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The discrete memoryless broadcast channels (DMBCs) with noiseless feedback are studied. The entire capacity-equivocation
regions of twomodels of the DMBCs with noiseless feedback are obtained. One is the degraded DMBCs with rate-limited feedback;
the other is the less and reversely less noisy DMBCs with causal feedback. In both models, two kinds of messages are transmitted.
The commonmessage is to be decoded by both the legitimate receiver and the eavesdropper, while the confidential message is only
for the legitimate receiver. Our results generalize the secrecy capacity of the degraded wiretap channel with rate-limited feedback
(Ardestanizadeh et al., 2009) and the restricted wiretap channel with noiseless feedback (Dai et al., 2012). Furthermore, we use a
simpler andmore intuitive deduction to get the single-letter characterization of the capacity-equivocation region, instead of relying
on the recursive argument which is complex and not intuitive.

1. Introduction

Secure data transmission is an important requirement in
wireless communication. Wyner first studied the degraded
(the wiretap channel is said to be (physically) degraded if
𝑋 → 𝑌 → 𝑍 form a Markov chain, where𝑋 is the channel
input and 𝑌 and 𝑍 are the channel outputs of the legitimate
receiver and wiretapper, resp.) wiretap channel in [1], where
the output 𝑍𝑁 of the channel to the wiretapper is degraded
to the output 𝑌𝑁 of the channel to the legitimate receiver. In
Wyner’s model, the transmitter aimed to send a confidential
message 𝑆 to the legitimate receiver and keep the wiretapper
as ignorant of the message as possible. Wyner obtained
the secrecy capacity (the secrecy capacity is the best data
transmission rate under perfect secrecy; i.e., the equivocation
at the wiretapper 𝐻(𝑆 | 𝑍

𝑁
) = 0. The formal definition of

the secrecy capacity is given in Remark 3) and demonstrated
that provable secure communication could be implemented
by using information theoretic methods. This model was
extended to a more general case by Csiszár and Körner
[2], where broadcast channel with confidential messages was
studied; see Figure 1. They considered transmitting not only
the confidential messages 𝑆 to the legitimate receiver, but also

the common messages𝑊 to both the legitimate receiver and
the eavesdropper. The capacity-equivocation region for the
extended model was determined in [2]. This region contains
all the achievable rate triples (𝑅

0
, 𝑅

1
, 𝑅

𝑒
), where 𝑅

0
and 𝑅

1

are the rates of the common and confidential messages and
𝑅
𝑒
is the rate of the confidential message’s equivocation.

Nevertheless, neither Wyner’s model nor Csiszár’s model
considered feedback.

To explore more ways in achieving secure data transmis-
sion, [3–5] studied the effects of the feedback on the capacities
of several channel models. They all showed that feedback
could help enhance the secrecy in wireless transmission. In
[3], Ahlswede and Cai presented both the inner and outer
bounds on the secrecy capacity of the wiretap channel with
secure causal feedback from the decoder and showed that
the outer bound was tight for the degraded case. It was
proved that, by using feedback, the secrecy capacity of the
(degraded) wiretap channel was increased. After Ahlswede’s
exploration, Ardestanizadeh et al. studied the wiretap chan-
nel with secure rate-limited feedback [4].Themain difference
between Ardestanizadeh’s model and Ahlswede’s model is
that the feedback in [4] is independent of the channel outputs,
while the feedback in [3] is originated causally from the
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Figure 1: Broadcast channel with confidential messages.

outputs of the channel to the legitimate receiver. In [4], the
authors got an outer bound on the wiretap channel with
rate-limited feedback through a recursive argument which
was effective but not intuitive. They also showed the outer
bound was tight for the degraded case. In addition, Dai et
al. investigated the secrecy capacity of the restricted wiretap
channel with noiseless causal feedback under the assumption
that the main channel is independent of the wiretap channel
[5].

