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The reports onmedical imaging and nanomedicine are gettingmore andmore prevalent.Many nanoparticles entering into the body
act as contrast agents, or probes in medical imaging, which are parts of nanomedicines. The application extent and the quality of
imaging have been improved by nanotechnique. On one hand, nanomedicines advance the sensitivity and specificity of molecular
imaging. On the other hand, the biodistribution of nanomedicine can also be studied in vivo bymedical imaging, which is necessary
in the toxicological research. The toxicity of nanomedicine is a concern which may slow down the application of nanomedical.
The quantitative description of the kinetic process is significant. Based on metabolic study on radioactivity tracer, a scheme of
pharmacokinetic research of nanomedicine is proposed. In this review, we will discuss the potential advantage of medical imaging
in toxicology of nanomedicine, as well as the advancement of medical imaging prompted by nanomedicine.

1. Introduction

Medical imaging is an important technology in clinical
and medical research, which enables the observation of
human and animals in vivo. The development of medical
imaging contributes a lot to diagnosis and therapy. However,
researchers are not satisfied with single anatomical image.
To detect physiological function and biological process,
functional imaging, molecular imaging, and multimodality
imaging are invented and have developed prosperously [1–3].
Mostmolecular imaging today depends on synthesized probe
with special property [4]. For nuclear medicine, for example,
the probe is also expressed as radioactive tracer or tracer [5, 6]
for positron emission tomography (PET). For fluorescence
molecular tomography the probe is a fluorescence agent [7].
In terms of traditional imaging, some agents are used to
increase the contrast of images [8, 9]. Contrast agent can
enhance their applications and even upgrade them to cellular
and molecular level.

Nanotechnology has a remarkable great contribution
to the development of medical imaging. Nanomedicine is

a scientific specialty of nanotechnology, which has great
potentials to develop the diagnostic and therapeutic
approaches [10–12]. Nanomedicine has drawn broad inter-
ests in medical imaging, as well as the targeted therapy
[13]. Modified by nanotechnique, some probes and contrast
agents become more efficient [14], and then they can be
called nanomedicine [15]. Some kinds of nanoparticle, just as
metal nanoparticles, become nanomedicine used as contrast
agent of medical imaging [16, 17]. With the application of
nanomedicine, medical imaging will have a broader prospect
in application.

Nevertheless, the nanomedicine, used in medical imag-
ing, must eliminate the potential risks in safety issues. Most
nanomaterials have been discovered to affect cell behavior
[18, 19] and even to damage the physiological system [20,
21]. The discussion of the biocompatibility and toxicity of
nanomaterial is of a great importance in biological and
medical research. The toxicology of nanomaterials is usually
studied on cellular scale or smaller size, while the phar-
macokinetics is also necessary to understand its potential
toxicity [22]. As pharmacokinetics of tracer is studied by
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means of nuclear medicine [23, 24], the dynamic distribution
of nanomedicine could also be studied by medical imaging
[25]. Thus, medical imaging could advance the research of
nanomedicine, especially in the field of toxicology.

This paper aims at discussing the interaction between
medical imaging and nanomedicine. Nanomedicine extents
the application of medical imaging, and medical imaging
enhances toxicological research at system scale. In this review,
we will first discuss some imaging techniques, which are
commonly used in clinic, and the imaging agents, including
traditional agent and nanomedicine. Then a discussion will
be shared about the toxicological research of nanomedicine.
In the end, a feasible means combined with medical imaging
and nanomedicine will be proposed for the quantificational
study of nanomedicine toxicity.

2. The Development of Imaging
Affected by Nanomedicine

The development of medical imaging is built on multiple
techniques. In the past decade, it has been promoted espe-
cially by nanotechnique [15]. Every imaging technique has its
limitation as well as the superiority, nanomedicine is used as
probe, or contrast agent, to extend the application of imaging
and to improve the quality of images [26–28].

CT, which is based on X-ray attenuation, can recognize
inner structure by the different attenuation coefficients of
tissues. Though CT is a high-resolution imaging, it is limited
in soft-tissue imaging. To increase the contrast of images,
metal salts, metal particles, and some iodinated compounds
have been used as contrast agents in X-ray-based imaging
[29]. High osmolality, short circulation time, and toxicity of
heavy metal bulk may lead to some adverse reactions at the
same time. Nanotechnique overcomes some of these prob-
lems. Conjugated with nanoparticle, iodinated compounds
prolong the circulation time [30], and nonionic water-soluble
iodinated contrast agents have lower osmolality [31]. Heavy
metal nanoparticle has shown its efficiency as contrast agent
in CT imaging [32–34].

