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With the prevalence of Internet access, document storage has become a fundamental web service
in recent years. One important topic is how to design a secure channel for efficiently sharing
documents with another receiver. In this paper, we demonstrate a re-encryption method that is
designed with row complete matrices. With this new method, the document owner can share a
ciphertext in the cloud with another receiver by sending a serial number to the server and giving
the receiver a corresponding key at the same time. This method ensures that the server cannot
obtain the information about key and plaintext and that the receiver cannot obtain the original
key of the owner either. Only the owner has the knowledge of all the information. Using this re-
encryption system, the cloud server can provide a secure file-sharing service without worrying
about the shared key management problem. Moreover, the cost of re-encryption will not increase
even when the encryption is strengthened with longer encryption keys.

1. Introduction

The latin matrix is an n-by-n square matrix filled with elements from Zn, each occurring
exactly once in each row and in each column. The orthogonal Latin matrices have been
found to be useful in error-correcting codes [1] and in mathematical puzzles, SUDOKU.
Nevertheless, Colbourn proved that if a partially filled square can be completed to form, a
Latin square is NP-complete [2]. In addition, the Latin matrices are the multipermutation
method, an important method in cryptography. The Latin matrices include a many-internal
state that may be keyed, and combining operations using keyed matrices will be nonlinear.
Jiejun Kong shows the role of Latin matrices in Cipher Systems [3].
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Blaze et al. introduced the proxy re-encryption (PRE) based on Elgamal encryption
in 1998 [4], in which the proxy can translate ciphertexts under Alice’s key into ciphertexts
under Bob’s key with a given re-encryption key. However, traditional PRE can translate all
Alice’s ciphertexts without any condition. Therefore, Weng et al. proposed conditional proxy
re-encryption in 2009 [5]. In Weng’s scheme, the proxy can only translate ciphertexts under
certain condition. Unfortunately, Weng’s scheme was broken and an efficient conditional
PRE scheme with bilinear pairing was introduced in 2011 [6]. Another related topic is
PRE with keyword search, in which proxy is given a search keyword to find whether or
not a ciphertext contains the search keyword without knowing the corresponding plaintext
[7, 8].

In 2007, Green and Ateniese [9] presented the first identity-based proxy re-encryption
scheme, where ciphertexts are transformed from one identity to another. Moreover, this
scheme does not require any extra work from the key generator of a trusted party. Later,
Chu and Tzeng [10] also proposed an identity-based proxy re-encryption scheme, which is
efficient in terms of both computation and length of ciphertexts. However, the data owners
in those schemes above cannot prevent Bob from decrypting the data and generating new
re-decryption keys to another user. Hence, Liu et al. proposed a time-based re-encryption
scheme, which enables the cloud servers to re-encrypt data based on specified interval
[11]. Moreover, Liu’s scheme is an attribute-based encryption that provides fine grained
access control as each user is issued keys associated with attributes and corresponding
attribute effective times. The data can be decrypted by Bob using the attribute keys
satisfying the access control and attribute effective times satisfying the access time. Fang
et al. combined conditional PRE and attribute-based encryption techniques and proposed
interactive conditional proxy re-encryption with fine grain policy (ICPRE-FG) [12] in 2011.
In ICPRE-FG system, each ciphertext labels a set of descriptive conditions; each proxy re-
encryption key is associated with a tree-access structure where the leaves are associated
with conditions. Hence, this structure determines which type of ciphertexts the key can
re-encrypt.

In addition, Ateniese et al. [13] proposed the first key-private PRE scheme and also left
an open problem about how to achieve key privacy without compromising security against
the chosen-ciphertext attack (CCA). Furthermore, Shao et al. proposed the “achieving key
privacy without losing CCA security in proxy re-encryption” in 2011 [14] to achieve CCA
security. In recent years, as the adoption of cloud computing environment grows, the PRE
gradually presents its vital role in cloud computing. Take personal health record (PHR) for
example; a PHR contains not only medical history such as surgery, illness, laboratory test
results, and imaging report immunization records, but also sensitive personal data such as
name, birth date, weight, and contact information. Obviously, such sensitive data should be
protected by one’s key, and the medical history might be re-encrypted for public health issue
in cloud computing environment.

In a cloud computing environment, users may want to exchange their digital contents
with other users in the domain of another cloud. However, before doing that, users need to
authenticate each other first and exchange a session key for communication. And PRE scheme
can serve as a useful tool for content exchange in such cloud computing scenario.