However, all of these explorations [3–5] focused on
sending only the confidentialmessages.Theydid not consider
sending both the common and confidential messages. In fact,
transmitting the two kinds of messages can be seen in many
systems with feedback. For example, in the satellite television
service, some channels are available to all users for free,
but some other channels are only for those who have paid
for them. Recently, [6] studied the problem of transmitting
both the common and confidential messages in the degraded
broadcast channels with feedback. Note that, like [3], the
feedback in [6] was originated causally from the legitimate
receiver’s channel outputs and not rate-limited. Besides, [7–9]
studied the broadcast channel with feedback where no secure
constraints were imposed.

To further investigate the secure data transmission with
both common and confidential messages and noiseless
feedback, this paper determines the capacity-equivocation
regions of the following two DMBCs with both common
and confidential messages.They are unsolved in the previous
exploration.

(i) Degraded DMBCs with rate-limited feedback, where
the feedback rate is limited by 𝑅

𝑓
and the feedback is

independent of the channel outputs; see Figure 2.
(ii) Less and reversely less noisy (let 𝑋 be the input of

theDMBC,𝑌 the legitimate receiver’s channel output,
and 𝑍 the eavesdropper’s channel output. A DMBC
𝑝(𝑦, 𝑧 | 𝑥) is said to be less noisy if 𝐼(𝑈; 𝑌) ≥ 𝐼(𝑈; 𝑍)

for all 𝑝(𝑢, 𝑥); a DMBC 𝑝(𝑦, 𝑧 | 𝑥) is said to be
reversely less noisy if 𝐼(𝑈; 𝑌) ≤ 𝐼(𝑈; 𝑍) for all 𝑝(𝑢, 𝑥),
where 𝑢 is the value of the auxiliary random variable
𝑈) DMBCs with noiseless causal feedback, where the
feedback is originated causally from the legitimate
receiver’s channel outputs; see Figure 3.

The two channel models are characterized in Section 2.
The main results presented in Section 2 subsume some
important previous findings about the secure data trans-
mission with feedback. (1) By setting the auxiliary random
variable 𝑈 to be constant in the secrecy capacity of the
first model (see (9) in Remark 3), the secrecy capacity
of the degraded wiretap with rate-limited feedback [4] is
obtained. (2) By eliminating the common message in the
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Figure 2: Degraded DMBCs with rate-limited feedback.
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Figure 3: Less and reversely less noisy DMBCs with noiseless causal
feedback.

second model, the capacity-equivocation region of restricted
wiretap channel with noiseless feedback [5] is obtained. (3)
We utilize a simpler and more intuitive deduction to get
the single-letter characterization of the capacity-equivocation
region, instead of relying on the recursive argument (see
[4]) which is complex and not intuitive. (4) We find that
even if the eavesdropper is in a better position than the
legitimate receiver, provable secure communication could
also be implemented in the DMBCs with both common and
confidential messages.

The remainder of the paper is organized as follows.
Section 2 gives the notations and main results, that is, the
capacity-equivocation regions of the two channel models.
Section 3 provesTheorem 2. Section 4provesTheorems 4 and
5. Section 5 concludes the whole work.

2. Channel Models and Main Results

2.1. Notations. Throughout this paper, we use calligraphic
letters, for example, X, Y, to denote the finite sets and ‖X‖

to denote the cardinality of the set X. Uppercase letters, for
example, 𝑋, 𝑌, are used to denote random variables taking
values from finite sets, for example, X, Y. The value of the
random variable 𝑋 is denoted by the lowercase letter 𝑥. We
use 𝑍𝑗

𝑖
to denote the (𝑗 − 𝑖 + 1)-vectors (𝑍

𝑖
, 𝑍

𝑖+1
, . . . , 𝑍

𝑗
) of

random variables for 1 ≤ 𝑖 ≤ 𝑗 and will always drop the
subscript when 𝑖 = 1. Moreover, we use 𝑋 ∼ 𝑝(𝑥) to denote
the probability mass function of the random variable 𝑋. For
𝑋 ∼ 𝑝(𝑥) and 0 ≤ 𝜖 ≤ 1, the set of the typical 𝑁-sequences
𝑥
𝑁 is defined as T𝑁

𝑋
(𝜖) = {𝑥

𝑁
: |𝜋(𝑥 | 𝑥

𝑁
) − 𝑝(𝑥)| ≤ 𝜖𝑝(𝑥)

for all 𝑥 ∈ X}, where 𝜋(𝑥 | 𝑥
𝑁
) denotes the frequency of

occurrences of letter 𝑥 in the sequence 𝑥𝑁 (for more details
about typical sequences, please refer to [10, Chapter 2]). The
set of the conditional typical sequences, for example,T𝑁

𝑌|𝑋
(𝜖),

follows similarly.

