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Multiple model adaptive control has been investigated extensively during the last ten years in which the “switching” or “switching
and tuning” have emerged as the mainly approaches. It is the “switching” that can improve the transient performance to some
extent and also make it difficult to analyze the stability of the system with multiple models adaptive controller. Towards this goal,
this paper develops a novel multiple models adaptive controller for a class of nonlinear system in parameter-strict-feedback form
which not only improves the transient performance significantly, but also guarantees the stability of all the states of the closed-loop
system. A simulation example is proposed to illustrate the effectiveness of the developed multiple models adaptive controller.

1. Introductions

The multiple model adaptive control was introduced to
cope with the large parametric uncertainty [1] which always
results in large and oscillatory responses or even instable
when using the classical adaptive control methods. The
multiple models adaptive control [1–7] employing both fixed
model and adaptive model have been used to identify the
characteristics of the plants, and numerous methods are
currently available for controlling such plant satisfactorily.
However, the methods mainly focus on the linear time
invariant plant [1, 2, 4–6]. The multiple models adaptive
controller for nonlinear system is firstly considered in [8],
which uses a direct parameter update law to guarantee
the stability of the closed-loop system. Then, Ciliz and
Cezayirli [9] proposes a different nonlinear multiple models
adaptive control which require the condition of persistence
of excitation, so that the unknown parameter can be eval-
uated at the very beginning. Recently, an indirect multiple
models adaptive control was developed in [7] which also
demonstrated the global asymptotic stability of the closed-
loop switching system.

As illustrated in the literature that the “switching” (to the
closest model) based on the index of performance results in
fast response, and tuning (from the closet model) improves
the identification and control errors on a slower time scale,

which have the assumption that there are abundant models
available. Otherwise, the results may be improved less if
the number of the identification models is not adequate to
achieve the satisfactory response.

In this paper, a novel multiple models adaptive control
was considered for the nonlinear system in parameter-
strict-feedback form, which retains the advantages of the
multiple models adaptive controller, meanwhile facilitate
the procedure to analyze and synthesize the controller of
the closed-loop system. The approach developed here in
which the multiple models adaptive controller are used to
play a significantly larger role in the decision making role,
results in substantial improvement in performance. Besides,
we also reduce the number of the identification models by
redistributing the candidate models even as the system is in
operation.

2. Problem Formulation

Consider the multiple models adaptive control of the follow-
ing nonlinear parameter-strict-feedback (PSF) system:

ẋi = xi+1 + ϕT
i (xi)θ, 1 ≤ i ≤ n− 1,

ẋn = β(x)u + ϕT
n (x)θ,

y = x1,

(1)
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where xi = [x1, . . . , xi]
T ∈ Ri and x ∈ Rn are the state,

u ∈ R is the control input, θ ∈ Rp is an unknown parameter
vector belonging to a known compact set S. The functions
ϕi(xi) and β(x) are known smooth functions with β(x) /= 0,
for all x ∈ Rn. The focus of this paper is to improve the
transient performance in the presence of large parametric
uncertainties.

One easly way to improve the transient performance may
be choosing sufficiently large high-frequency parameters
in the conventional backstepping adaptive control design.
Unfortunately, the control efforts can also be very large
simultaneously [7]. Alternately, in cope with these difficul-
ties, “switching” or “switching and tuning” have emerged as
the leading methods during the last decade.

3. Multiple Models Adaptive Controller Design

In order to ensure the stability and transient performance
of the system with larger parametric uncertainty, and con-
sequently the boundedness of the state x(t), the well-
established results from the classical adaptive control cannot
be used directly. Our multiple models adaptive controller
contains N parallel operating identification models on which
the control law and the adaptive law are based. For improving
the transient performance, it is necessary to distribute the

initial estimate values of the unknown parameter {̂θ j(0)}Nj=1
uniformly in the compact set S to which the unknown

parameter θ belongs. Therefore, at least one ̂θ j(0) is close to
θ, consequently there must exists one or more identification
models in its neighborhood. Since adaptive control can
perform well when parametric errors are small, it is naturally
that the controller developed on the jth identification
model can stabilize the system with satisfactorily transient
performance.

