 40, we have the following theorem
with respect to Boolean vague filters.

Theorem 44. Let 𝐴 be a vague set of a residuated lattice 𝐿.
Then 𝐴 is a Boolean vague filter of 𝐿 if and only if for all
𝛼, 𝛽 ∈ [0, 1]; the set 𝐴

(𝛼,𝛽)
is either empty or a Boolean filter of

𝐿, where 𝛼 ≤ 𝛽.

Theorem 45. Let 𝐴 be a vague filter of a residuated lattice 𝐿.
Then𝐴 is a subpositive implicative vague filter of 𝐿 if and if only
if 𝐴 is a Boolean vague filter.

Proof. Let𝐴 be a subpositive implicative vague filter.We have

𝑉
𝐴 (1) = 𝑉

𝐴 (¬ (𝑥 ∨ ¬𝑥)  (𝑥 ∨ ¬𝑥))

= 𝑉
𝐴 ((¬𝑥 ∧ ¬¬𝑥)  (𝑥 ∨ ¬𝑥)) ≤ 𝑉

𝐴 (𝑥 ∨ ¬𝑥) .

(33)

Hence 𝑉
𝐴
(𝑥 ∨ ¬𝑥) = 𝑉

𝐴
(1). Similarly, we can prove that 𝐴

satisfies (BVF2). Hence 𝐴 is a Boolean vague filter.
Conversely, let𝑉

𝐴
(𝑥∨¬𝑥) = 𝑉

𝐴
(1).We have𝑉

𝐴
(𝑥∨¬𝑥) =

𝑉
𝐴
((𝑥  𝑥) ∨ (¬𝑥  𝑥))𝑉

𝐴
((𝑥 ∨ ¬𝑥)  𝑥) = imin{𝑉

𝐴
((𝑥 ∨

¬𝑥)  𝑥), 𝑉
𝐴
(1)} = imin{𝑉

𝐴
((𝑥 ∨ ¬𝑥)  𝑥), 𝑉

𝐴
(𝑥 ∨ ¬𝑥)} ≤

𝑉
𝐴
(𝑥). Similarly, we can show that𝐴 satisfies (SVF12). Hence

𝐴 is a subpositive implicative vague filter byTheorem 41.
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6. Conclusion

In this paper, we introduced the notions of vague filters,
subpositive implicative vague filters, and Boolean vague
filters of a residuated lattice and investigated some related
properties. We studied the relationship between filters and
vague filters of a residuated lattice and showed that vague
filters of a residuated lattice is a generalization of fuzzy filters.
We proved that the set of all vague filters of a residuated lattice
forms a complete lattice and obtained some characterizations
of subpositive implicative vague filter.The extension theorem
of subpositive implicative vague filters was obtained. Finally,
it was proved that subpositive implicative vague filters are
equivalent to Boolean vague filters.
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