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In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is
introduced in the backpropagation neural networkmodel to predict the fluctuations of stock price changes. In thismodel, stochastic
time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and
then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global
market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500
with different selected volatility degrees in the established model.

1. Introduction

Financial analysis of fluctuations of financial market is an
active topic in economic research, with applications to the
prediction of interest rates, foreign currency risk, stock
market volatility, and so forth [1–8]. With the progress
of globalized security markets, forecasting stock market
volatility has become a significant financial subject, which
attracts much increasing attention [9–11]. A key element of
financial planning and financial forecasting is the ability to
construct models showing the interrelatedness of financial
data. Models showing correlation or causation between
variables can be employed to improve financial decision
making. The popular model of financial time series analysis
is the artificial neural network (ANN), which is composed
of artificial neurons or nodes. ANN is nonlinear statistical
data modeling or decision making method; it can be used
to model complex relationships between inputs and outputs
or to find patterns in data. Generally, stock price changes
can be regarded as a random time sequence with noise and
artificial neural network and as a nonparametric method
with large-scale processing elements operating in parallel that
depend on their own intrinsic link data and can forecast
future behaviors by learning the pattern of market variables
without any strict theoretical assumption. ANN possesses
data-driven, self-learning, and self-adaptive abilities and has

strong antijamming capabilities. ANN has been widely used
in the financial fields such as prediction of stock or option
price, exchange rate, and risk analysis [12–19].

In the real markets, the noise of financial time series is
usually caused by large volatilities, and it is hard to reflect the
market variables directly into themodel without any assump-
tions. Therefore, making accurate forecast is a challenging
task due to the inherently noisy and nonstationary nature of
stock price. To improve predicting precision, various network
architectures and learning algorithms have been developed in
the literature [20–24]. Multilayer perceptron (MLP) is one of
the most prevalent neural networks, which has the capability
of complex mapping between inputs and outputs that makes
it possible to approximate nonlinear function [25–28]. The
present work applies MLP with a backpropagation algorithm
and stochastic time strength function to develop a stock
price volatility forecasting model; a stochastic time strength
neural network (STNN) and the corresponding learning
algorithm are presented. The motivation of modeling the
STNN is that the data in the data training set should be
time variant, reflecting the different behavior patterns of the
markets at different times; if all the data are used to train
the network equivalently, the network system may not be
consistent with the evolvement of the stock markets. It is
difficult to use the historical data of the past to reflect the
current stock markets; however, if only the recent data are
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Figure 1: A three-layermulti-input neural networkwith one output.

selected, a lot of useful information,which the early data hold,
will be lost. From this consideration, the historical data are
given weights depending on their time, and the Brownian
motion is introduced in the time strength function in order
to make the model have the effect of random movement
while maintaining the original trend. In the present paper,
we perform the empirical research focusing on the volatility
degree’s behaviors of stock returns, and a threshold value
𝑞(≥ 0) is introduced to correspond to the volatility degree. For
different threshold values, the volatility degree forecasting is
made by STNN model. The empirical data are selected from
the global stock indexes, including Shanghai Stock Exchange
(SSE) Composite Index, Shenzhen Stock Exchange (SZSE)
Component Index, Hong Kong Hang Seng Index (HSI), Dow
Jones Industrial Average Index (DJIA), Nasdaq Composite
Index (IXIC), Standard & Poor’s 500 Index (S&P 500), and
Japan Nikkei 225 Index (N225).

2. Methodology for STNN Model

The structure of ANN plays an important role in its perfor-
mance. In Figure 1, we introduce a three-layer multi-input
neural network, in which a stochastic time strength function
is applied to minimize the error between the network’s
prediction and the actual target. The architecture consists of
a hidden layer of neurons with nonlinear activation func-
tions and an output layer of neurons with linear activation
functions. 𝑥

𝑖𝑡
(𝑖 = 1, . . . , 𝑛) represents the input variable at

time 𝑡; 𝑧
𝑗𝑡
(𝑗 = 1, . . . , 𝑚) represents the output of hidden

layer neurons at time 𝑡; and 𝑦
𝑡+1

represents the output of the
network at time 𝑡 +1.𝑤

𝑖𝑗
is the weight that connects the node

𝑖 in the input layer neurons to the node 𝑗 in the hidden layer.
V
𝑗
is the weight that connects the node 𝑗 in the hidden layer

neurons to the node in the output layer. Hidden layer stage
is as follows. The input of all neurons in the hidden layer is
calculated by the following equation:

net
𝑗𝑡
=

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥
𝑖𝑡
− 𝜃
𝑗
, 𝑖 = 1, . . . , 𝑛. (1)

