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In the classical theory of elasticity, Truesdell proposed the following problem: for an isotropic linearly elastic cylinder subject to
end tractions equipollent to a torque 𝑇, define a functional 𝜏(u) on𝑄 such that 𝑇 = 𝐾𝜏(u), for each u ∈ 𝑄, where𝑄 is the set of all
displacement fields that correspond to the solutions of the torsion problem and𝐾 depends only on the cross-section and the elastic
properties of the considered cylinder. This problem has been solved by Day. In the present paper Truesdell’s problem is extended
to the case of piezoelastic, monoclinic, and nonhomogeneous right cylinders.

1. Introduction

Let𝐶 = 𝐴× ]0, 𝐿[ be a right cylinder of length𝐿with its cross-
section 𝐴, a multiply connected bounded regular region
of R2 with boundary 𝜕𝐴, and let a system of rectangular
Cartesian coordinates be introduced, with origin 𝑂 at the
centroid of left end cross-section of 𝐶 as shown in Figure 1.
Position vector of a generic point of 𝐶 with respect to 𝑂 is
r = 𝑥1e1 + 𝑥2e2 + 𝑥3e3 = R + 𝑥3e3, where e1, e2, and e3
are the unit base vectors. Let 𝐴1 = {(𝑥1, 𝑥2) ∈ 𝐴, 𝑥3 = 0},𝐴2 = {(𝑥1, 𝑥2) ∈ 𝐴, 𝑥3 = 𝐿} be the bases of 𝐶, and let𝐴3 = 𝜕𝐴 × [0, 𝐿] be the mantle of 𝐶 according to Figure 1.
The nonhomogeneous, monoclinic, piezoelectric cylinder is
loaded only at its end cross-sections by tangential surface
forces. The end tractions are specified as

p𝑖 = 𝑃𝑖 (𝑥1, 𝑥2) e1 + 𝑄𝑖 (𝑥1, 𝑥2) e2 on 𝐴 𝑖 (𝑖 = 1, 2) , (1)
where the tangential surface forces 𝑃𝑖 = 𝑃𝑖(𝑥, 𝑦) and 𝑄𝑖 =𝑄𝑖(𝑥, 𝑦) on 𝐴 𝑖 (𝑖 = 1, 2) satisfy the following equations:
∫
𝐴𝑖

𝑃𝑖 (𝑥1, 𝑥2) d𝐴 = ∫
𝐴𝑖

𝑄𝑖 (𝑥1, 𝑥2) d𝐴 = 0,
(𝑖 = 1, 2) ,

(2)

𝑇 = ∫
𝐴2

(𝑥1𝑄2 − 𝑥2𝑃2) d𝐴
= −∫
𝐴1

(𝑥1𝑄1 − 𝑥2𝑃1) d𝐴.
(3)

In (3) 𝑇 is the torque. Let 𝑄𝑇 denote the set of all dis-
placement-electric potential fields that correspond to the
solution of the torsion problem for a prescribed value of 𝑇. In
this relaxed torsion problem the pointwise assignment of the
terminal tangential tractions is replaced by the corresponding
value of the resultant torque 𝑇.

The aim of this paper is to derive a torque-generalized
twist relationship which has the form

𝑇 = 𝐾𝜏 (u, 𝜙) , (4)

where u is the displacement field, 𝜙 is the electric potential,
and 𝐾 is a positive constant which depends only on the
geometry of the cross-section and the material properties of
the considered piezoelastic cylinder. Moreover, the general-
ized twist 𝜏(u, 𝜙) is a functional defined on the solutions of
the generalized (relaxed) torsion problem, that is, (u, 𝜙) ∈𝑄𝑇. For isotropic, homogeneous, linearly elastic cylinder
the torque-generalized twist relationship as a problem was
formulated by Truesdell [1–3]. Day [4], Podio-Guidugli
[5], and Ieşan [6–8] presented the solution of Truesdell’s
problem for extension, bending, and torsion of isotropic,
linearly elastic, homogeneous cylinder. A detailed analysis
and the solution of Truesdell’s problem for anisotropic,
homogeneous/nonhomogeneous elastic and Cosserat elastic
cylinders were presented by Ieşan [7, 8]. Day [4] defined
the generalized twist 𝜏 for homogeneous isotropic elastic
cylinder as the constant associated with Saint-Venant torsion
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Figure 1: Torsion of a monoclinic piezoelectric cylinder.