Since the PRE scheme runs the risk of divulging the key of content provider, we will
propose a secure re-encryption method designed by applying the properties of latin square
matrix. Before we describe this new method, we need to introduce a special type of latin
matrix, which is called row complete matrix.
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Row Complete Matrix

A row complete matrix is a latin matrix in which, for all pairs (i, j) ∈ Z2
n where i /= j, the pair

exists in some row of the latin matrix. It is known that when n is 3 and 5, there is no latin
matrix that is row complete. It remains an open problem to decide whether or not the row
complete matrix exists when n is odd.

For example, the smallest row complete matrix is

(
0 1

1 0

)
. (1.1)

This simple case shows that all the pairs (i, j) ∈ Z2 can be found in the matrix, that is, (0, 1)
in the first row and (1, 0) in the second row. The second example is in the case of n = 4. For
example,

⎛
⎜⎜⎜⎜⎜⎝

3 2 0 1

2 1 3 0

1 0 2 3

0 3 1 2

⎞
⎟⎟⎟⎟⎟⎠. (1.2)

In this example, we see that the pairs (0, 1), (0, 2), and (0, 3) can be found in the first, third,
and fourth rows, respectively. Similarly, all the pairs (i, j) ∈ Z4 for i /= j can be found in this
latin matrix, and therefore this matrix is row complete.

There are only 2 row complete matrices for n = 2, 144 row complete matrices for n = 4
and 172800 row complete matrices for n = 6. In fact, the number of row complete matrices
grows rapidly as the even number n increases. We will design a re-encryption method using
row complete matrix, and the security will rely on the number of possible row complete
matrices for given size n. We will describe some properties of row complete matrix in the
following sections.

The remainder of this paper is organized as follows. Section 2 gives the definition of
re-encryption and a new re-encryption method designed by the properties of row complete
matrix. The detailed procedure of the proposed method and the security analysis are
described in Section 3. Finally, Section 4 gives the conclusions.

2. Re-Encryption Method

First, we define the concept of re-encryption. Assume that Alice (A) has some contents that
she will upload to the Cloud (C) and Bob (B) is Alice’s friend with whom Alice will share
her contents through the server in the cloud. Before Alice uploads her contents (P) with the
server, she will encrypt her contents with a key, say Ka. Then the ciphertext (Ta) is uploaded
to the server. When Alice wants to share her contents (P) to Bob, she will create two keys.
The first key is Kb, which is a key that Bob can use to decrypt the ciphertext from the server.
The second key isma,b, which is a serial number andwith which the server will re-encrypt the
ciphertext (Ta). Let the operation of re-encryption beR. We denote the re-encrypted ciphertext
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by Tb, which is equal to R(Ta,ma,b). If we denote the encryption method and the decryption
method by E and D, respectively, then we have the following relations:

(i) Ta = E(P,Ka),

(ii) P = D(Ta,Ka),

(iii) Tb = R(Ta,ma,b),

(iv) P = D(Tb,Kb).

For the reason of security and feasibility, we set the following criteria. (1) It is difficult
for the server, S, to recover the Ka and P from the information of Ta and ma,b. (2) It is
difficult for Bob, B, to recover Ka from the information of P , Tb, and Kb. Moreover, (3) for
the feasibility of cloud transition, the length of the serial number ma,b should be small and
the computational cost of R(Ta,ma,b)must also be small.

Encryption Method

The row complete matrix plays a pivotal role in our method. In fact, the adjacent column
pairs of the row complete matrix serve collectively as the code book in an encryption. We first
show the central idea of our method. Based on this idea, we will implement the encryption
process to make it more secure.

We begin with the following example. Assuming the keyKa is an n-by-n row complete
matrix, we will express the plaintext with the n-base representation first. For example,

Ka =

⎛
⎜⎜⎜⎜⎜⎝

3 2 0 1

2 1 3 0

1 0 2 3

0 3 1 2

⎞
⎟⎟⎟⎟⎟⎠, (2.1)

where the size of Ka is 4-by-4. Then, we express the plaintext with the 4-base representation.
The first element of the 4-base plaintext is encrypted by the first two columns. If the first
element is 3, then it is encrypted by 2, and if it is 2, then it is encrypted by 1. The second
element of the plaintext is encrypted by the second and third columns. If the second element
is 2, then it is encrypted by 0, and if it is 1, then it is encrypted by 3. If Ka is a 4-by-4 matrix,
only three pairs of columns can be used. We will repeat these three pairs when the length of
plaintext is greater than 4. The formal encryption process is as follows.