3.1. Multiple Identification Models. We will run in parallel
N identification models with the same structure which take
the different initial parameter estimate values {̂θ j(0)}Nj=1
uniformly distributed in the compact set S to which the
unknown parameter belongs. We first introduce the filters as
follows:

ξ̇0 =
(

A0 − λΞ(x)ΞT(x)P
)

(

ξ0 − x
)

+ f (x,u), ξ0 ∈ Rn,

(2)

ξ̇ =
(

A0 − λΞ(x)ΞT(x)P
)

ξ + Ξ(x), ξ ∈ Rn×p, (3)

where

f (x,u) =
[

x2 . . . xn β(x)u
]T

,

Ξ(x) =
[

ϕ1(x1) . . . ϕn(x)
]T

.
(4)

λ > 0, and A0 is a Hurwitz matrix such that the Lyapunov
equation: PA0 + AT

0 P = −I has a positive definite solution P.

Define

ẽ = x− ξ0 − ξθ, (5)

e j = x − ξ0 − ξ̂θ j , j = 1, . . . ,N , (6)

˜θ j = θ − ̂θ j , j = 1, . . . ,N. (7)

It can be derived from (1)–(7) that

˙̃e =
(

A0 − λΞ(x)ΞT(x)P
)

ẽ, (8)

e j = ξ˜θ j + ẽ, j = 1, . . . ,N. (9)

Since ẽ converges to zero exponentially, (9) are called
identification error equations.

3.2. Controller Design. The controller design involves N
models at total and is developed as [10], which can guarantee
the asymptotic tracking when there is not identification
error and avoid the finite time escape phenomenon when
there exists bounded identification error. Now, the first
identification model’s adaptive controller is given by

u1 =
[

α1,n

(

x, ̂θ1, yr , . . . , ynr
)]

β(x)
, (10)

where yr is the reference signal to be tracked and α1,n can be
recursively designed by

zi = xi − α1,i−1

(

x1, . . . , xi−1, ̂θ1, yr , . . . yi−1
r

)

, (11)

α1,i = −zi−1 − c1,izi −wT
1,i
̂θ1 + yir − s1,izi

+
i−1
∑

k=1

(

∂α1,i−1

∂xk
xk+1 +

∂α1,i−1

∂yk−1
r

ykr

)

,
(12)

w1,i

(

x1, . . . xi, ̂θ1, yr , . . . , yi−1
r

)

= ϕi −
i−1
∑

k=1

∂α1,i−1

∂xk
ϕk, (13)

s1,i = k1,i
∣

∣w1,i
∣

∣
2 + g1,i

∣

∣

∣

∣

∣

∂α1,i−1

∂̂θ1

∣

∣

∣

∣

∣

2

, (14)

We choose

V1 = 1
2

n
∑

i=1

z2
i . (15)
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The time derivative of V1, computed with (10)–(14), is
given by

V̇1 = −
n
∑

i=1

c1,iz
2
i +

n
∑

i=1

(

wT
1,i
˜θ1 − ∂α1,i−1

∂̂θ1

˙̂
θ1

)

zi

−
n
∑

i=1

⎛

⎝k1,i
∣

∣w1,i
∣

∣
2 + g1,i

∣

∣

∣

∣

∣

∂α1,i−1

∂̂θ1

∣

∣

∣

∣

∣

2
⎞

⎠z2
i

≤ −
n
∑

i=1

c1,iz
2
i −

n
∑

i=1

k1,i

∣

∣

∣

∣

∣

w1,izi − 1
2k1,i

˜θ1

∣

∣

∣

∣

∣

2

−
n
∑

i=1

g1,i

∣

∣

∣

∣

∣

∂α1,i−1

∂̂θ1

zi − 1
2g1,i

˙̂
θ1

∣

∣

∣

∣

∣

2

+
n
∑

i=1

1
4k1,i

∣

∣

∣
˜θ1

∣

∣

∣

2
+

n
∑

i=1

1
4g1,i

∣

∣

∣

∣

˙̂
θ1

∣

∣

∣

∣

2

≤ −
n
∑

i=1

c1,iz
2
i +

n
∑

i=1

1
4k1,i

∣

∣

∣
˜θ1

∣

∣

∣

2
+

n
∑

i=1

1
4g1,i

∣

∣

∣

∣

˙̂
θ1

∣

∣

∣

∣

2

,

(16)

with c1,i, k1,i, g1,i being designed parameters. Equation (16)
implies the boundedness of the states of zi, 1 ≤ i ≤ n,
and which in turn indicates the boundedness of the states
of xi, 1 ≤ i ≤ n and control u1 on the conditions of ˜θ and
˙̂
θ are bounded which will be proved later. The rest of N-1
controllers can be designed and analyzed similarly which can
also guarantee the boundedness of the states of zi, 1 ≤ i ≤ n,
and which in turn indicates the boundedness of the states of
xi, 1 ≤ i ≤ n and control uj , j = 1, . . . ,N .