The output of hidden neuron is given by

𝑧
𝑗𝑡
= 𝑓
𝐻
(net
𝑗𝑡
) = 𝑓
𝐻
(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥
𝑖𝑡
− 𝜃
𝑗
) , 𝑖 = 1, . . . , 𝑛,

(2)

where 𝜃
𝑗
is the threshold of neuron in hidden layer. The

sigmoid function in hidden layer is selected as the activation
function: 𝑓

𝐻
(𝑥) = 1/(1 + exp{−𝑥}). Output stage: the output

of STNN is given as follows:

𝑦
𝑡+1

= 𝑓
𝑇
(

𝑚

∑

𝑗=1

V
𝑗
𝑧
𝑗𝑡
− 𝜃
𝑇
) , (3)

where 𝜃
𝑇
is the threshold of neuron in output layer and 𝑓

𝑇
(𝑥)

is an identity map as the activation function.
The backpropagation algorithm has emerged as one of

the most widely used learning procedures for multilayer
networks [7, 29, 30]. That is a supervised learning algorithm
which minimizes the global error 𝐸

𝑘
by using the gradient

descent method. For the STNN model, we assume that the
error of the output is given by 𝜀

𝑡
𝑛

= 𝑑
𝑡
𝑛

− 𝑦
𝑡
𝑛

and the error of
the sample 𝑛 is defined as

𝐸 (𝑡
𝑛
) =

1

2
𝜙 (𝑡
𝑛
) (𝑑
𝑡
𝑛

− 𝑦
𝑡
𝑛

)
2

, (4)

where 𝑡
𝑛
is the time of the sample 𝑛 (𝑛 = 1, . . . , 𝑁), 𝑑

𝑡
𝑛

is the actual value, 𝑦
𝑡
𝑛

is the output at time 𝑡
𝑛
, and 𝜙(𝑡

𝑛
)

is the stochastic time strength function which endows each
historical data with a weight depending on the time at which
it occurs. We define 𝜙(𝑡

𝑛
) as follows

𝜙 (𝑡
𝑛
) =

1

𝛽
exp{∫

𝑡
𝑛

𝑡
0

𝜇 (𝑡) 𝑑𝑡 + ∫

𝑡
𝑛

𝑡
0

𝜎 (𝑡) 𝑑𝐵 (𝑡)} , (5)

where 𝛽 > 0 is the time strength coefficient, 𝑡
0
is the time of

the newest data in the data training set, and 𝑡
𝑛
is an arbitrary

time in the data training set. 𝜇(𝑡) is the drift function, 𝜎(𝑡)
is the volatility function, and 𝐵(𝑡) is the standard Brownian
motion. A Brownian motion is a real valued, continuous
stochastic process {𝑋(𝑡), 𝑡 ≥ 0}, on a probability space
(Ω,A,P) with independent and stationary increments, such
that 𝑋

𝑡
− 𝑋
0
is a normal random variable with mean 𝑟𝑡

and variance 𝜎2𝑡, where 𝑟 and 𝜎 are constant real numbers.
A Brownian motion is standard (we denote it by 𝐵(𝑡)) if
𝐵(0) = 0P-a.s., E[𝐵(𝑡)] = 0, and E[𝐵(𝑡)]

2
= 𝑡, and

the corresponding probability density function is given by
𝑓
𝑡
(𝑥) = (1/√2𝜋𝑡)𝑒

−𝑥
2

/2𝑡. The above stochastic time strength
function implies that the impact of the historical data on
the stock market is a time variable function. Then, the
corresponding global error of data training set at 𝑘th training
iterations is defined as

𝐸
𝑘
=

1

𝑁

𝑁

∑

𝑛=1

𝐸 (𝑡
𝑛
) . (6)

The training objective of STNN is to update the network
weights so as tominimize the global error in the data training
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set. The training algorithm procedure of STNN is described
as follows. Step 1 is performing input data normalization. In
STNN model, we choose four kinds of stock prices as the
input values in the input layer: daily opening price, daily
highest price, daily lowest price, and daily closing price. The
output layer is the closing price of the next trading day. Step
2 is determining the network structure which is 𝑛 × 𝑚 × 1

three-layer network model, parameters including learning
rate 𝜂 which is between 0 and 1, the maximum training
iterations number 𝐾, and initial connective weights. At the
beginning of data processing, sets 𝑤