If the key Ka is an n-by-n matrix, the kth element of the n-base representation of the
plaintext P(k) is encrypted byKa(s, t+1), whereKa(s, t) is the element of s row and t column
of Ka, t = mod(k − 1, n − 1) + 1 and s is the index of the tth column of Ka such that Ka(s, t) =
P(k).

Decryption Method

The decryption process is straightforward when we have keyKa. Because E(P(k)) = Ka(s, t+
1) when T(k) = Ka(s, t), P(k) is decoded by the index t, which is determined by the location
index k and the index of the (t+1)th column ofKa, where T(k) occurs. That is P(k) = Ka(s, t),
where t = mod(k − 1, n − 1) + 1, and s is the index of the (t + 1)th column of Ka such that
Ka(s, t + 1) = T(k).
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Beforewe further explain the re-encryptionmethod, wewill first show some important
properties for row complete matrix.

Theorem 2.1. LetA be a row complete matrix; then a row permutation of A also gives a row complete
matrix.

Proof. If A is a row complete matrix, then A is a latin matrix. A latin matrix after a row
permutation is still a latin matrix, and the row permutation will not affect the row (i, j) pair.
That is, if B is a row permutation from A, the pair (i, j) in the sth row of A must exist in
some row of B. Hence, a row complete matrix after a row permutation is also a row complete
matrix.

Corollary 2.2. Let A be a row complete matrix. If B is a matrix derived from A by row permutation,
then A and B are equivalent in the sense that they encrypt the plaintext to the same ciphertext.

Theorem 2.3. Let A be a row complete matrix; then permuting the elements of A will again produce
a row complete matrix.

Proof. Let σ be a permutation defined onZn and B amatrix such that B(i, j) = σ(A(i, j)). Since
A is a latin matrix, each row and each column contain each element of Zn exactly once. As σ
is a permutation, each row and each column of B contain each element of Zn exactly once as
well; therefore B is also a latin matrix.

Since σ is a permutation mapping, we have σ−1(i)/=σ−1(j) if i, j ∈ Zn and i /= j. Then
for all pairs (i, j) ∈ Z2

n, i /= j, we have i′ = σ−1(i), j ′ = σ−1(j), and i′ /= j ′. Because A is a row
complete, there exist some s ∈ {1, . . . , n} and t ∈ {1, . . . , n − 1} such that A(s, t) = i′ and
A(s, t+1) = j ′. Then, with the same indices s and t, we will have B(s, t) = σ(A(s, t)) = σ(i′) = i
and B(s, t + 1) = j. Hence, B is a row complete matrix too.

From these two theorems, we know that if A is a row complete matrix with size n,
there are more than n! row complete matrices that can be derived from the row permutations
of A and the element permutations of A. If B is a row complete matrix derived from the row
permutation of another row complete matrix A, we can see that using these two matrices as
the keys in the previous simple encryption process, we will obtain the same ciphertext. As
this property will downgrade the encryption security, we will modify the encryption method
to a secure version.

The main idea of the modification is to make the ciphertexts encrypted by A and B
that are derived from the row permutation from A different. The number of the first column
can be used. If we use the number of the first column (except 0) as the column order for
encryption, we can make the above A and B have different ciphertexts. For example, if Ka

is as (2.1), then we use the third column to encrypt the first element of plaintext, the second
column to encrypt the second element, the first column to encrypt the third element, and then
repeat.

The encryption formula is modified as E(P(k)) = Ka(s, t + 1), where t = ka(mod(k −
1, n − 1) + 1), ka is the first column of Ka from which the 0 element is removed, and s is the
index of the tth column of Ka such that Ka(s, t) = P(k). Similarly, the decryption process is
modified as D(T(k)) = Ka(s, t), where t = ka(mod(k − 1, n − 1) + 1), ka is the first column of
Ka from which the 0 element is removed, and s is the index of the (t+1)th column ofKa such
that Ka(s, t + 1) = T(k).
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Re-Encryption Method

LetKa be the key of Alice, P the plaintext, and Ta the ciphertext of P that is encrypted byKa.
After encryption, Ta is transmitted to the cloud. If Alice wants to share the document Ta with
Bob, Alice will randomly generate a key, say Kb, and then send this key to Bob. At the same
time, Alice has to send a re-encryption key ma,b to the cloud server which can produce Tb for
Bob. Note that the re-encryption keys ma,b and Kb are one time keys, so the server will not
keep the key and do any key management.