MRI is based on nuclear magnetic resonance and the
relaxation of proton spins in a magnetic field. It has a high
resolution for soft tissue and is highly functional for brain and
nervous system scan. While For the tiny difference between
lesion and normal tissue, MRI is not as sensitive or specific as
ideal molecular imaging. Nanocontrast agents can help MRI
become amore efficient molecular imaging [27]. Gadolinium
chelates are commonly used contrast agents to enhance the
signal of MRI [35]. Gadolinium-loaded single-walled carbon
nanotubes are super paramagnetic, 40 times more than
traditional agent [36]. Iron oxide nanoparticles (hundreds
of nanometers) are super paramagnetic, which have been
used to diagnose liver diseases [37, 38]. Ultrasmall iron oxide
nanoparticles (less than 50 nanometers) are applied to detect
macrophage [39]. The application of MRI becomes more and
more extensive with the progressive research on magnetic
nanomedicine [40, 41].

Nuclearmedicinemolecular imaging, as PET and SPECT,
relies on radiotracers, which are also called probes. Fluo-
rodeoxyglucose (18FDG) is the most commonly used radio-
pharmaceutical in PET imaging [42]. As the analog of
glucose, FDG can be used to detect cancer, which has a high
glucose metabolic rate [43, 44]. FDG is not always sensitive
to all lesions. 11C-acetate is more suitable for the detection of
liver cancer [45]. For specific diagnosis, the probe of proper
target is the key of medical imaging [46, 47]. Combined
with nanoparticles, the radiotracers become more and more
multiform; for example, radionuclides can be labeled on
proteins, antibodies, and peptides. The radiolabeled single-
walled carbon nanotubes can be used in PET imaging, and
the efficiency can be increased by peptide coating [48]. The
sensitivity and specificity of nuclear medicine imaging will
increase with the application of nanomedicine.

Besides upper imaging technique, nanotechniques
advance other medical imaging. The combination of nano-
particle and fluorescent probe greatly enhances imaging [49].
Quantum dot, which is referred to as semiconductor nano-
crystals, can be used in fluorescence image, even to image
the vasculature near tumor probe [50, 51]. To visualize
microvascular, nano/microcapsules have been designed as a
contrast agent for ultrasonic imaging [52].

Nanomedicinemay be themost suitable probe or contrast
agent for multimodality imaging because of the convenience
of integrating multiple properties [53, 54]. In PET/MRI
imaging, radiolabeled iron oxide nanoparticles are not only
the tracers for PET but also the contrast agents for MRI [55].
With the ability of multifunction load [56], nanomedicine
may boost the fusion of multiple imaging techniques and
even the combination of the process of diagnosis, therapy,
evaluation, and disease prevention [57]. There are so many
mechanisms for creating imaging agent in nanoscale, which
will progressively develop the sensitive and specific imaging
technique.

3. The Study on Toxicity of Nanomedicine
Could Be Supported by Imaging

Many nanomedicines are not only for imaging but also
for therapy [58–60]. Nanomedicine can deliver therapeu-
tic agents into targeted specific tissues and cells [61]. For
example, gold nanoparticles are the potential for the therapy
of various diseases such as cancer and Alzheimer [34, 62,
63]. Unlike the nanobiomaterials applied in vitro [64, 65],
nanomedicines face more risks along with the opportunities.
Biocompatibility and toxicological research are significant
for the materials which will be applied in human body [66,
67]. It has been reported that some nanoparticles produce
inflammation and tissue damages and other adverse health
effects in body [68–70]. Toxicology study is the essential
safety assessment of nanomedicine [71].

In the study of toxicity, in vivo experiments are abso-
lutely necessary for the understanding of nanotoxicity in the
physiological system.The examination of serum biochemical
parameters, urine parameters, and histopathology can reveal
the injury of viscera and have been used as methods to
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Figure 1: The scheme of in vivo toxicity study by medical imaging.

study toxicity of nanomaterials [72–74]. In the study of the
nanotoxicity, biodistribution and elimination are of a great
importance [61]. Nanoparticles can translocate in human
body, even if they are inhaled, and the position where
they settle down may decide the level of damage [75].
Central nervous system is the potential susceptible target for
some nanoparticles, in which the potential lesion induced
by nanoparticles will be hazardous [69, 76]. In traditional
biodistribution experiments, small animals were sacrificed
after administration, and the organs, liver, spleen, lung, heart,
and kidney, were excised to detect the biodistribution of
nanoparticles [77, 78]. In the biodistribution experiment of
Fe
2
O
3
nanoparticles [79], isotope was labeled to be detected

by high purity germanium detector after organs excised. The
radiolabeled nanoparticle can also be detected by whole body
gamma camera image [25]. In other words, medical imaging
can be used as a tool to study toxicity of nanomedicines.
PET/CT has been used to study the tissue biodistribu-
tion and pharmacokinetics of DOTA-functionalized single-
walled carbon nanotubes [80] and nano graphene [81]. MRI
has been used to track mesoporous silica nanomedicine
for three months [82]. The distribution of nanomedicine in
various organs could be derived by medical imaging.