field which approximates amean square solution in the strain
instead of exact solution. Podio-Guidugli [5] proved that
more general result can be achieved if the strain norm is
replaced by the energy norm.

In this paper, the concept of the generalized twist is
introduced for the torsion of monoclinic, nonhomogeneous,
piezoelectric cylinder. The material properties of the exam-
ined piezoelectric cylinder are smooth functions of the cross-
sectional coordinates 𝑥1 and 𝑥2; they do not depend on the
axial coordinate 𝑥3. For the generalized torsion of nonhomo-
geneous piezoelectric cylinder a global cross-sectional strain
measure 𝛼 = 𝛼(𝑥3), which conforms to the concept of the rate
of twist in the theory of Saint-Venant torsion, is introduced.
The corresponding generalized twist 𝜏(u, 𝜙), (u, 𝜙) ∈ 𝑄𝑇, is
that constant which approximates 𝛼 = 𝛼(𝑥3) most closely
in mean square on [0, 𝐿]. Truesdell’s problem for torsion of
nonhomogeneous piezoelectric cylinders is solved by using
the displacement-electric potential function formulation of
Saint-Venant torsion [9, 10], the concept of the global cross-
sectional strain measure 𝛼 and a reciprocal work theorem of
the linear piezoelectricity [11], and methods given by Day [4]
and Podio-Guidugli [5].

2. Governing Equations in Piezoelectricity

Consider a piezoelectric body occupying a three-dimensional
domain 𝑉 with the boundary 𝑆. The basic equations gov-
erning the elastic and electric fields in a linear piezoelectric
material referring to a rectangular Cartesian coordinate
system𝑂𝑥1𝑥2𝑥3 can be summarized in the following [12–14].

Strain-displacement and electric field-electric potential
relationships:

S (u) = 1
2 (u ∘ ∇̃ + ∇̃ ∘ u) ,

E (𝜙) = −∇̃𝜙,
(5)

whereu = 𝑢1e1+𝑢2e2+𝑢3e3 is the displacement vector, S is the
strain tensor, 𝜙 is the electric potential, E is the electric field
vector, and ∇̃ is the three-dimensional gradient operator. In
formula (5) of the strain-displacement relationship the dyadic
product of two vectors is denoted by circle.

Constitutive equations:

Τ (u, 𝜙) = C ⋅ ⋅S (u) − E (𝜙) ⋅ ẽ (converse effect) ,
D (u, 𝜙) = ẽ ⋅ ⋅S (u) + 𝜀̃ ⋅ E (𝜙) (direct effect) , (6)

where T is the stress tensor, D is the electric displacement
vector,C is the elastic modulus tensormeasured in a constant
electric field, ẽ is the piezoelectric tensor, and 𝜀̃ is the
dielectric tensormeasured at constant strains. In (6) the scalar
product is indicated by dot.

Equilibrium equations:

T (u, 𝜙) ⋅ ∇̃ + f = 0,
∇̃ ⋅D (u, 𝜙) − 𝑞 = 0

in 𝑉.
(7)

In (7), f is the body force vector per unit volume and 𝑞 is the
intrinsic electric charge per unit volume.