The main idea of re-encryption is to create a ciphertext Tb from which Bob can
successfully reconstruct the plaintext by Kb. For the ease of understanding, we will use the
following example to illustrate. Let the keys of Alice and Bob be

Ka =

⎛
⎜⎜⎜⎜⎜⎝

2 1 3 0

3 2 0 1

1 0 2 3

0 3 1 2

⎞
⎟⎟⎟⎟⎟⎠, Kb =

⎛
⎜⎜⎜⎜⎜⎝

1 0 2 3

2 1 3 0

3 2 0 1

0 3 1 2

⎞
⎟⎟⎟⎟⎟⎠. (2.2)

We can see that Alice encrypts the plaintext by the order (2, 3, 1, 2, 3, 1, . . .) and Bob
decrypts the ciphertext by the order (1, 2, 3, 1, 2, 3, . . .). The first element of Ta(Tb) will be
decoded by the first column of Ka(Kb). If P(1) = 0, then Ta(1) = 2. If we want Tb(1) to be
decoded to P(1) = 0, Tb(1) should be 3. However, the difference between Ta(1) and Tb(1) is
themessage that Alice should provide to the server. If we check all the possible values of P(1),
we can see that the difference between Ta(1) and Tb(1) is the same in the sense of mod 4, that
is Tb(1) = mod (Ta(1)+1, 4) for all P(1). Similarly, we can check that Tb(2) = mod (Ta(2)+1, 4)
and Tb(3) = mod(Ta(3) + 2, 4). Therefore, the message that Alice should provide to the
server is a n − 1-dimensional vector (1, 1, 2). When the sever (S) receives this message, it
only has to add these values by repeating the order onto Ta and then take mod 4 to obtain
Tb.

Note that the message that Alice provides to the server is a vector, not a matrix, and
each value of this vector belongs to Z4. This property satisfies the third criterion; namely,
the size of the message for re-encryption is small and the computational cost is also small.
However, this advantage does not always hold true for all row complete matrices. For
example, let

Ka =

⎛
⎜⎜⎜⎜⎜⎝

2 1 0 3

0 2 3 1

1 3 2 0

3 0 1 2

⎞
⎟⎟⎟⎟⎟⎠, Kb =

⎛
⎜⎜⎜⎜⎜⎝

3 0 2 1

2 3 1 0

1 2 0 3

0 1 3 2

⎞
⎟⎟⎟⎟⎟⎠, (2.3)



Mathematical Problems in Engineering 7

the re-encryption key should be

ma,b =

⎛
⎜⎜⎜⎜⎜⎝

0 2 0 2

1 0 0 0

2 2 3 3

3 0 1 3

⎞
⎟⎟⎟⎟⎟⎠. (2.4)

The first column specifies the values appearing in ciphertext. If the kth element of ciphertext is
j, then it will be re-encrypted by adding the value in the (j + 1, mod(k − 1, n − 1) + 2) element
of ma,b. Although, the first column of ma,b is redundant, this re-encryption key is still of a
matrix form. Fortunately, there exists large amount of row complete matrices that make the
column (except the first column) of ma,b a unique constant so that we can easily transmit the
re-encryption key to the server. The following theoremwill give us a simple method to derive
a new row complete matrix from a given row complete matrix such that its re-encryption key
is an (n − 1)-dimensional vector.

Theorem 2.4. Let A be a given row complete matrix of size n. There exists a nonzero (n − 1)-
dimensional vector such that when each element of the ith column of A is added by the ith number
of the vector in the sense of modular addition, it will become the other row complete matrix.

Proof. Let the nonzero (n−1)-dimensional vector be a constant vector with the constant c. We
can see that adding c to every element of A is equivalent to a permutation σ such that σ(i) =
mod(i + c, n). By Theorem 2.3, we know that the new matrix A + c is also a row complete
matrix.

What we are interested in is the case of the nonconstant vector. In particular, we would
like to decide under what condition the row complete matrix modified by an non-constant
vector will become the other row complete matrix. Note that the first flowchart in Figure 1 can
quickly generate a row complete matrix although we also observe that it can only produce
a subset of all the row complete matrices. Once a row complete matrix is obtained from the
first flowchart, we can then efficiently produce another row complete matrix by adding a
non-constant vector.

