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This paper investigates a decentralized assembly system that consists of one assembler and two independent suppliers; wherein one
supplier is perfectly reliable for the production, while the other generates yield uncertainty. Facing the random market demand,
the assembler has to order the components from one supplier in advance and meanwhile requires the other supplier to deliver the
components under VMImode.We construct a Nash game between the supplier and the assembler so as to derive their equilibrium
procurement/production strategies. The results show that the channel’s performance is highly undermined by the decentralization
between players and also the combination of two supply modes. Compared to the centralized system, we propose an advance
payment contract to perfectly coordinate the supply chain performance. The numerical examples indicate some management
implications on the supply mode comparison and sensitivity analysis.

1. Introduction

Assembly systems have been widely applied in automobile,
electronics, and many other manufacturing industries. One
fundamental advantage of this system is to help the core
assembler/manufacturer take the full advantages (e.g., low
procurement cost) from his suppliers. Therefore, we have
seen that many famous manufacturers (e.g., Toyota and HP)
prefer to outsource their components production process
to those external suppliers who locate in Asia, so as to
significantly reduce their procurement cost and improve
the production efficiency. Nonetheless, the accompanying
challenge is how to ensure that the independent suppliers
move cooperatively in the system. Difficulties arise from two
aspects. First, because a single firm normally cares for its own
profit, its decisions inevitably go against the channel’s overall
efficiency. Second, there aremultiple uncertain factors that lie
in the system, for example, delivery time, customer demand,
and production yield, which subsequently undermine the
system’s operational performance. Therefore, to mitigate
the decentralization and improve the system’s performance,
scholars have made extensive researches on the optimization
mechanism in the decentralized assembly systems [1–4].

Nonetheless, in this rich streamof literaturemost scholars
assume that the suppliers have to adopt the same strategies,
in which all of them are either enrolled in the ordering mode
or in the VMI mode (vendor managed inventory). Ordering
mode is defined as were the assembler orders the components
from all his suppliers before the demand is realized. As a
result, suppliers just need to follow the assembler’s instruc-
tions. For example, Yano [1] studies an assembler’s optimal
order time, wherein both suppliers have stochastic supply
lead times. In contrast, under VMI mode all the suppliers
have to personally determine when and how to produce
the components to the assembler after knowing the demand
information. For this issue, Gerchak andWang [5] investigate
how to achieve the coordination with both revenue-sharing
contract and buy-back contract under VMI mode.

Differently, in this paper we will combine these two
supplymodes into a single assembly system,wherein one sup-
plier exerts the orderingmode, while the other supplier has to
accept the VMI mode. To our knowledge, this combination
is rarely discussed in the prior literature but is prevalent in
practice. For example, in China’s auto industry, the assembler
needs to order and pay for the key components, such as
engine, from the overseas suppliers in advance. Meanwhile,
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the of the rest components such as windshield wipers are
normally provided by the domestic suppliers under VMI
mode. Also in the electronics industry, assembler always
places orders in advance from key components’ provider
(e.g., Intel) while requires the local suppliers to produce the
other components under VMI arrangement. Given this gap
between the practice and the literature, in this paper we will
derive some important implications for the firms’ equilibrium
strategies under the combined supply modes.

To this end, we construct a decentralized assembly system
that contains two sources of uncertainty. On one hand, the
market demand is stochastic so that the assembler and the
supplier have to make their procurement/production deci-
sions before the exact demand is realized. On the other hand,
we assume that supplier 1’s production is perfectly reliable,
while supplier 2 has a stochastic production yield rate. The
assembler has to preorder the components from supplier 1
under the ordering mode but is also able to exert the VMI
mode on supplier 2. Consequently, the assembler and supplier
2 have to simultaneously choose their production and pro-
curement quantities in consideration of the other’s response.
This setting helps us to solve the following questions. First,
what are the firms equilibrium production and procurement
strategies in this decentralized assembly system with dual
supply modes? Second, compared to the centralized system
how to achieve the supply chain coordination?Third,what are
the differences among different supply modes, for example,
ordering mode versus VMI mode versus combined mode?

Given the equilibrium strategies, our analysis has the
following observations. First, double marginalization signif-
icantly undermines the channel’s efficiency, in which case
both suppliers produce fewer components than that in the
centralized system. In particular, the supplier with random
yield produces more components than his partner’s. Second,
to improve the channel efficiency, we incorporate an advance
payment contract. When the sharing parameter (donated as
𝜆) falls into a rational range, the suppliers achieve perfect
coordination. Moreover, we show that from the channel’s
perspective, ordering mode dominates both the combined
mode andVMImode.This result coincideswith the supplier’s
interest but goes against the assembler’s profit. The intuition
is that for any firm, the better operational mode always
mitigates its inventory risk. Overall, this paper speaks to the
interactions between the assembler and the suppliers under
dual supply modes in a decentralized system.

Besides the literature reviewed above, another stream of
the related research is random yield and random demand.
Note that this issue has been extensively studied by many
scholars [6–10]. However, as aforementioned the majority of
these models have been developed under the condition that
all the suppliers generate either production yield uncertainty
or demand uncertainty, while in this paper, we assume that
one supplier is perfectly reliable while the other supplier has
a random yield issue. This setting is prevalent in both liter-
ature [11, 12] and practice. For example, the key component
providers in assembly system (e.g., Intel) are always stable in
their production capacity and can operate quite well. There-
fore, they are nearly perfectly reliable. In contrast, the other
component providers may suffer yield uncertainty, because

they are usually in small size and unreliable in managing
the production. One notable paper is Pan and So [13], in
which they analyze an assemble-to-order system with these
two types of supply. In their paper, assembler determines
both kinds of suppliers’ production input quantity in the
interest of maximizing system’s profit when facing price-
dependent demand. Different from them, in our research
there are multiple decision makers: the assembler decides
the production quantity, while the supplier determines his
production quantity.