0

𝑖𝑗
and V0

𝑗
follow the

uniform distribution on (−1, 1), and let the neural thresholds
𝜃
𝑗
and 𝜃

𝑇
be 0. Step 3 is introducing the stochastic time

strength function 𝜙(𝑡
𝑛
) in sample 𝑛 error 𝐸(𝑡

𝑛
) and the global

error 𝐸
𝑘
, choosing the drift function 𝜇(𝑡) and the volatility

function 𝜎(𝑡
𝑛
), and determining the activation functions

𝑓
𝐻
(𝑥) and 𝑓

𝑇
(𝑥). Step 4 is setting a predefined minimum

training threshold 𝜁. Based on network training objective
𝐸
𝑘

= (1/𝑁)∑
𝑁

𝑛=1
𝐸(𝑡
𝑛
), if 𝐸

𝑘
is below the 𝜁, go to Step

6; otherwise, go to Step 5. Step 5 is updating the STNN
connective weights and applying the error to compute the
gradient of the weights 𝑤

𝑖𝑗
, Δ𝑤𝑘
𝑖𝑗
and the gradient of the

weights V
𝑗
, ΔV𝑘
𝑗
. For the weight nodes in the input layer, the

gradient of the connective weight 𝑤
𝑖𝑗
is given by

Δ𝑤
𝑖𝑗
= −𝜂

𝜕𝐸 (𝑡
𝑛
)

𝜕𝑤
𝑖𝑗

= 𝜂𝜀
𝑡
𝑛

V
𝑗
𝜙 (𝑡
𝑛
) 𝑓


𝐻
(net
𝑗𝑡
𝑛

) 𝑥
𝑖𝑡
𝑛

, (7)

and for the weight nodes in the hidden layer, the gradient of
the connective weight V

𝑗
is given by

ΔV
𝑗
= −𝜂

𝜕𝐸 (𝑡
𝑛
)

𝜕V
𝑗

= 𝜂𝜀
𝑡
𝑛

𝜙 (𝑡
𝑛
) 𝑓
𝐻
(net
𝑗𝑡
𝑛

) , (8)

where 𝜂 is the learning rate and 𝑓
𝐻
(net
𝑗𝑡
𝑛

) is the derivative of
the activation function. So the update rule for the weight 𝑤

𝑖𝑗

and V
𝑗
is given by

𝑤
𝑘+1

𝑖𝑗
= 𝑤
𝑘

𝑖𝑗
+ Δ𝑤
𝑘

𝑖𝑗
= 𝑤
𝑘

𝑖𝑗
+ 𝜂𝜀
𝑡
𝑛

V
𝑗
𝜙 (𝑡
𝑛
) 𝑓


𝐻
(net
𝑗𝑡
𝑛

) 𝑥
𝑖𝑡
𝑛

,

V𝑘+1
𝑗

= V𝑘
𝑗
+ ΔV𝑘
𝑗
= V𝑘
𝑗
+ 𝜂𝜀
𝑡
𝑛

𝜙 (𝑡
𝑛
) 𝑓
𝐻
(net
𝑗𝑡
𝑛

) .

(9)

Step 6: until the global error satisfies the predefinedminimum
training threshold 𝜁 or training times reach the maximum
iterations number, output the predictive value 𝑦

𝑡+1
=

𝑓
𝑇
(∑
𝑚

𝑗=1
V
𝑗
𝑓
𝐻
(∑
𝑛

𝑖=1
𝑤
𝑖𝑗
𝑥
𝑖𝑡
)).

3. Data Selection

3.1. Statistical Behaviors of Price Changes and Volatilities.
Study of the behaviors of stock price changes and volatilities
has long been a focus in economic research. Recent empirical
research shows that returns on financial markets are not
Gaussian but exhibit excess kurtosis and fatter tails than
the normal distribution, which is usually called the “fat-tail”
phenomenon [31–33]. Higher kurtosis, which means more of
the variance, is due to infrequent extreme deviations rather

than frequent modestly sized deviations, indicating that the
distribution is more “peaked.” The power-law distribution
is an efficient way to study the fat-tail phenomenon. It is
a universal property that emerged from complex physics
systems and is also observed in economic and financial sys-
tems.The empirical evidence has shown that the distribution
of logarithmic returns follows the power-law fluctuations
𝑃(|𝑟(𝑡)| > 𝑥) ∼ 𝑥