The first flowchart started by the special Latin matrix that is called the simple Latin
matrix. The (i, j) element of simple Latin matrix in which each element is defined by mod (i+
j − 2, n). Given this simple Latin matrix, we can randomly permute the columns of the matrix
until this matrix becomes a row complete matrix. When we obtain the row complete matrix,
we randomly permute its rows once again. Up to now, we obtain a row complete matrix.
The advantage of this flowchart is that we do not have to check whether the matrix is a
Latin matrix because the row and column permutation operation preserves itself as a Latin
matrix.

Given two arbitrary row complete matrices, the re-encryption keyma,b related to these
two row complete matrices does not always have the same value for each column. Hence,
we must have an algorithm to produce a row complete matrix from the others such that the
re-encryption key can be reduced to the vector type. The flowchart in Figure 2 describes a
simple procedure for the above-mentioned purpose. Since the output row complete matrix
is derived by the column permutation of a row complete matrix, the next theorem will show
that such re-encryption key can be reduced to a vector form.
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Start

A is row complete ?
Yes

No

End

Randomly permute

rows of A

Output A

Randomly permute 2

columns of A

Initial simple latin

matrix A

Figure 1: The flowchart to generate a row complete matrix by simple Latin matrix.

Start

Input an initial row

complete matrix A

A is row complete ?

YesNo

Randomly permute

rows of A

Output A

Randomly permute 2

columns of A

Figure 2: The flowchart to generate another row complete matrix by a given row complete matrix.
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Input password

Random seed

generator

Row complete

matrix generator

P

Ka

Encryption Ta

Figure 3: The flowchart of encryption.

Theorem 2.5. Let A be a row complete matrix derived according to the flowchart in Figure 1. If B
is a row complete matrix that is derived from A by columns permutation, then the re-encryption key
between A and B can be reduced to the vector form.

Proof. Since A is derived according to the flowchart 1, A is derived by columns permutation
and rows permutation from the simple Latin matrix. That is, if S is the simple Latin matrix,
there exists two permutations σ1 and σ2 such that A(i, j) = S(σ1(i), σ2(j)). Because B is
derived from A by column permutations, there exist a permutation σ3 such that B(i, j) =
A(i, σ3(j)). Therefore, B(i, j) = A(i, σ3(j)) = S(σ1(i), σ(j)), where σ = σ2σ1.

Comparing the formula ofA and B, if we want to show that the re-encryption key can
be reduced to the vector form, we just need to show that the difference between arbitrary two
columns of S is constant. Since S(i, j) = mod(i + j, n), for given j1 and j2, S(i, j1) − S(i, j2) =
mod(j1 − j2, n) for all i = 1, . . . , n. That is, the difference between the j1th and j2th columns
of S is a constant mod(j1 − j2, n). Therefore, the re-encryption key between A and B can be
reduced to the vector form.

Corollary 2.6. Given a row complete matrix A derived according to Figure 1 and a row complete
matrix B derived according to Figure 2 with input A, the re-encryption key between A and B can be
reduced to vector form.

In our experiment, if a row complete matrix of size 4 is not generated according
to Figure 1, using column permutations can not generate another row complete matrix.
However, if the size of row complete matrix is over 6, using column permutations can
generate another row complete matrix. It is our on-going project to generate all the row
complete matrices so that we can design how many keys are available in this method.

In practice, people often choose a string of characters as a password. It is almost not
humanly possible to memorize a Latin matrix as a password, especially when the matrix size
is greater than 6-by-6. Hence, in our scheme the password will be mapped to a random seed.
Based on this random seed and using the flowchart in Figure 3, the system can generate Ka

for Alice.
When Alice wants to share a ciphertext with Bob, Alice uses the flowchart in Figure 4

to generateKb randomly. At the same time the system can produce the re-encryption keyma,b.
Before Alice sendsKb to Bob, Alice uses a hashing function to generate a hash code. This hash
code, denoted by hb = hashing(Kb), plays the role of a password for Bob. Then, Alice will
send ma,b, the index of the ciphertext and the email address of Bob to the server. At the same
time Alice will sendKb and hb to Bob. When the server receives the re-encryption key and the
ciphertext index, it will re-encrypt the ciphertext immediately and send a message to Bob in
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Input password

Random seed

generator

Row complete

matrix generator

P

Ka

Decryption

Ta

Figure 4: The flowchart of decryption.