The remainder of this paper is organized as follows. In
Section 2, we describe the model setting. The equilibrium
decisions of both decentralized and centralized systems are
derived in Section 3. Section 4 investigates supply chain
coordination and numerical examples. Section 5 concludes
the paper and discusses some future researches.

2. Model Descriptions

Consider a decentralized assembly system that consists of two
suppliers and one assembler, in which all the participants are
risk-neutral and in purpose of maximizing their own profits.
The final product consists of two components, as we define
them as the key component and the matching component.
The key component is provided by supplier 1 under ordering
mode, and its unit production cost is 𝑐

1
and the unit wholesale

price is 𝑤
1
(𝑤
1
≥ 𝑐
1
). Differently, supplier 2 produces the

matching component under VMImode with unit production
cost 𝑐

2
, and the unit wholesale price for component 2 is

𝑤
2
(𝑤
2
≥ 𝑐
2
). We assume that supplier 1’s production yield is

perfectly reliable, while supplier 2 has a random production
yield. In particular, if supplier 2’s initial input quantity is 𝑞,
finally the output quantity of the components (that meet the
quality level) is 𝜃𝑞. 𝜃 is a random variable that falls into [0, 1]
with probability distribution function 𝑔(⋅) and cumulative
distribution function 𝐺(⋅) [13–15]. On the other hand, the
market demand 𝐷 is also stochastic and follows the proba-
bility distribution function 𝑓(⋅) and cumulative distribution
function 𝐹(⋅) in [0,∞). Without loss of generality, we assume
that the final product’s unit price is 𝑝 (𝑝 ≥ 𝑤

1
+ 𝑤
2
) and the

assembly cost equals 0 (actually, if the cost 𝑐
𝑎
> 0, the final

product’s unit price can be modified to 𝑝 = 𝑝 + 𝑐
𝑎
).

In a single-period setting, facing a random market
demand 𝐷, the assembler determines the order quantity 𝑄

1

from supplier 1 and takes the corresponding cost of over-
stock and shortage. This is the interaction between supplier
1 and assembler under ordering mode. In contrast, under
the VMI contract with supplier 2, supplier 2 is the only
decision maker that determines the input quantity 𝑄

2
of

matching component and will not receive the payment until
the component is consumed.After both components’ produc-
tion and delivery are finished, the assembler assembles the
components together and sells them to the customer. Once
the overall product quantity is lower than themarket demand
(min𝐸(𝑄

1
, 𝜃𝑄
2
) < 𝐷), the assembler will be penalized by the

customer for shortage.The unit penalty cost is 𝛽. At the same
time, if supplier 2’s production quantity 𝜃𝑄

2
is insufficient

(𝜃𝑄
2
< 𝐷), he will also receive the punishment from the
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assembler. The unit penalty cost is 𝛽
2
(𝛽
2
≤ 𝛽). Besides, we

normalize the salvage value of mismatched components to
zero.

In summary, in this assembly system the assembler
and supplier 2 simultaneously decide the production input
quantity of the key component and thematching component.
Therefore, we can develop a static Nash game model between
the assembler and supplier 2 to derive their equilibrium
strategies. In the following section, we first set up a bench-
mark by investigating the centralized system. After that, we
focus on the decentralized systemwith dual supplymodes. As
a matter of convenience, we use 𝑋𝑑 to denote the condition
in the decentralized system and𝑋𝑐 to represent the condition
in the centralized system.

3. System’s Optimal Decisions

In this section, we first set up a benchmark by studying
the centralized system. Afterwards, we study the Nash game
between the assembler and supplier 2 in the decentralized
system. Comparing the channel’s performances under these
two scenraios, we finally discuss the supply chain coordina-
tion mechanism in the system.

3.1. Centralized System. In a centralized system, the assem-
bler and the two suppliers will cooperate as one to achieve the
system’s highest performance. Therefore, we first formulate a
centralized system’s (denoted as 𝐵) expected profit function
as follows:

Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
) = 𝑝𝐸 [min (𝑄

1
, 𝜃𝑄
2
, 𝐷)] − (𝑐

1
𝑄
1
+ 𝑐
2
𝑄
2
)

− 𝛽𝐸[𝐷 −min (𝑄
1
, 𝜃𝑄
2
)]
+

.

(1)

Note that if the channel is centralized, its payoff is entirely
determined by the production quantities of two components.
As in (1), the first term is the final product’s expected sales
revenue. The second term is the production cost of both
the key and the matching components. The third term is
the expected penalty when stock-out occurs. Fixing either
𝑄
𝑖
(𝑖 = 1, 2), the maximization of Π𝑐

𝐵
(𝑄
1
, 𝑄
2
) becomes

a news-vendor problem. Thus, we can use the following
lemma to characterize the property of Π𝑐

𝐵
(𝑄
1
, 𝑄
2
). Note that

throughout paper, all the proofs of lemmas and theorems are
given in the appendix.

Lemma 1. The centralized system’s expected profit function,
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
), is jointly concave in𝑄

1
∈ [0,∞) and𝑄

2
∈ [0,∞).