Boundary conditions (BCs):

t (u, 𝜙) = T (u, 𝜙) ⋅ n = t on 𝑆𝑡,
u = u on 𝑆𝑢

(mechanical BCs) ,
(8)

𝑝 (u, 𝜙) = −D (u, 𝜙) ⋅ n = 𝑝 on 𝑆𝑝,
𝜙 = 𝜙 on 𝑆𝜙,

(electrical BCs) ,
(9)

where t is the traction vector, 𝑝 is the surface charge, n is the
outward unit normal vector to surface 𝑆, and the over barred
quantities indicate given values and we have

𝑆 = 𝑆𝑡 ∪ 𝑆𝑢 = 𝑆𝑝 ∪ 𝑆𝜙,
𝑆𝑡 ∩ 𝑆𝑢 = 𝑆𝑝 ∩ 𝑆𝜙 = {⌀} . (10)

Equations (5)–(7) under the boundary conditions (8)-(9)
form a complete mathematical description of the coupled
elastic and electric fields in a general anisotropic piezoelastic
body. For an elasticmaterial, there is no coupling of the elastic
and electric fields, that is, the piezoelectric tensor ẽ = 0. In
this case, (5)–(7) will be decoupled between the two fields,
yielding the usual elasticity equations and “Poisson equation”
for the electric potential. Starting from (5)–(9) and by the use
of symmetry properties of C, ẽ, and 𝜀̃ [13–15]

C = {𝐶𝑖𝑗𝑘𝑙} , 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘,
ẽ = {𝑒𝑖𝑗𝑘} , 𝑒𝑖𝑗𝑘 = 𝑒𝑖𝑘𝑗,
𝜀̃ = {𝜀𝑖𝑗} , 𝜀𝑖𝑗 = 𝜀𝑗𝑖,

(𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3) ,

(11)
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the next reciprocal work theorem can be derived [11]

∫
𝑉
f ⋅ u∗d𝑉 + ∫

𝑆
t ⋅ u∗d𝐴 + ∫

𝑉
𝜙𝑞∗d𝑉 + ∫

𝑆
𝜙𝑝∗d𝐴

= ∫
𝑉
u ⋅ f∗d𝑉 + ∫

𝑆
u ⋅ t∗d𝐴 + ∫

𝑉
𝑞𝜙∗d𝑉

+ ∫
𝑆
𝑝𝜙∗d𝐴

(12)

in which u, t, f , 𝜙, 𝑞, 𝑝 and u∗, t∗, f∗, 𝜙∗, 𝑞∗, 𝑝∗ are two sets
of the admissible solutions satisfying (5)–(9). Here, we note
in (6) that tensors C, ẽ, and 𝜀̃ are smooth functions of the
coordinates 𝑥1, 𝑥2, and 𝑥3 on 𝑉 = 𝑉 ∪ 𝑆.
3. Saint-Venant’s Torsion

The analytical solution of Saint-Venant’s torsion for non-
homogeneous, monoclinic, piezoelectric beams (Figure 1)
originates from the next displacement and electric potential
hypothesis [9, 10]

u = 𝜗u∗ = 𝜗 (𝑥3e3 × R + 𝜔 (𝑥1, 𝑥2) e3) ,
𝜙 = 𝜗𝜑 (𝑥1, 𝑥2) , (13)

where 𝜗 is the rate of twist with respect to the axial coordinate𝑥3, 𝜔 = 𝜔(𝑥1, 𝑥2) is the torsion function, and the cross
denotes the vectorial product of two vectors. Starting from
the governing equations of piezoelectricity and following the
derivation presented by Rovenski et al. [9, 10], we can derive
the next formulas for stress tensor and electric displacement
vector [16]

T = 𝜗T∗ = 𝜗 (𝜏∗ ∘ e3 + e3 ∘ 𝜏∗) ,
D = 𝜗D∗, (14)

where

𝜏
∗ = A ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑,

D∗ = eT ⋅ (∇𝜔 + e3 × R) − 𝜀 ⋅ ∇𝜑. (15)

Here, ∇ = (𝜕/𝜕𝑥1)e1 + (𝜕/𝜕𝑥2)e2 is the two-dimensional
gradient (del) operator.