Alice: P Index of Ta

Password

Re-encryption

Random seed
generator

Row complete
matrix generator

Ka

mab

Sharing key
generator

Kb

Tb

Bob: P

Figure 5: The flowchart of re-encryption.

secure manner, informing him of where to download the ciphertext. When Bob receives the
message coming from the server, he can start to download the ciphertext Tb. Bob uses hb as
the password to decrypt ciphertext. The decoding software will use hb to verify whether Kb

matches this hash code. If it matches, the decoding software will start the decryption process
of Tb byKb. That is, the key management is in the client (Bob), not in the cloud (Server). The
flowcharts of encryption, re-encryption, and decryption are depicted in Figures 3, 4 and 5,
respectively.

3. Security Analysis

In this section we discuss some details in the practical application and the security of our
proposed re-encryption method.

To meet the three criteria of re-encryption previously mentioned, the flowchart in
Figure 5 only produces a subset of row complete matrices. We have to make sure the number
of this subset is sufficiently large such that it is computationally infeasible to guessKa. When
the matrix size is 4, the number of all row complete matrices is 144. When the size is 6, the
number rapidly increases to 172800. As the security is strongly related to the size of row
complete matrices, we recommend that the matrix size be at least 36. If we only consider
the element permutation of the first row and the row permutation of the remaining rows of
the row complete matrix, a very conservative estimation of the number of all row complete
matrices of size n is n!(n − 1)!.

When the matrix size is over 32, the conservative estimation of the number of all row
complete matrices is about 2.16 ∗ 1069. Since the number 2.16 ∗ 1069 is much larger than 2128

(around 3.4 ∗1038), we estimate the security strength to be comparable to that of 128-bit block
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Table 1: The possible column pairs.

(1) (2) (3)
(0, 2) (3, 0) (2, 1)
(2, 0) (0, 1) (0, 3)
(1, 3) (2, 3) (1, 0)
(3, 1) (1, 2) (3, 2)

cipher encryption method. The server receives Ta and ma,b for easily producing Tb with a
modular addition. However, there is no further information (except for the size of Ka) that
can be derived for the server to guessKa. Even with the knowledge of the tuple (Ta, Tb,ma,b),
the adversary does not gain more advantage to deriveKa than random guessing. In addition,
the probability to guess Ka correctly is at most 1/(n!(n − 1)!). It is computationally infeasible
to derive Ka when n ≥ 32. This satisfies the first criterion of re-encryption.

For decryption part, Bob receives tuple (Tb, Kb, hb). The hash code hb is for Bob to
verifyKb so it is highly dependent onKb, and therefore it is not useful for guessingKa.Kb is
the key for Bob to decrypt plaintext P where P = D(Tb,Kb). Consequently, neither P nor Tb
contains the information related toKa. Hence, the only issue needs to be discussed is whether
Bob can useKb to inferKa. When the matrix size is n, the length ofma,b is n − 1 and there are
nn−1 possibilities for Bob to guess ma,b.

If the server does not reveal ma,b to Bob, it is computationally infeasible for Bob to
guess the key Ka of Alice when n ≥ 32. Therefore, our proposed method satisfies the second
criterion of the re-encryption.

Finally, in our method, since the server does not store any keys from either the content
provider or the receiver, the server does not need to deal with any key management issue.
Moreover, the ma,b is just a vector and cost of re-encryption will not increase even when the
encryption is strengthened with longer encryption keys, as the complexity of re-encryption
is only related to the length of the ciphertext. Hence, we conclude that our proposed method
satisfies all three criteria in Section 2.

Although our method fits the requirements for a re-encryption system, we note that if
Bob collaborates with the server, they can recover the key of Alice. Specifically, if Bob reveals
the plaintext to the server, it can compare the plaintext (P) with Ta and then reconstruct
Alice’s keyKa. Assume that the keys of Alice and Bob areKa andKb, respectively, in (2.2) and
the plaintext is (0, 3, 2, 2, 3, 0, 1, 0, 1, 3, 2, 0). When the server gets this plaintext (P), it compares
P with Ta = (2, 0, 1, 0, 0, 3, 3, 1, 0, 1, 3, 3). From the periodic entries that are encrypted by the
first column, the server obtains the mapping pairs (0, 2), (2, 0), (1, 3), and (3, 1). Similarly,
from the entries that are encrypted by the second column, the server obtains the mapping
pairs (3, 0), (0, 1), and (2, 3). Although there are only three pairs, the server can use the
nonrepetitiveness property of Latin matrix to find out the fourth pair (1, 2). Repeat this
process to find out that the pairs of the third column are (2, 1), (0, 3), (1, 0), and (3, 2). We
can collect the above pairs to form Table 1.