The unique optimal input quantity of both the key and the
matching components, 𝑄𝑐∗

1
and 𝑄𝑐∗

2
, meets the F.O.Cs:

𝜕Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
2

= (𝑝 + 𝛽)∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑐
2
= 0,

(2)

𝜕Π
𝑐

B (𝑄1, 𝑄2)

𝜕𝑄
1

= (𝑝 + 𝛽)∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑐
1
= 0.

(3)

From Lemma 1, we can always find the unique pair of
(𝑄
𝑐∗

1
, 𝑄
𝑐∗

2
) that maximizes Π𝑐

𝐵
(𝑄
1
, 𝑄
2
). Moreover, we show

that (2) and (3) are symmetric and irrespective to the
parameter 𝜃. Given so, we can derive the relationship of 𝑄𝑥∗

1

and 𝑄𝑥∗
2

(𝑥 represents 𝑑 and 𝑐). The following theorem states
that 𝑄𝑥∗

2
> 𝑄
𝑥∗

1
always holds.

Theorem 2. In centralized system, the optimal input quantity
of the matching component is strictly larger than the optimal
input quantity of the key component, that is, 𝑄𝑐∗

2
> 𝑄
𝑐∗

1
.

The intuition behind Theorem 2 can be explained as
follows. Consider that with random yield, if the input
quantity of matching component is fewer than that of the
key component, the output 𝜃𝑄

2
must be eternally fewer

than 𝑄
1
. This implies that the penalty cost of matching

component’s shortage can be reduced by enlarging its input
quantity, which is also beneficial to supplier 2 and the
entire system. Therefore, only if 𝑄

2
exceeds 𝑄

1
, they can

reach an equilibrium. Now, we have derived the equilibrium
decisions in the centralized system. This will be compared
with the following scenario wherein the two players make
their decisions independently.

3.2. Decentralized System. In the decentralized system,
assembler (denoted as 𝐴) will pay supplier 1 (denoted as 𝑆

1
)

immediately after he finishes the key component’s delivery.
Therefore, his profit function is Π𝑑

𝑆
1

= (𝑤
1
− 𝑐
1
)𝑄
1
, which is

nonnegative and meets the participant constraint.
As to supplier 2 (denoted as 𝑆

2
), he will not receive

the payment until the matching component is consumed.
Besides, supplier 2 will be penalized by the assembler if his
output is less than the customer’s demand. Thus, supplier 2’s
expected profit function can be formulated as

Π
𝑑

𝑆
2

= 𝑤
2
𝐸 [min (𝑄

1
, 𝜃𝑄
2
, 𝐷)] − 𝑐

2
𝑄
2
− 𝛽
2
𝐸[𝐷 − 𝜃𝑄

2
]
+

.

(4)

In (4), the first term is the expected revenue. The second
term is the production cost, which is based on the input
quantity.The third term stands for the expected penalty when
the stock out of the matching component occurs. Similarly,
we have the assembler’s expected profit function as follows:

Π
𝑑

𝐴
= (𝑝 − 𝑤

2
) 𝐸 [min (𝑄

1
, 𝜃𝑄
2
, 𝐷)] − 𝑤

1
𝑄
1

− 𝛽𝐸[𝐷 −min (𝑄
1
, 𝜃𝑄
2
)]
+

+ 𝛽
2
𝐸[𝐷 − 𝜃𝑄

2
]
+

.

(5)

Note that in the above equation, the first two terms are the
final product’s expected sales revenueminus the procurement
cost of the key and the matching components.The third term
is the penalty penalized by the customer when the stock-out
occurs. The fourth one is the compensation from supplier 2
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when his yield cannot meet the customer’s demand. The
following lemma demonstrates that the objective functions,
Π
𝑑

𝑆
2

and Π
𝑑

𝐴
, are concave in supplier 2’s and supplier 1’s

production (input) quantity, respectively.

Lemma 3. Let 𝑄𝑑∗
𝑖
(𝑄
𝑗
) denote the optimal production input

quantity of the key/matching component for a given 𝑄
𝑗
(𝑖, 𝑗 =

1, 2; 𝑖 ̸= 𝑗). Then, we have the following.

(i) Supplier 2’s profit function, Π𝑑
𝑆
2

, is concave in 𝑄
2
∈

[0,∞). And the optimal input quantity𝑄𝑑∗
2
(𝑄
1
)meets

the first-order condition:

𝜕Π
𝑑

𝑆
2

(𝑄
1
, 𝑄
2
)

𝜕𝑄
2

= 𝑤
2
∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ 𝛽
2
∫

1

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑐
2
= 0.

(6)

(ii) The assembler’s profit function, Π𝑑
𝐴
, is concave in 𝑄

1
∈

[0,∞). And, the optimal input quantity𝑄𝑑∗
1
(𝑄
2
)meets

the first-order condition:

𝜕Π
𝑑

𝐴
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

= (𝑝 + 𝛽 − 𝑤
2
) ∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑤
1
= 0.

(7)

With Lemma 3, we can characterize the optimal produc-
tion quantity of both key and matching components through
their first-order-conditions (F.O.Cs) and the static Nash game
equilibrium. In particular, we have the following theorem.

Theorem4. There is a unique static Nash equilibrium solution
𝐷(𝑄
𝑑∗

1
, 𝑄
𝑑∗

2
) to the assembler’s and supplier 2’s decisions of the

key and the matching components’ production quantity. The
solution (𝑄𝑑∗

1
, 𝑄
𝑑∗

2
)meets the combination of (6) and (7).