3.3. Construction of Equivalent Control. In this section, the
crucial point is that the transient performance can be
improved significantly, and at the same time the switching
between the identification models can be avoided. Besides,
the information provided by all the identification models is
to be utilized efficiently. For the complement of the goals
mentioned, instead of using the estimate values of the model
with the minimum of performance criterion to reinitial an
adaptive controller, a convex combination of all the N models
is used to generate the control of the plant as

u =
N
∑

j=1

γjuj , (17)

and the adaptive update law as

˙̂
θ j = Γ

ξTe j

1 + v|ξ|2 , Γ = ΓT > 0, v > 0, j = 1, . . . ,N , (18)

where γj are nonnegative values satisfying
∑N

j=1 γj = 1, and γj

can be calculated from

γj =
(

1/J j
)

∑N
j=1

(

1/J j
) , (19)

where J j is the performance indices of the form:

J j(t) = αe2
j (t) + β

∫ t

t0
e2
j (τ)dτ, a ≥ 0, β > 0, (20)

with t0 can be reset when the identification models is
redistributed.

3.4. Redistribution of the Identification Models. In this sec-
tion, the goal is that the transient performance can be
improved significantly as far smaller numbers of the identifi-
cation models as possible. As is illustrated in the literature,
the classical adaptive control can cope with the control of
linear time invariant system with unknown parameters and
achieve satisfactory closed-loop objective only if the plant
parametric uncertainty is small. So if the number of the
identification models that can be used is abundantly large,
the “switching” or “switching and tuning” scheme may act
on satisfactorily. Otherwise, the multiple models adaptive
control cannot work as expected when the numbers of
identification models available is relatively smaller compared
with the size of the uncertainty region. Inspired by the
“switching” techniques [11–13], we consider the method
in which the location of the identification models can be
redistributed. From (8) and (9), it can be concluded that the
ẽ = 0 can be achieved by choosing the initial values of ξ0 and
ξ as long as the initial state x0 is known or there exists T > 0
such that

e j = ξ˜θ j , j = 1, . . . ,N , t > T. (21)

It is obviously that the errors e j and ˜θ j , j = 1, . . . ,N
are linearly related. This implies that the index of the
performance J j(t) is a quadratic function of the unknown

parameter vector ˜θ j . Since ξTξ is not negative definite, it
follows that the performance indices of all the models are
merely points on a time-varying quadratic surface, whose
minimum corresponds to the plant indicating the mostly
closet identification modelMj (corresponds to the parameter
˜θ j). So we can redistribute the other (N − 1) models
Mk (k /= j) as

θk =
√

Jk
√

Jk +
√

J j
θ j +

√

J j
√

Jk +
√

J j
θk. (22)

By introducing the minimum of interval time Tmin into our
switching scheme to ensure a finite number of switching.

4. Stability Analysis

Theorem 1. Suppose the multiple models adaptive controller
(17) and adaptive law (18) presented in this paper is applied
to system (1). Then, for all initial conditions, all closed-loop
states are bounded on [0,∞), and asymptotic tracking can be
achieved, that is, Limt→∞z(t) = 0 or y(t) = yr(t) as t → ∞.

Proof. Since all N models are identical structure and only
with different initial estimate parameters, it follows that each
controller acts on the system is only different from each other
at the weight (each of the controllers can be designed with the
same structure and designed parameters).

When we choose the whole candidate Lyapunov function
as

V = 1
2

n
∑

i=1

z2
i . (23)
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It is obvious that (23) can be divided into

V = 1
2

n
∑

i=1

z2
i =

N
∑

j=1

γj
1
2

n
∑

i=1

z2
i =

N
∑

j=1

γjVj. (24)

As illustrated by (16), each of the controllers can guarantee
the boundedness of the states of zi, 1 ≤ i ≤ n at its portion,
which accompanied with the control (17), and weighting
coefficient (19) can establish the boundedness of the states
of zi, 1 ≤ i ≤ n.