A(𝑥1, 𝑥2) = ( 𝐴55 𝐴45𝐴45 𝐴44
) is the matrix of elastic stiffness

tensor [9, 10], where the matrix elements 𝐴44, 𝐴55, and 𝐴45
are the shear rigidities measured under the conditions of
constant electric field and they are written in compressed
notations [17].

e(𝑥1, 𝑥2) = ( 𝑒15 𝑒25𝑒14 𝑒24 ) is the matrix of the tensor of
piezoelectric constants [9, 10], where 𝑒14, 𝑒24, 𝑒15, and 𝑒25
are the piezoelastic stress constants; they are written in
compressed notations [17].
𝜀(𝑥1, 𝑥2) = ( 𝜀11 𝜀12𝜀12 𝜀22 ) is the matrix of the dielectric tensor

measured at constant strain field [9, 10].
Upper T in (15) indicates the operation of transpose.
From equilibrium equation (7) with f = 0 and 𝑞 = 0 and

the boundary conditions t = 0 and 𝑝 = 0 on 𝐴3 (Figure 1), it
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Figure 2: Cross-section and its geometry.

follows that Ecsedi and Baksa [16] and Rovenski et al. [9, 10]
show that𝜔 = 𝜔(𝑥1, 𝑥2) and𝜑 = 𝜑(𝑥1, 𝑥2) are solutions of the
following coupled nonhomogeneous Neumann’s boundary
value problem defined on the cross-sectional domain 𝐴
(Figure 2):

∇ ⋅ {A ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑} = 0,
∇ ⋅ {eT ⋅ (∇𝜔 + e3 × R) − 𝜀 ⋅ ∇𝜑} = 0

in 𝐴,
(16)

n ⋅ {A ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑} = 0,
n ⋅ {eT ⋅ (∇𝜔 + e3 × R) − 𝜀 ⋅ ∇𝜑} = 0

on 𝜕𝐴.
(17)

In (16)-(17), n is the outer unit normal vector to the boundary
curve 𝜕𝐴 (Figure 2).

The torsional rigidity of the monoclinic, piezoelectric
cylinder is denoted by 𝐾 and it can be computed as [9, 10]

𝐾 = 𝑇
𝜗 = ∫

𝐴
(e3 × R) ⋅ 𝜏∗d𝐴

= ∫
𝐴
(e3 × R) ⋅ [A ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑] d𝐴.

(18)

From (16)–(18) after some manipulations we get

∫
𝐴
{𝜏∗ ⋅ (∇𝜔 + e3 × R) +D∗ ⋅ ∇𝜑} d𝐴
= ∫
𝜕𝐴
𝜏
∗ ⋅ n𝜔 d𝑠 − ∫

𝐴
𝜔∇ ⋅ 𝜏∗d𝐴

+ ∫
𝐴
(e3 × R) ⋅ 𝜏∗d𝐴 + ∫

𝜕𝐴
𝜑D∗ ⋅ n d𝑠

− ∫
𝐴
𝜑∇ ⋅D∗d𝐴 = 𝐾.

(19)
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In (19) 𝑠 is an arc-length defined on the boundary curve of the
cross-sectional domain (Figure 2). Combination of (18) with
(19) gives the next formula for𝐾

𝐾 = ∫
𝐴
{(∇𝜔 + e3 × R) ⋅ A ⋅ (∇𝜔 + e3 × R)

+ 2 (∇𝜔 + e3 × R) ⋅ e ⋅ ∇𝜑 − ∇𝜑 ⋅ 𝜀 ⋅ ∇𝜑} d𝐴.
(20)

On the other hand we have from (15) and the electric bound-
ary condition formulated by (17)

∫
𝜕𝐴
𝜑n ⋅D∗d𝑠
= ∫
𝐴
{(∇𝜔 + e3 × R) ⋅ e ⋅ ∇𝜑 − ∇𝜑 ⋅ 𝜀 ⋅ ∇𝜑} d𝐴

= 0.
(21)