Theorem 4 derives the unique optimal production quan-
tity of the key component (𝑄𝑑∗

1
) and thematching component

(𝑄𝑑∗
2
), which are given under the exogenous operational

parameters, for example, thewholesale price𝑤
1
and𝑤

2
.These

indicate the highest payoffs that the assembler and suppliers
can achieve in the decentralized system, which are certainly
lower than those in the centralized system. Therefore, to
identify the gap (inefficiency) between these two scenarios
(decentralized versus centralized), we have the following
theorem.

Theorem 5. In the decentralized system, the summation of
all the participants’ optimal profit is strictly less than the
centralized system’s optimal total profit, that is,

(Π
𝑑

𝑆
1

+ Π
𝑑

𝑆
2

+ Π
𝑑

𝐴
)
𝑄
1
=𝑄
𝑑∗

1
,𝑄
2
=𝑄
𝑑∗

2

< Π
𝑐

𝐵
(𝑄
𝑐∗

1
, 𝑄
𝑐∗

2
) . (8)

From Theorem 5, we can see that although there exists a
unique static Nash equilibrium in the decentralized system, it
is necessary to introduce a proper contract to coordinate the
supply chain to move like a centralized system.Therefore, we
propose an advance payment contract to achieve the supply
chain coordination.

3.3. Supply Chain Coordination. Among the previous lit-
erature, a number of different contract types aiming at
coordinating the supply chain are discussed, for example,
the revenue sharing contract, the buy-back contract, and
so forth. For a detailed review, please refer to Cachon [16].
Differently, in this paper we focus on another contract type:
advance payment contract. That is, at the beginning of a
production period, the assembler pays (𝜆

1
Π
𝑐∗

𝐵
+ 𝑐
1
𝑄
𝑐∗

1
) to

supplier 1 and (𝜆
2
Π
𝑐∗

𝐵
+𝑐
2
𝑄
𝑐∗

2
) to supplier 2. After receiving the

customer’s order, the assembler announces the production
input quantity of both the key and thematching components,
𝑄
𝑐∗

𝑖
(𝑖 = 1, 2). Afterwards, the suppliers carry out the

production according to their announcement. Finally, the
assembler assembles the components into the products and
sells them to the customer. Accordingly, he obtains the profit
of (1 − ∑2

𝑖=1
𝜆
𝑖
)Π
𝑐∗

𝐵
, where 𝜆

𝑖
∈ [0, 1] and ∑2

𝑖=1
𝜆
𝑖
≤ 1.

Note that the major feature of the above contract is that
the assembler should pay the suppliers in advance. Thus, if
supplier 𝑖’s profit (𝜆

𝑖
Π
𝑐∗

𝐵
) is less than what he can gain in

the decentralized system, the contract will fail in practice.
Therefore, we have the following theorem to state that there
always exists a proper pair of (𝜆

1
, 𝜆
2
) which can successfully

implement the contract.

Theorem 6. The decentralized assembly system with dual
supply modes always can be coordinated through the advance
payment contract. In which, the contract parameter 𝜆

𝑖
meets

the following conditions:

Π
𝑑∗

𝑆
𝑖

Π𝑐∗
𝐵

≤ 𝜆
𝑖
≤ 1 −

Π
𝑑∗

𝐴
+ Π
𝑑∗

𝑆
𝑗

Π𝑐∗
𝐵

,

2

∑

𝑖=1

𝜆
𝑖
≤ 1 −

Π
𝑑∗

𝐴

Π𝑐∗
𝐵

, (9)

wherein Π𝑑∗
𝑦

= Π
𝑑

𝑦
(𝑄
𝑑∗

1
, 𝑄
𝑑∗

2
), 𝑦 ∈ {𝑆

1
, 𝑆
2
, 𝐴}, and 𝑖, 𝑗 = 1, 2,

𝑖 ̸= 𝑗.

WithTheorem 6,we can draw the insight that the advance
payment successfully makes the suppliers operate as the
assembler’s subsidiaries, so as to achieve the supply chain
coordination. Besides, under this contract the assembler
actually changes the business scenario with supplier 2 by
deciding the input quantity of the matching component
himself. This implies that when facing two kinds of supply,
the VMI arrangement with the supplier who generates yield
uncertainty is not beneficial for the entire supply chain. To
this point, we further study the comparison of the decentral-
ized and centralized systems and investigate the effectiveness
of the advance payment contract in the following section.

4. Numerical Analysis

In this section, we conduct two numerical examples. In the
first example, we make a comparison between components’
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Table 1: Performance with different penalty, price, and demand.

Demand x (𝑄
𝑥

1

∗,𝑄𝑥
2

∗
) Π

𝑥

𝑆1

∗
Π
𝑥

𝑆2

∗
Π
𝑥

𝐴

∗
∑
𝑦
Π
𝑥

𝑦

∗

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

N(40, 1.5)
𝑑 (39.5, 56.1) (39.8, 60.1) 79.00 39.80 32.46 54.15 184.05 162.60 295.51 256.54
𝑑
 (40.6, 70.9) (40.5, 64.0) 81.20 40.50 70.90 96.00 175.54 128.07 327.64 264.57
𝑐 (41.3, 82.0) (41.0, 78.8) / 333.63 274.89

N(35, 2)
𝑑 (34.3, 48.6) (34.8, 52.9) 68.60 34.80 24.44 42.23 147.40 134.52 240.44 211.55
𝑑
 (35.8, 62.8) (35.6, 56.5) 71.60 35.60 62.80 84.75 139.21 98.96 273.61 219.31
𝑐 (36.7, 73.4) (36.5, 70.1) / 279.39 229.05