Next, we prove the controller (17) and adaptive law (18)
can also guarantee the asymptotic tracking of the closed-loop
system states. It can be computed from (3) that

d

dt

(

ξPξT
)

= −ξξT − 2λξPΞTΞPξT + ξPΞT + ΞPξT

= −ξξT−2λ
(

ΞPξT − 1
2λ

I
)T(

ΞPξT− 1
2λ

I
)

+
1

2λ
,

(25)

which shows ξ is bounded regardless of the state x. Let V j =
(˜θ

T

j Γ
−1
˜θ j + ẽT ẽ)/2, it can be derived that

V̇ j = −
eTj
(

e j − ẽ
)

1 + v|ξ|2 + ẽT
(

A0 − λΞ(x)ΞT(x)P
)

ẽ

≤ −3
4

eTj e j

1 + v|ξ|2 ,

(26)

without loss of generality, we can design the parameter
satisfies A0 − λΞ(x)ΞT(x)P > I , I is a unit matrix. Therefore,
ẽ, ˜θ j , j = 1, . . . ,N are all bounded, which companied with

the boundedness of ξ, further yields from e j = ξ˜θ j + ẽ
that e j is bounded. It can be also concluded from (26)
that e j is squarely integrable on [0,∞). Furthermore, we

can also conclude from (18) that
˙̂
θ j is bounded, which can

accomplish the assumption that it is bounded. We can now
give the asymptotically tracking control analysis.

The time derivate of identification error is given by

ė j =
(

A0 − λΞΞTP
)

e j + Ξ˜θ j − ξ
˙̂
θ j . (27)

Due to the boundedness of all the closed-loop system
states ė j , ˙̇e j , j = 1, . . . ,N are also bounded, so by
Barbalat’s lemma, we must have Limt→∞e j(t) = 0 and since

Limt→∞
∫ t
t1 ė j(τ)dτ = limt→∞e j(t) − e j(t1) < ∞, we further

have Limt→∞ė j(t) = 0. Then, it can be concluded from (18)

that Limt→∞
˙̂
θ j = 0 which accompanied with (27) implies

Limt→∞Ξ˜θ j = 0 and in turn leads to

Limt→∞Nj

(

z, ̂θ, yr
)

Ξ ˜θ j = 0, (28)

where

Nj

(

z, ̂θ j , yr
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0

−∂αj,1

∂x1
1 0

...
. . . 0

−∂αj,n−1

∂x1
−∂αj,n−1

∂x2
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

By direct calculating, the differentiation of z with parametric
controller uj can be described, in z coordination, by

ż = −
n
∑

i=1

cj,izi + Nj

(

z, ̂θ, yr
)

Ξ˜θ j −
∂αj,i−1

∂̂θ j

˙̂
θ j

−
n
∑

i=1

⎛

⎜

⎝kj,i
∣

∣

∣wj,i

∣

∣

∣

2
+ gj,i

∣

∣

∣

∣

∣

∣

∂αj,i−1

∂̂θ j

∣

∣

∣

∣

∣

∣

2
⎞

⎟

⎠zi.

(30)

From (28), accompanied with Limt→∞
˙̂
θ j = 0 and the

designed parameters are all positive, it can be easily con-
cluded that Limt→∞z(t) = 0, and thus Limt→∞z1(t) =
Limt→∞(y(t)− yr(t)) = 0. The proof is completed.

5. Simulation

Consider the following second-order nonlinear system:

ẋ1 = x2 + θ1x1 + θ2x
2
1,

ẋ2 = u,

y(t) = x1(t),

(31)

where θ1 ∈ [1, 5] and θ2 ∈ [1, 40] are unknown
parameters. The output y(t) = x1(t) is to asymptotically
track the reference signal yr(t) = sin 2t.