−𝛼 (𝛼 ≈ 3) [34–36]; the formula of the stock
logarithmic return [37, 38] from 𝑡 − 1 to 𝑡 is as follows:

𝑟 (𝑡) = lnS (𝑡) − lnS (𝑡 − 1) , 𝑡 = 1, 2, . . . , 𝑇, (10)

where S(𝑡) denotes the stock daily closing price at time 𝑡. In
Figure 2, we investigate the behaviors of probability density
distributions and power-law distributions of daily returns
for SSE, SZSE, HSI, DJIA, IXIC, S&P 500, and N225 in the
21-year period from April 1991 to February 2012, and the
corresponding Gaussian distributions are also presented for
comparison. Figure 2(a) exhibits that the peak distributions
of returns are obvious and that the fat-tail phenomena are
also visible. Figure 2(b) shows that the power-law tails of
SSE, SZSE, and HSI decay slower than those of IXIC, N225,
S&P 500, and DJIA. Besides, all the indexes’ power-law tails
decay slower than those of Gaussian distribution. This result
illustrates that the fat-tail phenomenon in Chinese financial
markets is more obvious than other financial markets of the
world. We also study the SSE power-law tail with liner fitting
in Figure 2(b) and obtain that 𝛼 ≈ 2.4862 (which is smaller
than 𝛼 ≈ 3); this reveals that Chinese financial markets
have more severe volatilities than other stock markets of the
world.

3.2. Data Selecting and Processing. Financial market volatility
is central to the theory and practice of asset allocation,
asset pricing, risk management, and stock return volatility
forecasting in the literature [11, 39, 40]. In the present paper,
we introduce a threshold value 𝑞(≥ 0) to correspond to
the volatility degrees and regard their corresponding index
prices as STNN model’s dataset. We use the data samples
with a volatility degree range to train the STNN model, and
the output will be almost in the same range, providing a
new approach to forecast the different volatility degrees. The
procedure of STNN model datasets selection is described as
follows. (i) Select the stock returns whose absolute returns
are greater than a threshold value 𝑞; let R(𝑞) denote this
corresponding return set which is given by R(𝑞) = {𝑟(𝑡) :

|𝑟(𝑡)| ≥ 𝑞, 𝑡 = 1, . . . , 𝑇}; see Figure 3. (ii) For a fixed threshold
value 𝑞, we determine the corresponding stock trading dates
in return set R(𝑞); that is to say, we determine 𝑡 values that
satisfy |𝑟(𝑡)| ≥ 𝑞, 𝑡 = 1, . . . , 𝑇. In order to reflect the volatility
of prices, considering that the return series 𝑟(𝑡) is decided by
the daily closing price values on (𝑡−1)th and 𝑡th trading days
(see the formula of 𝑟(𝑡) in Section 3.1), we should select the
price values at time 𝑡 − 1 as the input variables.The new dates
series is also arranged in a chronological order. (iii) Select
the daily opening prices, the daily highest prices, the daily
lowest prices, and the daily closing prices in those dates that
were filtered according to Step 2 as the four input variables.
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Figure 2: Probability density distributions and power-law distributions of returns, respectively, for different indexes and Gaussian
distribution.
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Figure 3: Schematic diagram of volatility degrees of returns for
different values of 𝑞.

A trading date corresponds to a group of input variables,
and the output variable is the daily closing price in the next
group of variables. The dataset is divided into two parts, the
training set and the testing set. We collect the data in the
training set from January 2001 to December 2010 and the
data in the testing set from January 2011 to February 2012.
In the pretreatment and preprocessing stage, the collected
data should be normalized and properly adjusted, in order
to reduce the impact of noise in the stock markets; the

normalized values of the above-mentioned four kinds of price
data can be given as follows:

Ŝ (𝑡) =
S (𝑡) −minS (𝑡)

maxS (𝑡) −minS (𝑡)
. (11)

In Table 1, the measures of training and test samples for
indexes SSE, SZSE, HSI, DJIA, IXIC and S&P 500 are per-
formed for different values of 𝑞. The value 0.0119 is the mean
of daily absolute returns of SSE from January 2001 to February
2012 for 2692 trading days, and the mean values of daily
absolute returns for SZSE, HSI, DJIA, IXIC, and S&P 500 are
0.0133, 0.0111, 0.0086, 0.0118, and 0.0092, respectively. Since
the objective of this work is the volatility degree forecasting,
we choose some different volatility degrees for the forecasting
analysis. Here, we take the mean of absolute returns of SSE
as 𝑞
1
= 0.0119, and the next five 𝑞 values (from 𝑞