Substitution of (21) into (20) yields a new formula for the
torsional rigidity

𝐾 = ∫
𝐴
{(∇𝜔 + e3 × R) ⋅ A ⋅ (∇𝜔 + e3 × R) + ∇𝜑 ⋅ 𝜀

⋅ ∇𝜑} d𝐴,
(22)

which shows that 𝐾 is always positive since A and 𝜀 are
second-order two-dimensional symmetric positive definite
tensors [9, 10, 13, 14].This statement is in accordance with the
mechanical meaning of𝐾.
4. Generalized Torsion and Generalized Twist

A sufficiently smooth equilibrium displacement-electric
potential field (u, 𝜙) is a solution of the generalized torsion
for the monoclinic piezoelectric cylindrical beams shown in
Figure 1 if

(i) (5)–(7) under the conditions f = 0, 𝑞 = 0 in 𝐶 are
satisfied,

(ii) t = 0 and 𝑝 = 0 on 𝐴3,
(iii) t(u, 𝜙) ⋅ n = 0 and 𝑝 = 0 on 𝐴1 and 𝐴2,
(iv) ∫
𝐴1

t(u, 𝜙)d𝐴 = ∫
𝐴2

t(u, 𝜙)d𝐴 = 0 and ∫
𝐴2

R ×
t(u, 𝜙)d𝐴 = −∫

𝐴1
R × t(u, 𝜙)d𝐴 = 𝑇e3, where 𝑇 is

a given value.

The set of all solutions of the generalized torsion for a
monoclinic piezoelastic cylinder is denoted by𝑄𝑇. One of the
solutions of the generalized torsion problem is Saint-Venant’s
torsion (uniform torsion) whose torsion function-electric
potential function formulation is summarized in Section 3 of
this paper. It is evident that (𝜗u∗, 𝜗𝜙∗ | 𝜙∗ = 𝜑, 𝜗 = 𝑇𝐾−1) ∈𝑄𝑇.

The in-plane cross-sectional displacement for the cylin-
drical piezoelectric beam shown in Figure 1 is defined as U =
e3 × (u× e3). It is obvious in the case of Saint-Venant’s torsion
that we have U = Usv where

Usv (𝑥1, 𝑥2, 𝑥3) = 𝛽∗ (𝑥3) e3 × R, 𝛽∗ (𝑥3) = 𝜗𝑥3. (23)

For the generalized torsion we define a global cross-sectional
strain measure 𝛽 = 𝛽(𝑥3) as

∫
𝐴
Ũ ⋅ 𝜏∗d𝐴
= ∫
𝐴
(U (𝑥1, 𝑥2, 𝑥3) − 𝛽 (𝑥3) e3 × R) ⋅ 𝜏∗d𝐴 = 0.

(24)

Equation (24) formulates that the zero virtual work is done by
𝜏
∗ on the displacement field Ũ for an arbitrary cross-section

of the considered piezoelastic cylinder. From (18) and (24) it
follows that

𝛽 (𝑥3) = ∫
𝐴
U ⋅ [Α ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑] d𝐴

𝐾 . (25)

If U is given by (23) then we have 𝛽 = 𝛽∗. The rate of
twist for the generalized torsion, which depends on the axial
coordinate, is defined by the following equation:

𝛼 (𝑥3) = d𝛽
d𝑥3

= 1
𝐾 ∫
𝐴

𝜕U
𝜕𝑧 ⋅ [A ⋅ (∇𝜔 + e𝑧 × R) + e ⋅ ∇𝜑] d𝐴.