N(45, 1)
𝑑 (44.6, 62.6) (44.9, 68.4) 89.20 44.90 40.10 63.72 213.29 191.80 342.59 300.42
𝑑
 (45.4, 79.4) (45.3, 71.7) 90.80 45.30 79.40 107.56 208.46 153.89 378.66 306.75
𝑐 (45.8, 92.0) (45.7, 88.2) / 384.89 318.10

Case 1: 𝑐1 = 4, 𝑤1 = 6, 𝑐2 = 3, 𝑤2 = 8, 𝛽2 = 4, 𝑝 = 25, and 𝛽 = 15.
Case 2: 𝑐1 = 4, 𝑤1 = 5, 𝑐2 = 3, 𝑤2 = 9, 𝛽2 = 5, 𝑝 = 23, and 𝛽 = 13.

equilibrium quantities and firms’ expected payoffs under
three alternative scenarios: the decentralized system with
dual supply modes, the decentralized system with ordering
mode [1, 17], and the centralized system. This helps us to
identify the magnitude of decentralization in the assembly
system with dual supply modes. Second, we examine the
robustness of advance payment contract on the supply chain
coordination bymaking the sensitivity analysis of sharing rate
𝜆
𝑖
(𝑖 = 1, 2).

4.1. Comparison of the Alternative Scenarios. In Section 3.3,
we have shown that dual supply modes is never beneficial
to the entire supply chain, which is caused by the conflict
between two supply modes: ordering mode and VMI mode.
To better distinguish the difference between these two mode,
we next introduce another scenario that the assembly system
only contains ordering mode (denoted as 𝑑), wherein both
the key and the matching components’ input quantity are
selected by the assembler. Intuitively, under such a circum-
stance the supply chain’s performance should be better than
that with dual supplymodes; however, it is still worse than the
centralized system since the decentralization still exists.

With only ordering mode, the assembler independently
decides both the input quantities of key component and
matching component. Therefore, each party’s expected profit
functions change to

Π
𝑑


𝑆
1

= (𝑤
1
− 𝑐
1
) 𝑄
1
, Π

𝑑


𝑆
2

= 𝑤
2
𝐸 [𝜃𝑄

2
] − 𝑐
2
𝑄
2
, (10)

Π
𝑑


𝐴
= 𝑝𝐸 [min (𝑄

1
, 𝜃𝑄
2
, 𝐷)] − 𝑤

1
𝑄
1
− 𝑤
2
𝐸 (𝜃𝑄

2
)

− 𝛽𝐸[𝐷 −min (𝑄
1
, 𝜃𝑄
2
)]
+

.

(11)

Following the similar principle of Lemma 1, we can easily
find that (11) is jointly concave in𝑄

1
and𝑄

2
, and the optimal

(𝑄
𝑑

∗

1
, 𝑄
𝑑

∗

2
)meets the following F.O.Cs:

𝜕Π
𝑑


𝐴
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

= (𝑝 + 𝛽)∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

− 𝑤
2
∫

1

0

𝜃𝑔 (𝜃) 𝑑𝜃 = 0,

𝜕Π
𝑑


𝐴
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

= (𝑝 + 𝛽)∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑤
1
= 0.

(12)

Due to the F.O.Cs and the profit functions’ complexity, we
now make the comparison of the three alternative scenarios
via numerical approaches. In the following numerical exam-
ple, we conduct several comparisons under different groups
of parameters.

Example 1. Assume that the customer’s demand follows the
normal distribution and the production random variable of
supplier 2 follows the uniform distribution. See Table 1.

Note that Table 1 represents the key and the matching
components’ optimal input quantity, the expected profits
of two suppliers and the assembler, and the expected total
profit of the supply chain for three alternative scenarios. As
observed from the above table, we have ∑

𝑦
Π
𝑑∗

𝑦
< ∑
𝑦
Π
𝑑

∗

𝑦
<

Π
𝑐∗

𝐵
, which demonstrates that the decentralized systems

generate incoordination, and the decentralized system only
with ordering mode performs better than the one with dual
supply modes. Specifically, both the key and the matching
components’ optimal input quantity in the decentralized
systems are less than those in the centralized system, that
is, 𝑄𝑑∗
1

< 𝑄
𝑑

∗

1
< 𝑄
𝑐∗

1
and 𝑄

𝑑∗

2
< 𝑄
𝑑

∗

2
< 𝑄
𝑐∗

2
, which

directly makes the performance of decentralized systems
become worse than the centralized system. Besides, there
existΠ𝑑


∗

𝑆
1

> Π
𝑑

∗

𝑆
1

,Π𝑑

∗

𝑆
2

> Π
𝑑

∗

𝑆
2

, andΠ𝑑

∗

𝑆
2

< Π
𝑑∗

𝑆
2

. This implies
that from the supplier’s perspective, they prefer to providing
components with the ordering mode. In contrast, under the
decentralized situation, the assembler will certainly choose
the VMI mode with the supplier who generates yield uncer-
tainty, even though this option significantly undermines the
channel’s performance.
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Figure 1: Effectiveness of the advance payment contract under different 𝜆
𝑖
.

4.2. Sensitivity Analysis on 𝜆
𝑖
. In the above discussion, we

have shown that the advance payment contract can perfectly
coordinate the decentralized supply chain by setting the
appropriate 𝜆

𝑖
. We next identify how the firms’ equilibrium

payoffs react to the variance of 𝜆
𝑖
.