2
to 𝑞
6
)

are all 0.0003 larger than the former. Then, we can compare
the errors of the prediction when 𝑞 values gradually increase.
In order to consider the large volatility prediction effect of
STNN model, we take 𝑞

7
= 0.0200 and 𝑞

8
= 0.0250 into

account. For the volatility degrees from 𝑞
1
to 𝑞
6
, here we take

values from 𝑞
1
to 𝑞
6
as examples in Table 1. For other different

values of 𝑞, the corresponding volatility degree forecasting
can be made similarly. Table 1 and Figure 3 show that the
numbers of absolute returns that exceed 0.0200 or larger
are few. Since 𝑞

7
and 𝑞

8
belong to large volatilities in the

stock market, the events whose absolute returns exceed 𝑞
7

or 𝑞
8
do not happen frequently. From Table 1, the quantity

of data samples gradually reduces with the increase of value
𝑞. When 𝑞 ranges from 0.0119 to 0.0134, the corresponding
numbers descend slowly.However, for 𝑞 = 0.0200 and 0.0250,
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Table 1: Measures of training and testing samples for indexes with different values of 𝑞.

Index SSE SZSE HSI DJIA IXIC S&P 500
𝑞 Train Test Train Test Train Test Train Test Train Test Train Test
𝑞
0
= 0.0000 2418 274 2418 274 2468 279 2515 286 2513 285 2524 286

𝑞
1
= 0.0119 1461 135 1569 161 1356 178 1003 121 1448 162 1074 129

𝑞
2
= 0.0122 1432 135 1541 158 1317 177 960 115 1413 158 1036 127

𝑞
3
= 0.0125 1388 132 1510 158 1279 172 920 110 1396 155 1009 127

𝑞
4
= 0.0128 1372 130 1480 157 1241 168 885 109 1364 151 994 123

𝑞
5
= 0.0131 1352 126 1449 155 1203 165 844 109 1329 150 960 121

𝑞
6
= 0.0134 1325 122 1419 149 1171 164 819 108 1303 145 938 117

𝑞
7
= 0.0200 796 43 926 81 662 70 426 58 786 77 456 63

𝑞
8
= 0.0250 520 30 649 46 416 46 254 30 528 45 285 42

the numbers of the data decrease sharply because of large
volatilities of returns’ relatively rare appearing in the real
markets.

4. Forecasting Analysis

4.1. Parameters Determining of STNN Model. In the STNN
model, the proper number of the hidden layer nodes requires
validation techniques to avoid underfitting (too few neurons)
and overfitting (too many neurons). According to the proce-
dures of the three-layer network introduced in Section 2, we
chose the 4 × 8 × 1 neural network structure in which the
number of neural nodes in the input layer is 4, the number
of neural nodes in the hidden layer is 8, the number of
neural nodes in the output layer is 1, the maximum training
iterations number 𝐾 = 200, 𝜂 = 0.01, and the predefined
minimum training threshold 𝜁 = 10

−5. When using STNN
model to predict the daily closing price of stock index,
we assume 𝜇(𝑡) (the drift function) and 𝜎(𝑡) (the volatility
function) are as follows:

𝜇 (𝑡) =
1

(𝑐 − 𝑡)
3
, 𝜎 (𝑡) = [

1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥)
2
]

1/2

,

(12)

where 𝑐 is the parameter which is equal to the number of
sample in the datasets, 𝛽 = 1.25, and 𝑥 is the mean of the
sample data. Then the stochastic time strength function is
given by (see Section 2)

𝜙 (𝑡
𝑛
) =

1

1.25
exp

{

{

{

∫

𝑡
𝑛

𝑡
0

1

(𝑐 − 𝑡)
3
𝑑𝑡

+∫

𝑡
𝑛

𝑡
0

[
1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥)
2
]

1/2

𝑑𝐵 (𝑡)
}

}

}

.