In simulation, the parametric controller is developed as
(10)–(14) and (17)–(19) with v = 0, Γ = 5, cj,1 = cj,2 = 4,
kj,1 = kj,2 = gj,2 = 0.1, j = 1, . . . ,N , α = β = 1, Tmin is 5
units of time. Since in (31), the unknown parameter appears
only in the first equation, the filter can be constructed as [1]
to reduce filter dynamic order:

ξ̇0 = −c
(

ξ0 − x
)

+ x2, ξ0 ∈ R1,

ξ̇ = −cξ +
[

x1, x2
1

]

, ξ ∈ R1×2,
(32)

where c = 10.
The unknown parameter is [θ1, θ2] = [4.4, 38.5]; the

number of the multiple identification models is N = 4; for
convenience to comparison with [7], the initial plant state is
[x1(0), x2(0)] = [0.5,−10]; the same initial filter states are

ξ0 = 0.5, ξ =
[

0 0
]

, and the initial estimate parameters

for model 1, model 2, model 3, and model 4 are ̂θ1(0) =
[1, 1]T , ̂θ2(0) = [1, 5]T , ̂θ3(0) = [5, 1]T , ̂θ4(0) = [5, 40]T ,
respectively. Figures 1–4 depict the simulation results.

These simulation results clearly showed that the multiple
models adaptive controller presented in this paper guaran-
tees the boundedness of all the states in the closed-loop
system and achieves the asymptotic tracking of the output.

Figure 1 is the output y(t), which demonstrates that the
multiple models adaptive controller developed in this paper
has the similar property as shown in [7] and is significantly
better than using the classical adaptive control. Figures 2
and 3 are the control inputs which show that the multiple
model adaptive control can reduce the maximum control
input dramatically. Besides, it seems to conclude that the
multiple model adaptive control proposed in this paper has
the similar property and so the trajectory is nearly to overlap
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−1

Time (s)

Figure 1: Output y(t). dash-dotted line for the classical adaptive
control, dashed line for the multiple model case (N = 200) as in
[7], and solid line for the multiple identification model developed
in this paper.

0 0.01 0.02 0.03 0.04 0.05 0.06
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−0.5

×105

Time (s)

Figure 2: Control u(t) on the time interval [0, 0.06]. dash-dotted
line for the classical adaptive control, dashed line for the multiple
model case (N = 200) as in [7], and solid line for the multiple
identification model developed in this paper.

2 4 6 8 10 12 14 16 18 20

0

100
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300

−300

−200

−100
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Time (s)

Figure 3: Control u(t) on the time interval [0.6, 20]. dash-dotted
line for the classical adaptive control, dashed line for the multiple
model case (N = 200) as in [7], and solid line for the multiple
identification model in this paper.

from Figures 1–3 because the method in [7] uses more
identification models than ours. Figure 4 is the trajectory
of the redistribution of the identification models which can
find the most suitable identification model and enhance the
transient performance.

1 2 3 4 5
0

10

20

30

40

Time (s)

Figure 4: The redistribution trajectory of the identification models.
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0.5

1

1.5

−1.5

−0.5

−1

Time (s)

Figure 5: Output y(t). dashed line for the multiple model case
(N = 4) as in [7], solid line for the multiple identification model
developed in this paper.

0 0.01 0.02 0.03 0.04 0.05 0.06

0

200

400

−600

−200

−400

Figure 6: Control u(t) on the time interval [0, 0.06]. dashed line
for the multiple model case (N = 4) in [7], and solid line for the
multiple model developed in this paper.

Next, we can compare the approach presented in this
paper with the method developed in [7] with the multiple
identification models (N = 200) is set to (N = 4), which is
the same identification models used in our approach. Figures
5–7 depict the simulation results.

Figure 5 is the output y(t) with the multiple models
adaptive controller, which shows the approach developed
in this paper is superior to the method presented in [7].
Figures 6 and 7 are the control inputs which show that the
multiple model adaptive control developed in this paper has
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Figure 7: Control u(t) on the time interval [0.06, 10]. dashed line
for the multiple model case (N = 4) in [7], and solid line for the
multiple model developed in this paper.

better properties than the method presented in [7] which has
switching and larger control input.

6. Conclusions

In this paper, a novel multiple models adaptive controller
was developed for a class of nonlinear systems. The multiple
models technique was used to describe the most appropriate
model at different environments. If the number of the
identification models that can be used is abundantly large,
the “switching” or “switching and tuning” scheme may act
on satisfactorily. Otherwise, the multiple models adaptive
control cannot work as expected when the number of iden-
tification models available is relatively small compared with
the size of the uncertainty region. So we consider the method
in which the location of the identification models can be
redistributed. Unlike previous results, we do not require a
switching scheme to guarantee the most appropriate model
to be switched into the controller design which can simplify
the analysis of the stability of the closed-loop system.
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