(26)

It is evident in the case of Saint-Venant torsion that 𝛼(𝑥3) =𝜗 = constant. The generalized twist 𝜏(u, 𝜙) associated with(u, 𝜙) ∈ 𝑄𝑇 is defined as the unique number that minimizes
the function

𝐹 (𝜆) = ∫𝐿
0
( d𝛽
d𝑥3 − 𝜆)

2

d𝑥3; (27)

that is

min
𝜆

{∫𝐿
0
( 𝑑𝛽
𝑑𝑥3 − 𝜆)

2

d𝑥3}

= ∫𝐿
0
( 𝑑𝛽
𝑑𝑥3 − 𝜏 (u, 𝜙))

2

d𝑥3.
(28)

Solution of minimization problem (28) is as follows:

𝜏 (u, 𝜙) = 𝛽 (𝐿) − 𝛽 (0)
𝐿 . (29)

The kinematic interpretation of the generalized twist is given
by (26) and (28). It is obvious for Saint-Venant’s torsion𝜏(u, 𝜙) = 𝜗. Here, we note, for rigid body displacement field,
that u𝑟 = a + b × r, where a and b are arbitrary constant
vectors, and, for constant electric potential, 𝜙𝑟 𝜏(u𝑟, 𝜙𝑟) = 0.
This statement follows from the next equations

U𝑟 = e3 × (u𝑟 × e3) = 𝛼 + 𝑏3e3 × R − 𝑥3B,
𝛼 = e3 × (a × e3) ,
𝑏3 = e3 ⋅ b,
B = e3 × b,

∫
𝐴
𝜏
∗d𝐴 = ∫

𝐴
(r ∘ ∇) ⋅ 𝜏∗d𝐴

= ∫
𝜕𝐴

r (n ⋅ 𝜏∗) d𝑠 − ∫
𝐴
r (∇ ⋅ 𝜏∗) d𝐴 = 0

(30)
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according to (15) and (16)-(17). A simple computation gives

𝛽𝑟 = ∫
𝐴
U𝑟 ⋅ 𝜏∗d𝐴
𝐾 = 𝑏3 = constant,

𝜏 (𝑢𝑟, 𝜙𝑟) = 0.
(31)

It is evident that (u𝑟, 𝜙𝑟) ∈ 𝑄𝑇 than in this case 𝑇 = 0.
In the next part of this section we prove the validity of

formula (4). By the application of reciprocity theorem (12) for
an arbitrary solution of generalized torsion (u, 𝜙) and Saint-
Venant’s torsion with unit value of the rate of twist (u∗, 𝜙∗ =𝜑) we get

∫
𝐴2

(𝐿 (e3 × R) ⋅ t (u, 𝜙)) d𝐴

= ∫
𝐴2

U ⋅ 𝜏∗d𝐴 − ∫
𝐴1

U ⋅ 𝜏∗d𝐴.
(32)

By the use of definitions of 𝛼 = 𝛼(𝑥3), 𝛽 = 𝛽(𝑥3) and of the
generalized twist 𝜏(u, 𝜙) and of the next equations

TL = ∫
𝐴2

(𝐿 (e3 × R) ⋅ t (u, 𝜙)) d𝐴,

∫
𝐴2

U ⋅ 𝜏∗d𝐴 − ∫
𝐴1

U ⋅ 𝜏∗d𝐴

= ∫𝐿
0

d
d𝑥3 {∫𝐴U ⋅ 𝜏∗d𝐴} d𝑥3 = 𝐾∫𝐿

0
𝛼 (𝑥3) d𝑥3

= 𝐾∫𝐿
0

d𝛽
d𝑥3 d𝑥3 = 𝐾 (𝛽 (𝐿) − 𝛽 (0)) ,

(33)

from (32) we obtain the relationship between the applied
torque and the generalized twist as

𝑇 = 𝐾𝜏 (u, 𝜙) 𝜏 (u, 𝜙) ∈ 𝑄𝑇. (34)

5. Example 1: A Generalized Torsion Problem
of Piezoelectric Cylinder

Let us consider the next 3D boundary value problem of
monoclinic piezoelectric cylindrical beam shown in Figure 1:

f = 0,
𝑞 = 0,

in 𝐶,
t = 0,
𝑝 = 0,

on 𝐴3,

𝜎33 fl n ⋅ 𝑇 (u, 𝜙) ⋅ n = 0 on 𝐴1 and 𝐴2,
𝑝 = 0 on 𝐴1 and 𝐴2,

U (𝑥1, 𝑥2, 0) = 𝑢1 (𝑥1, 𝑥2) e1 + V1 (𝑥1, 𝑥2) e2
on 𝐴1,

U (𝑥1, 𝑥2, 𝐿) = 𝑢2 (𝑥1, 𝑥2) e1 + V2 (𝑥1, 𝑥2) e2
on 𝐴2.