(13)

To evaluate the forecasting performance of the STNN
model, we use the following error evaluation criteria, absolute
error (AE), relative error (RE), and mean absolute error
(MAE), root mean-square error (RMSE), mean absolute

percentage error (MAPE). These measures are defined as
follows:

AE = 𝑑
𝑡
− 𝑦
𝑡
, RE =

𝑑
𝑡
− 𝑦
𝑡

𝑑
𝑡

,

MAE =
1

𝑁

𝑁

∑

𝑡=1

𝑑𝑡 − 𝑦𝑡
 ,

RMSE = [
1

𝑁

𝑁

∑

𝑡=1

(𝑑
𝑡
− 𝑦
𝑡
)
2
]

1/2

,

MAPE = 100 ×
1

𝑁

𝑁

∑

𝑡=1



𝑑
𝑡
− 𝑦
𝑡

𝑑
𝑡


,

(14)

where 𝑑
𝑡
and 𝑦

𝑡
are the actual and prediction values at time

𝑡, respectively, and 𝑁 is the sample size. Noting that AE,
RE, MAE, RMSE, and MAPE are measures of the deviation
between prediction and actual values, the prediction perfor-
mance is better when the values of these evaluation criteria
are smaller. However, if the results are not consistent among
these criteria, we choose the MAPE as the benchmark since
MAPE is relatively more stable than other criteria [41].

4.2. Forecasting Results. In Section 3, the method of selecting
datasets of STNN model is put forward, and the database
is presented. For the different values of 𝑞, the training and
testing datasets including the quantity and corresponding
prices date of sample are various. Next, we predict the
fluctuation behaviors of stock prices by the proposed model
with different threshold values of 𝑞. (1) For 𝑞 = 0, the selected
datasets are the original daily price series. Forecasting results
of SSE and S&P 500 by STNN are displayed in Figures 4 and
5, respectively.

Figures 4 and 5 exhibit that the predictive values by
STNN model and the actual values are close, and the relative
errors are almost below 5%. Compared with traditional
backpropagation neural network (BPNN), the forecasting
results are presented in Table 2, where theMAPE(100) stands
for the latest 100 days of MAPE in the testing data. Table 2
shows that the evaluation criteria by STNN model are
almost smaller than those by BPNN. Besides, the values of
MAPE(100) are smaller than those of MAPE in all stock
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Table 2: Comparisons of indexes’ prediction by BPNN and STNN for 𝑞 = 0.

Index SSE SZSE HSI
Errors BPNN STNN BPNN STNN BPNN STNN
MAE 28.3115 28.3190 174.6668 165.4092 317.6058 297.8046
RMSE 35.1332 35.1219 215.7711 204.0298 419.4783 394.2751
MAPE 1.0922 1.0925 1.6163 1.5212 1.5714 1.4660
MAPE (100) 0.9919 0.9922 1.2572 1.2518 0.9475 0.9699
Index DJIA IXIC S&P 500
Errors BPNN STNN BPNN STNN BPNN STNN
MAE 215.9167 210.2087 52.3185 50.3318 19.2175 19.0905
RMSE 248.7886 242.2453 61.8688 59.9015 22.7849 22.5809
MAPE 1.7796 1.7345 1.9288 1.8581 1.5155 1.5058
MAPE (100) 1.6742 1.6164 1.9579 1.8446 1.4190 1.3931

Table 3: Significant test of errors by STNN and BPNNmodels for indexes with 𝑞 = 0.

SSE SZSE HSI DJIA IXIC S&P 500

𝑡

𝐻 0 1 1 1 1 1
𝑡-value 0.2909 −6.7094 −7.5285 −9.4370 −12.2114 −6.6909
Prob. 𝑃 0.7714 1.1243𝑒 − 010 7.2526𝑒 − 013 1.4218𝑒 − 018 7.5248𝑒 − 028 1.1727𝑒 − 010

𝑊

𝐻 0 1 1 1 1 1
𝑧-value −0.3793 −6.2424 −7.1109 −8.5639 −11.1696 −6.8902
Prob. 𝑃 0.7044 4.3084𝑒 − 010 1.1529𝑒 − 012 1.0916𝑒 − 017 5.7430𝑒 − 029 5.5731𝑒 − 012

𝑡means 𝑡-test and𝑊means Wilcoxon signed rank test.
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Figure 4: Comparison of forecasting result by STNNmodel and the
daily closing prices of SSE and the corresponding errors’ plots.

indexes. Therefore, the short-term prediction outperforms
the long-term prediction. In order to comparatively study the
effect of fluctuation prediction for the STNN model and the
BPNN model, we perform the paired-sample 𝑡-test and the
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Figure 5: Comparison of forecasting result by STNNmodel and the
daily closing prices of S&P 500 and the corresponding errors’ plots.

nonparametricWilcoxon signed rank test on two absolute AE
value vectors of STNN and BPNN models (see Section 4.1).
The corresponding statistical test results of six indexes are
presented in Table 3. For indexes SZSE, HSI, DJIA, IXIC,
and S&P 500, the values of double-tailed test 𝑝 in two test
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Figure 6: Volatility degree prediction of SSE by STNN with different values of 𝑞.