Pharmacokinetic model is a quantificational method to
describe the dynamic fate of a drug after administration,
which is usually required for new drug design. Though
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the dynamic distributions of nanomedicine have been dis-
cussed in some literatures [25, 81, 82], yet few pharmacoki-
netic models have been established. Zhu et al. used one-
compartment model to describe the kinetic of ferric oxide
nanoparticles in human body quantificationally [79]. In this
model, the rate of absorption and elimination was included,
but the different distribution of nanomedicine cannot be
represented. In another application of molecular imaging,
kinetic models of tracer are established to describe the
metabolism of glucose [83]. By dynamic PET imaging, the
kinetic models were established separately for some tissues
[84, 85] and then formed a whole body model [86, 87]. The
distribution metabolism and elimination are all involved,
which are parts of toxicity study.

Thus the development of nanomedicine could be prom-
pted by medical imaging, especially in the aspect of tox-
icology. According to the application of medical imaging
in metabolism research, there is a feasible research scheme
for toxicological study, as shown in Figure 1. Loaded with
imaging-functionalized particles, the nanomedicines could
be detected by medical imaging. Radioactivity label is pre-
ferred for PET or SPECT, magnetic nanoparticles could
be attached for MRI, and quantum dots will be suitable
for fluorescence image. Nanotechniques may show their
advantage in designing probe for multimodality imaging.
Then the dynamic distribution curve of nanomedicine in
different tissues can be received from images, which can be
used to establish the pharmacokinetic model. In the phar-
macokinetic model, the processes of absorb, distribution,
metabolism, and elimination are described quantificationally.
These processes are also called biodistribution, an important
aspect of toxicology.This scheme, usingmathematicmodel to
describe the biodistribution of nanomedicine, is a potential
application of medical imaging in nanotoxicity research.

4. Conclusions

The rapid development of medical imaging and nanomedi-
cine gives us a promising prospect of diagnosis and ther-
apy. Sensitive, specific, and in vivo diagnosis and personal
therapy benefit from the combination of medical imag-
ing and nanomedicine. Nanomedicines, used as imaging
contrasts, tracers, or probes can improve the sensitivity
of imaging detection; thus, the sparsely expressed targets
would be discovered. With the well-designed nanomedicine,
medical imaging could also be used for tumor imaging
[88], physiological mechanism study [89], and even DNA
detection [90]. It is beneficial not only to imaging but
also to the development of nanomedicine. The potential
toxicity is the biggest barrier to the clinical application of
nanomedicine.Quantificational dynamic systemic researches
on the distribution of nanomedicines in vivo are necessary to
toxicology. Medical imaging is the most convenient method
to analyze the biodistribution of nanomedicine and to assess
the nanomedical treatment [91]. Nanomedicines can be
detected in vivo by medical imaging, after they are loaded
with imaging-functionalized particles or radioactive labeled.
Therefore, imaging will allow the risk stratification and

monitoring of therapy effects. With reference to metabolic
studies of radioactivity tracer, the pharmacokinetic model of
nanomedicine could also be established bymeans of dynamic
medical imaging, which will contribute to the advancement
of nanomedical toxicology. In summary, medical imaging
and nanomedicine advance each other and will play an
important role towards more advanced medicine. Attention
should be focused not only on the success of nanomedicine
application in medical imaging but also on the potential
advantages of imaging for nanomedical toxicology research.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant no. 81101123, no. 61108084, no.
61227902, and no. 11002016), 111 project, and the Fundamental
Research Funds for the Central Universities of China.

References

[1] M. Rudin and R. Weissleder, “Molecular imaging in drug
discovery and development,” Nature Reviews Drug Discovery,
vol. 2, no. 2, pp. 123–131, 2003.

[2] S.-K. Woo, K. M. Kim, T. S. Lee et al., “Registration method
for the detection of tumors in lung and liver using multimodal
small animal imaging,” IEEE Transactions on Nuclear Science,
vol. 56, no. 3, pp. 1454–1458, 2009.

[3] L. Fass, “Imaging and cancer: a review,”Molecular Oncology, vol.
2, no. 2, pp. 115–152, 2008.

[4] R. Weissleder, “Molecular imaging: exploring the next frontier,”
Radiology, vol. 212, no. 3, pp. 609–614, 1999.

[5] G. Komar, M. Seppänen, O. Eskola et al., “18F-EF5: a new PET
tracer for imaging hypoxia in head and neck cancer,” Journal of
Nuclear Medicine, vol. 49, no. 12, pp. 1944–1951, 2008.
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