(35)

For given values of 𝑢1(𝑥1, 𝑥2), V1(𝑥1, 𝑥2), 𝑢2(𝑥1, 𝑥2), and
V2(𝑥1, 𝑥2) the boundary value problem formulated by (35)
has a unique solution. From the conditions of equilibrium it
follows that the section forces

𝑁 = ∫
𝐴
𝜎33 (𝑥1, 𝑥2, 𝑥3) d𝐴,

𝑉1 = ∫
𝐴
𝜎13 (𝑥1, 𝑥2, 𝑥3) d𝐴,

𝑉2 = ∫
𝐴
𝜎23 (𝑥1, 𝑥2, 𝑥3) d𝐴

(36)

and the section moments

𝑀1 = ∫
𝐴
𝑥2𝜎33 (𝑥1, 𝑥2, 𝑥3) d𝐴,

𝑀2 = −∫
𝐴
𝑥1𝜎33 (𝑥1, 𝑥2, 𝑥3) d𝐴

(37)

vanish and the torque

𝑇 = ∫
𝐴
(𝑥1𝜎23 (𝑥1, 𝑥2, 𝑥3) − 𝑥2𝜎13 (𝑥1, 𝑥2, 𝑥3)) d𝐴 (38)

does not depend on the axial coordinate 𝑥3.
This mixed type 3D boundary value problem is a gen-

eralized torsional problem specified by the given surface
displacements 𝑢1(𝑥1, 𝑥2), V1(𝑥1, 𝑥2) and 𝑢2(𝑥1, 𝑥2), V2(𝑥1, 𝑥2).
By the application of formulas (25), (29), and (34) we get
the value of the torque 𝑇 transmitted by the beam in terms
of 𝑢1(𝑥1, 𝑥2), V1(𝑥1, 𝑥2), 𝑢2(𝑥1, 𝑥2), and V2(𝑥1, 𝑥2) without
knowing the solution of the corresponding mixed type 3D
piezoelectric boundary value problem.

6. Example 2: Generalized Twist for
Hollow Circular Cylinder Made of
Orthotropic Material

The cross-section of the considered hollow circular cylinder
is shown in Figure 3. The hollow circular cylinder is made of
orthotropic piezoelectric material. In this case 𝐴45 = 0. Let
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us suppose that 𝜅12 = 0 and 𝑒14 = 𝑒25 = 0 be [9]. In this case
we have [16]

𝜔 (𝑥1, 𝑥2) = (𝐴55 − 𝐴44) (𝜅11 + 𝜅22) + 𝑒215 − 𝑒224
(𝐴55 + 𝐴44) (𝜅11 + 𝜅22) + (𝑒15 + 𝑒24)2

⋅ 𝑥1𝑥2,
(39)

𝜑 (𝑥1, 𝑥2) = 2 (𝐴55𝑒24 − 𝐴44𝑒15)
(𝐴55 + 𝐴44) (𝜅11 + 𝜅22) + (𝑒15 + 𝑒24)2

⋅ 𝑥1𝑥2,
(40)

𝐾 = 𝐴44𝐴55 + (𝐴44𝑒215 + 𝐴55𝑒224) / (𝜅11 + 𝜅22)
𝐴44 + 𝐴55 + (𝑒15 + 𝑒24)2 / (𝜅11 + 𝜅22) (𝑐42

− 𝑐41 ) 𝜋.
(41)

In (41) the radius of inner boundary circle is denoted by 𝑐1
and the radius of outer boundary circle is indicated by 𝑐2
(Figure 3).