Example 2. Given the following data: 𝑐
1
= 4, 𝑤

1
= 6, 𝑐
2
= 3,

𝑤
2

= 8, 𝛽
2

= 4, 𝑝 = 25, 𝛽 = 15; 𝐷 ∽ 𝑁(40, 1.5),
𝜃 ∽ 𝑈(0, 1), let 𝜆

1
take the value uniformly distributed

over [(Π𝑑∗
𝑆
1

/Π
𝑐∗

𝐵
), 1 − ((Π

𝑑∗

𝐴
+ Π
𝑑∗

𝑆
2

)/Π
𝑐∗

𝐵
)] and 𝜆

2
take the

value of [(1 − 𝜆
1
− (Π
𝑑∗

𝐴
/𝜋
𝑐∗

𝐵
)) + (Π

𝑑∗

𝑆
2

/Π
𝑐∗

𝐵
)]/2, which is

in [(Π
𝑑∗

𝑆
2

/Π
𝑐∗

𝐵
), 1 − ((Π

𝑑∗

𝐴
+ Π
𝑑∗

𝑆
1

)/Π
𝑐∗

𝐵
)]. Figure 1 shows the

effectiveness of the advance payment contract.

In Figure 1, we can see that as long as the 𝜆
𝑖
is in its valid

interval, all the suppliers and the assembler can be better off
and the decentralized system can be perfectly coordinated
with the advance payment contract. Therefore, it is effective
and practicable.

5. Conclusion

In this paper, we investigate the equilibrium production and
procurement strategies in a decentralized assembly system
consisting of a single assembler and two suppliers. In partic-
ular, the assembler orders the key component from supplier 1
who is perfectly reliable, while supplier 2 provides the match-
ing component under VMI mode with yield uncertainty. We
derive the components’ optimal production input quantity in
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a static Nash game model and also set up a benchmark case
by identifying the centralized system. Given the comparison
between these two scenarios, we propose an advance payment
contract to achieve supply chain coordination. We also make
twonumerical examples andfind that (1) the less components’
optimal production input quantity makes the decentralized
systems perform worse than the centralized system, (2) the
assembler prefers VMI mode in practice so as to maximize
his own expected profit, and (3) advance payment contract is
effective regardless the sharing rate.

One extension of our model is to consider a more general
assembly system with one assembler and 𝑁 (≥3) suppliers,
where the decisions of those suppliers with yield uncertainty
can affect each other. Besides, it can be extended to other ran-
dom yield models. For example, in semiconductor industry,
the output of chips 𝑌(𝑞) is a nonlinear function of the input
of silicon wafers 𝑞, and other related factors.These extensions
certainly have the potential to be better explored in the future.

Appendix

Proof of Lemma 1. Equation (1) can be rewritten as
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
) = 𝑝𝐶 − 𝛽𝐷 − (𝑐

1
𝑄
1
+ 𝑐
2
𝑄
2
), wherein

𝐶 = ∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑄
1
𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ ∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑄
2
𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ ∫

𝑄
1

0

∫

1

𝐷/𝑄
2

𝐷𝑔 (𝜃) 𝑓 (𝐷) 𝑑𝜃 𝑑𝐷,

𝐷 = ∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

(𝐷 − 𝑄
1
) 𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ ∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

(𝐷 − 𝜃𝑄
2
) 𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃.

(A.1)

Taking first- and second-order derivatives with respect to
𝑄
1
and 𝑄

2
in (1) separately, we get

𝜕Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
2

= (𝑝+𝛽)∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃−𝑐
2
,

𝜕Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

= (𝑝+𝛽)∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃−𝑐
1
,

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄2
2

= − (𝑝 + 𝛽)(𝐸 +
𝑄
2

1

𝑄3
2

𝐹) ,

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄2
1

= − (𝑝 + 𝛽) (𝐺 +
1

𝑄
2

𝐹) ,

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1
𝜕𝑄
2

= (𝑝 + 𝛽)
𝑄
1

𝑄2
2

𝐹.

(A.2)

Here, 𝐸 = ∫
𝑄
1
/𝑄
2

0
𝜃
2
𝑓(𝜃𝑄
2
)𝑔(𝜃)𝑑𝜃 > 0, 𝐹 =

∫
∞

𝑄
1

𝑓(𝐷)𝑔(𝑄
1
/𝑄
2
)𝑑𝐷 > 0, and 𝐺 = ∫

1

𝑄
1
/𝑄
2

𝑓(𝑄
1
)𝑔(𝜃)𝑑𝜃 > 0.

Then, we derive the Hessen Matrix as follows:

𝐻 =



𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄2
1

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1
𝜕𝑄
2

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄2
2

𝜕
2
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
)

𝜕𝑄
2
𝜕𝑄
1



= (𝑝 + 𝛽)



− (𝐺 +
1

𝑄
2

𝐹)
𝑄
1

𝑄2
2

𝐹

𝑄
1

𝑄2
2

𝐹 −(𝐸 +
𝑄
2

1

𝑄3
2

𝐹)



.

(A.3)

In (A.3), the value of the first-order determinant is −(𝑝 +
𝛽)(𝐺 + (1/𝑄

2
)𝐹) < 0 and the value of the second-order

determinant is (𝑝 + 𝛽)(𝐸𝐺 + (𝑄
2

1
/𝑄
3

2
)𝐹𝐺 + (1/𝑄

2
)𝐸𝐹) > 0.

As such, the Hessen Matrix is negative definite. Therefore,
Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
) is joint concave in 𝑄

1
∈ [0,∞) and 𝑄

2
∈ [0,∞).