Now, we want to use these three columns of pairs to construct a row complete matrix.
Assuming that the column order appearing in the row complete matrix is just (1)-(2)-(3),
we have (0, 2), the first column, connecting to (2, 3), the second column, and then (3, 2).
Therefore, we get (0, 2, 3, 2). Because the element 2 is repetitive, this row should not be in a
latin matrix, and the column order is not (1)-(2)-(3). Hence, we can compare all the possible
orders of columns to check whether the latin matrix exists. For this example, we find that
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there are two possible orders that can form row complete matrices. They are (2)-(1)-(3) and
(3)-(1)-(2), and the corresponding row complete matrices are

C1 =

⎛
⎜⎜⎜⎜⎜⎝

3 0 2 1

0 1 3 2

2 3 1 0

1 2 0 3

⎞
⎟⎟⎟⎟⎟⎠, C2 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 3 0

0 3 1 2

1 0 2 3

3 2 0 1

⎞
⎟⎟⎟⎟⎟⎠. (3.1)

These two row complete matrices are not the final results because we have to adjust the
orders of their rows. We adjust the candidate matrix C1 first. When we compare the plaintext
and the ciphertext, we observe that the first element 0 is encrypted to 2, and, therefore, we
know it is encrypted from the second column to the third column. So the first nonzero element
of the first column is 2. The second element of the plaintext is encrypted from 3 to 0, so the
second nonzero element of the first column is 1, that is,

C1 =

⎛
⎜⎜⎜⎜⎜⎝

2 3 1 0

1 2 0 3

3 0 2 1

0 1 3 2

⎞
⎟⎟⎟⎟⎟⎠. (3.2)

Because the position of the row leading by 0 has no effect on encryption or decryption, there
are four possible row complete matrices for C1. Similarly, we have

C2 =

⎛
⎜⎜⎜⎜⎜⎝

2 1 3 0

3 2 0 1

1 0 2 3

0 3 1 2

⎞
⎟⎟⎟⎟⎟⎠. (3.3)

In this case, there are four keys that are equivalent in encryption and decryption. How to
overcome this problem is an important issue that we will address in the future.

There is another pitfall to watch out for. Ideally the server only re-encrypts the
specified ciphertext to Bob by ma,b. However, if the server re-encrypts all the ciphertexts of
Bob in the cloud by ma,b and allows Bob to access all the re-encrypted files, Bob can see all
the plaintexts of Alice.

To resolve this issue, we canmodify our encryptionmethod by including an additional
parameter that is highly related to the ciphertext, for example, the length of Ta, to change the
order of coding. Hence, ma,b is dependent on the ciphertext. The reason we do not modify
the encryption/decryption method is to make it easier for the readers to understand this
re-encryption method.
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4. Conclusions

We proposed a new re-encryption method for the cloud storage service. This method is
based on the properties of row complete matrices, which can be beautifully incorporated
in designing a practical scheme of cloud storage. It is flexible for the adjustment of the secure
requirement; namely, if the level of security needs to be increased, we only have to increase
the matrix size. This method is quite suitable for cloud service because the re-encryption cost
is rather low and there is no key management issue at all. Hence, we do not have to worry
about the rapid growth of contents and there is no need for protecting the shared keys in the
server.

There remain some research topics worthy of exploration in the future. For example,
our experiments indicate that the flowchart in Figure 1, which generates the row complete
matrices will become quite slow when the matrix size is greater than 12. Although the
possible permutations can be listed in a look-up table to speed up the matrix generation,
to achieve significant improvements it is probably preferred to design faster algorithms for
generating the row complete matrices. The other problem is the collaboration between Bob
and Server. In the example of security analysis we can see that some row complete matrices
are equivalent in the sense of encryption and decryption, and we have to compute carefully
all the possible numbers of equivalent row complete matrices to make sure of the security
level. However, this property can be used in the collaborative writing, in which users with
different keys can edit the same document at the same time [15].
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