The next generalized torsion problem will be considered
according to Example 1:

𝑢1 (𝑥1, 𝑥2) = V1 (𝑥1, 𝑥2) = 0,
𝑢2 (𝑥1, 𝑥2) = −𝛼1𝑥2𝐿,
V2 (𝑥1, 𝑥2) = 𝛼1𝑥1𝐿.

(42)

A simple computation based on (25) gives the next result

𝛽 (0) = 0,
𝛽 (𝐿)
= ∫
𝐴
(−𝛼1𝑥2𝐿e1 + 𝛼2𝑥1𝐿e2) ⋅ [Α ⋅ (∇𝜔 + e3 × R) + e ⋅ ∇𝜑] d𝐴

𝐾
= 𝛼1 + 𝛼22 𝐿.

(43)

Substitution results obtained above into (29) gives the expres-
sion of generalized twist for the considered torsional problem

𝜏 (u, 𝜙) = 𝛼1 + 𝛼22 . (44)

In the case of Saint-Venant’s torsion we have 𝛼1 = 𝛼2 = 𝜗; that
is 𝜏(u, 𝜙) = 𝜗.
7. Torque-Generalized Twist Relationship for
End Loaded Piezoelectric Cylinders

Theequilibriumdisplacement-electric potential fields for end
loaded, nonhomogeneous,monoclinic, piezoelectric cylinder
are defined as a solution of (5)–(7) under the next conditions

f = 0,
𝑞 = 0,

in 𝐶,

O

x2

c2

c1

x1

Figure 3: Hollow circular cross-section.

t = 0,
𝑝 = 0,

on 𝐴3
(45)

𝜎33 (𝑥1, 𝑥2, 0) = 𝜎33 (𝑥1, 𝑥2, 𝐿)
= arbitrary function of 𝑥1 and 𝑥2

𝜎33 = e3 ⋅ T (u, 𝜙) ⋅ e3,
(46)

𝐷3 (𝑥1, 𝑥2, 0) = 𝐷3 (𝑥1, 𝑥2, 𝐿)
= arbitrary function of 𝑥1and 𝑥2

𝐷3 = D (u, 𝜙) ⋅ e3,
(47)

e3 × ∫
𝐴1

t (u, 𝜙) d𝐴 = e3 × ∫
𝐴2

t (u, 𝜙) d𝐴 = 0,

e3 ⋅ ∫
𝐴2

R × t (u, 𝜙) d𝐴 = −e3 ⋅ ∫
𝐴1

R × t (u, 𝜙) d𝐴
= 𝑇.

(48)

The normal stresses and the axial components of the electric
displacement at the end cross-sections satisfy the end load
symmetry conditions which are formulated by (46) and (47).
In this case we have the cross-sections of the considered
monoclinic piezoelectric cylinderwhich are subjected to axial
force𝑁, bending momentM, and torque 𝑇. The expressions
of the axial force and the bending moment vector are as
follows:

𝑁(𝑥3) = ∫
𝐴2

𝜎33 (𝑥1, 𝑥2, 𝐿) d𝐴 = constant,

e3 ×M (𝑥3) = ∫
𝐴2

R𝜎33 (𝑥1, 𝑥2, 𝐿) d𝐴 = constant.
(49)
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Following the deduction presented in Section 4 of this paper,
it can be proven that if (45)–(48) are satisfied then the torque-
twist relationship (34) is yet right in which 𝜏(u, 𝜙) is defined
according to (25) and (29).

8. Conclusions

In this paper the generalized torsion of nonhomogeneous,
monoclinic, piezoelectric cylinder is examined. By the use
of displacement-electric potential functions formulation of
Saint-Venant’s torsion and a reciprocal work theorem of
linear piezoelectricity, a torque-generalized twist relationship
is proven which gives the solution of a problem proposed by
Truesdell.
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