methods approach 0, much smaller than the significance level
0.05, and the values of 𝐻 are all 1. Thus, the null hypothesis
is rejected that the predicted errors of STNN and BPNN
models have significant difference. Besides, in Table 2, the
error evaluation criteria MAE, RMSE, and MAPE by STNN
are all smaller than those by BPNN for the above indexes.
This shows that the effect of price fluctuation forecasting of
STNN model is superior to that of BPNN model for these
five indexes. Only for SSE index, the values of 𝐻 in two
test methods are 0 and the values of double-tailed test 𝑝 are
larger than 0.05. Thus, the null hypothesis is accepted that
the predicted errors by STNN and BPNN models have no
significant difference for SSE index.

(2) Let 𝑞 range from 0.0119 (the mean of absolute returns
of SSE from January 2001 to February 2012) to 0.0250. The
experiment analysis of the prediction is performed by STNN
for indexes SSE, SZSE,HSI, DJIA, IXIC, and S&P 500. Figures
6 and 7 show the volatility degree forecasting of SSE and
S&P 500 by STNNmodel with different values of 𝑞, and they
illustrate the effectiveness of the corresponding forecasting.
When 𝑞 is small, such as 𝑞 = 0.0119 in Figure 6(a) and
𝑞 = 0.0125 in Figure 6(b), the better performance of volatility
prediction is revealed by the empirical results; that is, the
predictive values and the actual values in Figures 6(a) and
6(b) are closer than those in Figures 6(c) and 6(d). Similar
results are also indicated in Figure 7.
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Figure 7: Volatility degree prediction of S&P 500 by STNN with different values of 𝑞.

In order to comparatively investigate the volatility degree
forecasting results for the other stock indexesmore clearly, we
present the same forecasting for SZSE, HSI, DJIA, and IXIC.
Table 4 shows the prediction performance by STNN model.
The MAPE of the prediction becomes gradually larger with
the increasing of 𝑞, and the experiment results exhibit that
the volatility degree forecasting by STNN model is feasible.

4.3. Further Evaluation of Forecasting Performance. To fur-
ther evaluate the forecasting performance, we employ three
statistical analysis methods including directional symmetry
(DS), correct up (CP) trend, and correct down (CD) trend
[42]. CP and CD provide the correctness of predicted up

trend and predicted down trend indexes in terms of per-
centage, respectively.The forecasting of change direction will
be more precise when the values of three statistical metrics
become larger.The definitions of the three statistical methods
are given as follows:

DS = 100

𝑁
1

𝑁
1

∑

𝑡=1

𝑎
𝑡
,

𝑎
𝑡
=
{

{

{

1 if (𝑦
𝑡
− 𝑦
𝑡−1
) (𝑑
𝑡
− 𝑑
𝑡−1
) ≥ 0,

0 otherwise,

(15)
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Table 4: MAPE of indexes’ prediction by STNN with different values of 𝑞.

MAPE SSE SZSE HSI DJIA IXIC S&P 500
𝑞
1
= 0.0119 1.6330 1.9462 1.7611 1.9304 2.3165 1.8847

𝑞
2
= 0.0122 1.6312 1.9424 1.7759 1.9365 2.3367 1.9184

𝑞
3
= 0.0125 1.6559 1.9504 1.8220 1.9441 2.3533 1.9365

𝑞
4
= 0.0128 1.6585 1.9555 1.8483 1.9478 2.3757 1.9812

𝑞
5
= 0.0131 1.6897 2.0314 1.8829 1.9486 2.4019 2.0058

𝑞
6
= 0.0134 1.7227 2.0025 1.9212 1.9543 2.4074 2.0302

𝑞
7
= 0.0200 2.8781 2.6260 2.5884 2.3541 2.9259 2.5139

𝑞
8
= 0.0250 3.2507 3.2702 2.9770 3.3216 3.6744 3.2173

Table 5: Statistical metrics for testing data with different values of 𝑞.