And the optimal production input quantity (𝑄𝑐∗
1
, 𝑄
𝑐∗

2
)meets

the F.O.Cs, which consists of (𝜕Π𝑐
𝐵
(𝑄
1
, 𝑄
2
))/𝜕𝑄

2
= 0 and

(𝜕Π
𝑐

𝐵
(𝑄
1
, 𝑄
2
))/𝜕𝑄

1
= 0.

Proof of Lemma 3. Equation (4) can be rewritten as Π𝑑
𝑆
2

=

𝑤
2
𝐴 − 𝛽

2
𝐵 − 𝑐
2
𝑄
2
, wherein

𝐴 = ∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑄
1
𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ ∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑄
2
𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ ∫

𝑄
1

0

∫

1

𝐷/𝑄
2

𝐷𝑔 (𝜃) 𝑓 (𝐷) 𝑑𝜃 𝑑𝐷,

𝐵 = ∫

1

0

∫

∞

𝜃𝑄
2

(𝐷 − 𝜃𝑄
2
) 𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃.

(A.4)

Fix 𝑄
1
, taking first- and second-order derivatives with

respect to 𝑄
2
in (4), we get

𝜕Π
𝑑

𝑆
2

𝜕𝑄
2

= 𝑤
2
∫

𝑄
1
/𝑄
2

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃

+ 𝛽
2
∫

1

0

∫

∞

𝜃𝑄
2

𝜃𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑐
2
,

𝜕
2
Π
𝑑

𝑆
2

𝜕𝑄2
2

= −𝑤
2
{∫

𝑄
1
/𝑄
2

0

𝜃
2
𝑓 (𝜃𝑄

2
) 𝑔 (𝜃) 𝑑𝜃

+∫

∞

𝑄
1

𝑄
2

1

𝑄3
2

𝑓 (𝐷) 𝑔(
𝑄
1

𝑄
2

)𝑑𝐷}

− 𝛽
2
∫

1

0

𝜃
2
𝑓 (𝜃𝑄

2
) 𝑔 (𝜃) 𝑑𝜃.

(A.5)
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It is easy to find that 𝜕2Π𝑑
𝑆
2

/𝜕𝑄
2

2
< 0. Therefore, Π𝑑

𝑆
2

is
concave in𝑄

2
. Besides, we observe that 𝜕Π𝑑

𝑆
2

/𝜕𝑄
2
|
𝑄
2
=0
= 𝑤
2
+

𝛽
2
𝜃 − 𝑐
2
> 0 and 𝜕Π𝑑

𝑆
2

/𝜕𝑄
2
|
𝑄
2
→∞

= −𝑐
2
< 0. As such, there

must exist a 𝑄
2
∈ [0,∞) that meets the first-order condition

𝜕Π
𝑑

𝑆
2

/𝜕𝑄
2
= 0.

Similarly, fix 𝑄
2
, taking first- and second-order deriva-

tives with respect to 𝑄
1
in (5), we get

𝜕Π
𝑑

𝐴

𝜕𝑄
1

= (𝑝 + 𝛽 − 𝑤
2
) ∫

1

𝑄
1
/𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔 (𝜃) 𝑑𝐷𝑑𝜃 − 𝑤
1
,

𝜕
2
Π
𝑑

𝐴

𝜕𝑄2
1

= − (𝑝 + 𝛽 − 𝑤
2
)

× {∫

1

𝑄
1
/𝑄
2

𝑓 (𝑄
1
) 𝑔 (𝜃) 𝑑𝜃

+
1

𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔(
𝑄
1

𝑄
2

)𝑑𝐷} .

(A.6)

We can easily derive 𝜕2Π𝑑
𝐴
/𝜕𝑄
2

1
< 0, 𝜕Π𝑑

𝐴
/𝜕𝑄
1
|
𝑄
1
=0

=

𝑝 + 𝛽 − 𝑤
2
− 𝑤
1
> 0, and 𝜕Π

𝑑

𝐴
/𝜕𝑄
1
|
𝑄
1
→∞

= −𝑤
1
< 0.

Therefore, we can claim that Π𝑑
𝐴
is concave in 𝑄

1
and the

optimal 𝑄𝑑∗
1
(𝑄
2
)meets the first-order condition 𝜕Π𝑑

𝐴
/𝜕𝑄
1
=

0.

Proof of Theorem 2. Simplifying (7) and (3), we haveing

[1 − 𝐹 (𝑄
𝑑∗

1
)] × [1 − 𝐺(

𝑄
𝑑∗

1

𝑄𝑑∗
2

)] =
𝑤
1

𝑝 + 𝛽 − 𝑤
2

, (A.7)

[1 − 𝐹 (𝑄
𝑐∗

1
)] × [1 − 𝐺(

𝑄
𝑐∗

1

𝑄𝑐∗
2

)] =
𝑐
1

𝑝 + 𝛽
. (A.8)

Consider the value of 𝐺(𝑄𝑥∗
1
/𝑄
𝑥∗

2
). If 𝑄𝑑∗

1
≥ 𝑄
𝑑∗

2
or

𝑄
𝑐∗

1
≥ 𝑄
𝑐∗

2
, 𝐺(𝑄𝑥∗
1
/Q𝑥∗
2
) = 1. As such, the left parts of (A.7)

and (A.8) both equal 0. Meanwhile, the right part of (A.7)
and (A.8) both are larger than 0. Thus, both (A.7) and (A.8)
cannot be balanced unless 𝑄𝑥∗

1
< 𝑄
𝑥∗

2
.