Index SSE SZSE HSI
𝑞 DS CP CD DS CP CD DS CP CD
𝑞
1
= 0.0119 49.25 41.94 55.56 44.38 36.23 50.55 46.33 46.67 45.98

𝑞
2
= 0.0122 49.62 41.94 56.34 44.30 34.62 50.67 46.59 47.19 45.98

𝑞
3
= 0.0125 50.38 42.62 57.14 44.09 35.82 50.00 47.37 47.67 47.06

𝑞
4
= 0.0128 51.16 44.07 57.14 43.95 36.76 50.00 47.31 46.99 47.62

𝑞
5
= 0.0131 52.00 44.64 57.97 44.81 36.92 50.56 46.34 45.68 46.99

𝑞
6
= 0.0134 51.24 43.40 57.35 46.95 38.10 51.76 46.01 45.68 46.34

𝑞
7
= 0.0200 46.51 36.84 54.17 46.25 36.36 53.19 47.82 52.78 42.42

Index DJIA IXIC S&P 500
𝑞 DS CP CD DS CP CD DS CP CD
𝑞
1
= 0.0119 48.33 47.76 49.06 52.80 52.87 52.70 45.31 43.66 47.37

𝑞
2
= 0.0122 45.61 44.44 47.06 51.59 50.00 53.42 44.44 43.48 45.61

𝑞
3
= 0.0125 44.55 42.37 47.06 51.95 51.22 52.78 44.44 43.48 45.61

𝑞
4
= 0.0128 44.95 43.10 47.32 52.00 51.85 52.17 46.72 45.45 48.21

𝑞
5
= 0.0131 45.04 42.37 48.08 51.01 51.25 50.72 47.50 46.15 49.09

𝑞
6
= 0.0134 44.95 42.11 47.06 51.39 51.28 51.52 48.28 47.54 49.09

𝑞
7
= 0.0200 45.61 41.38 50.00 42.11 36.11 47.50 45.16 38.71 51.61

where𝑁
1
is the number of training (testing) samples;

DP =
100

𝑁
2

𝑁
2

∑

𝑡=1

𝑎
𝑡
,

𝑎
𝑡
=

{{{{

{{{{

{

1 if (𝑦
𝑡
− 𝑦
𝑡−1
) > 0,

(𝑦
𝑡
− 𝑦
𝑡−1
) (𝑑
𝑡
− 𝑑
𝑡−1
) ≥ 0,

0 otherwise,

(16)

where𝑁
2
is the number of training (testing) samples for (𝑦

𝑡
−

𝑦
𝑡−1
) > 0;

CD =
100

𝑁
3

𝑁
3

∑

𝑡=1

𝑎
𝑡
,

𝑎
𝑡
=

{{

{{

{

1 if (𝑦
𝑡
− 𝑦
𝑡−1
) < 0,

(𝑦
𝑡
− 𝑦
𝑡−1
) (𝑑
𝑡
− 𝑑
𝑡−1
) ≥ 0,

0 otherwise,

(17)

where𝑁
3
is the number of training (testing) samples for (𝑦

𝑡
−

𝑦
𝑡−1
) < 0.

Table 5 gives the numerical forecasting results for SSE,
SZSE, HSI, DJIA, IXIC, and S&P 500. All the stock indexes
change a little when 𝑞 varies from 𝑞

1
to 𝑞
6
. The direction

forecasting effect of IXIC index is the best from 𝑞
1
to 𝑞
6
since

the values of DS, CP, and CD all exceed 50. When 𝑞 = 𝑞
7
,

some criteria change sharply; for example, for SSE index,
the values of DS and CP decrease from 51.24 and 43.40 (for
𝑞 = 𝑞
6
) to 46.51 and 36.84 (for 𝑞 = 𝑞

7
), respectively.The value

of CD of S&P 500 increases, but its value of CP reduces when
𝑞 varies from 𝑞

6
to 𝑞
7
, and HSI index has the adverse result.

From Table 5, we can conclude that the direction forecasting
by STNN model has little difference when 𝑞 is small but may
cause obvious changes when 𝑞 is large.

5. Conclusion

In the present paper, we develop a neural network with the
stochastic time strength function to forecast the volatility
degrees of stock market indexes. The effectiveness of STNN
model has been analyzed by performing the numerical
experiments on the price data of SSE, SZSE, HSI, DJIA, IXIC,
and S&P 500. We also investigate the statistical behaviors of
the tail distributions (or volatilities) for SSE, SZSE, and other
global indexes by comparison, revealing that the Chinese
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financial markets have more severe fluctuations than other
stock markets of the world. We select different volatility
degrees for different threshold values of 𝑞, and the cor-
responding training and testing databases are introduced.
The empirical research of this work indicates that some
prediction results have been improved by STNN model, and
the forecasting effect will decline as 𝑞 becomes larger. We
hope this new approach can make some contributions to
financial market volatility forecasting.
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