Proof of Theorem 4. Considering the profit curves of supplier
2 and the assembler in (4) and (5), we let

𝑁
1
(𝑄
1
, 𝑄
2
) =

𝜕Π
𝑑

𝐴
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

,

𝑁
2
(𝑄
1
, 𝑄
2
) =

𝜕Π
𝑑

𝑆
2

(𝑄
1
, 𝑄
2
)

𝜕𝑄
2

.

(A.9)

Taking first-order derivative with respect to 𝑄
1

in
𝑁
1
(𝑄
1
, 𝑄
2
) and𝑁

2
(𝑄
1
, 𝑄
2
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, 𝑄
2
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𝜕𝑄
1

=
𝜕
2
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𝑑
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𝑄
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1
) 𝑔 (𝜃) 𝑑𝜃

+
1

𝑄
2

∫

∞

𝑄
1

𝑓 (𝐷) 𝑔(
𝑄
1

𝑄
2

)𝑑𝐷} < 0,

𝜕𝑁
2
(𝑄
1
, 𝑄
2
)

𝜕𝑄
1

=
𝜕
2
Π
𝑑

𝑆
2

(𝑄
1
, 𝑄
2
)

𝜕𝑄
2
𝜕𝑄
1

= 𝑤
2
∫

∞

𝑄
1

𝑄
1

𝑄2
2

𝑓 (𝐷) 𝑔(
𝑄
1

𝑄
2

)𝑑𝐷 > 0.

(A.10)

Then, we get (𝜕𝑁
1
(𝑄
1
, 𝑄
2
)/𝑄
1
) − (𝜕𝑁

2
(𝑄
1
, 𝑄
2
)/𝑄
1
) <

0, for all (𝑄
1
, 𝑄
2
). As such, the players’ profit functions,

Π
𝑆
2

(𝑄
1
, 𝑄
2
) and Π

𝐴
(𝑄
1
, 𝑄
2
), will meet once at most [3,

Proposition 2.1]. Also, referring toTheorem 2.4 in Friedman
[18], there is always a Nash equilibrium existing for concave-
payoff-functions game like ours. Therefore, the static Nash
equilibriumof both component’s production input quantity is
unique and the solution, (𝑄𝑑∗

1
, 𝑄
𝑑∗

2
), meets the combination

of (6) and (7).

Proof of Theorem 5. Sum Π
𝑑

𝑆
1

, (4), and (5), we get the decen-
tralized system’s total profit function:

Π
𝑑

𝑆
1

+ Π
𝑑

𝑆
2

+ Π
𝑑

𝐴
= 𝑝𝐸 {min (𝑄

1
, 𝜃𝑄
2
, 𝐷)} − (𝑐

1
𝑄
1
+ 𝑐
2
𝑄
2
)

− 𝛽𝐸[𝐷 −min (𝑄
1
, 𝜃𝑄
2
)]
+

.

(A.11)

Notice that the formulation is the same as the one of the
centralized system. As such, we can compare their optimal
performance through the components’ optimal production
input quantity. Considering (A.7) and (A.8), we have

𝑤
1

𝑝 + 𝛽 − 𝑤
2

−
𝑐
1

𝑝 + 𝛽
=
(𝑝 + 𝛽) (𝑤

1
− 𝑐
1
) + 𝑐
1
𝑤
2

(𝑝 + 𝛽) (𝑝 + 𝛽 − 𝑤
2
)

> 0.

(A.12)

As a result, we can derive that (𝑄𝑑∗
1
, 𝑄
𝑑∗

2
) ̸= (𝑄

𝑐∗

1
, 𝑄
𝑐∗

2
).

Otherwise, if 𝑄𝑑∗
1

= 𝑄
𝑐∗

1
and 𝑄

𝑑∗

2
= 𝑄
𝑐∗

2
, (A.7) and

(A.8) cannot hold simultaneously.Then, plug (𝑄𝑑∗
1
, 𝑄
𝑑∗

2
) and

(𝑄
𝑐∗

1
, 𝑄
𝑐∗

2
) into the system’s profit function separately; we can

easily get

(Π
𝑑

𝑆
1

+ Π
𝑑

𝑆
2

+ Π
𝑑

𝐴
)
𝑄
1
=𝑄
𝑑∗

1
,𝑄
2
=𝑄
𝑑∗

2

< Π
𝑐

𝐵
(𝑄
𝑐∗

1
, 𝑄
𝑐∗

2
) , (A.13)

since (𝑄𝑐∗
1
, 𝑄
𝑐∗

2
) is the unique optimal decision.
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Proof of Theorem 6. Under the advance payment contract,
each party’s expected profit (denoted as Πco

𝑦
) can be formu-

lated as follows:

Π
co
𝑆
1

=𝜆
1
Π
𝑐∗

𝐵
, Π

co
𝑆
2

=𝜆
2
Π
𝑐∗

𝐵
, Π

co
𝐴
=(1 −

2

∑

𝑖=1

𝜆
𝑖
)Π
𝑐∗

𝐵
.

(A.14)

To ensure the contract’s success, one must satisfy the
following constraints:

Π
co
𝑦
≥ Π
𝑑∗

𝑦
, ∀𝑦 ∈ {𝑆

1
, 𝑆
2
, 𝐴} . (A.15)

Substituting 𝜆
𝑖
(𝑖 = 1, 2) into (A.15) and combining with

Π
𝑐∗

𝐵
> ∑
𝑥
Π
𝑑∗

𝑥
, we can easily derive that 𝜆

𝑖
meets equation

(9).
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