2.2. Channel Models and Main Results. This paper studies
the secure data transmission for two subclasses of DMBCs
with noiseless feedback. One is the case where the feedback
is rate-limited and independent of the channel outputs (see
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Figure 2); the other is the case where the feedback is origi-
nated causally from the channel outputs (see Figure 3). Both
models consist of a transmitter and two receivers, named
receiver 1 (legitimate receiver) and receiver 2 (eavesdropper).
The transmitter aims to convey a commonmessage𝑊 to both
receivers in addition to a confidential message 𝑆 intended
only for receiver 1. The confidential message 𝑆 should be
kept secret from receiver 2 as much as possible. We use
equivocation at receiver 2 to characterize the secrecy of the
confidential message.𝑊 and 𝑆 are mutually independent and
uniformly distributed overW and S.

2.2.1. Degraded DMBCs with Rate-Limited Feedback. The
degraded DMBCs with rate-limited feedback (see Figure 2)
are under the condition that the channel to receiver 2 is
physically degraded from the channel to receiver 1; that is,
𝑝(𝑦, 𝑧 | 𝑥) = 𝑝(𝑦 | 𝑥)𝑝(𝑧 | 𝑦) or 𝑋 → 𝑌 → 𝑍 form
a Markov chain, where 𝑋 is the channel input and 𝑌,𝑍 are
observations of receiver 1 and 2. In this model, the encoder
encodes the messages (𝑊, 𝑆) and feedback into codewords
𝑋
𝑁, where 𝑁 is the length of the codeword. They are

transmitted over a discrete memoryless channel (DMC) with
transition probability∏𝑁

𝑖=1
𝑝(𝑦

𝑖
, 𝑧

𝑖
| 𝑥

𝑖
). Receiver 1 obtains𝑌𝑁

and decodes the common and confidential messages (�̂�, 𝑆).
Receiver 2 obtains 𝑍𝑁 and decodes the commonmessage �̂�.
More precisely, we define the encoder-decoder (𝑁, Δ, 𝑃

𝑒1
, 𝑃

𝑒2
)

in Definition 1.

Definition 1. The encoder-decoder (𝑁, Δ, 𝑃
𝑒1
, 𝑃

𝑒2
) for the

degraded DMBCs with rate-limited feedback (with rate
limited by 𝑅

𝑓
) is defined as follows.

(i) The feedback alphabetK satisfies lim
𝑁→∞

(log ‖K‖/

𝑁) ≤ 𝑅
𝑓
. The feedback is generated independent of

the channel output symbols.

(ii) The stochastic channel encoder 𝜑 is specified by a
matrix of conditional probability distributions 𝜑(𝑥𝑁 |

𝑠, 𝑤, 𝑘)which denotes the probability that themessage
𝑠, 𝑤 and the feedback 𝑘 are encoded as the channel
input 𝑥𝑁, where 𝑥𝑁 ∈ X𝑁

, 𝑠 ∈ S, 𝑤 ∈ W, 𝑘 ∈ K,
and ∑

𝑥
𝑁 𝜑(𝑥

𝑁
| 𝑠, 𝑤, 𝑘) = 1. Note that S and W are

the confidential and common message sets.

(iii) Decoder 1 is a mapping ℎ
1
: Y𝑁

→ S × W. The
input of decoder 1 is 𝑌𝑁, and the output is 𝑆, �̂�. The
decoding error probability of receiver 1 is defined as
𝑃
𝑒1

= Pr{ℎ
1
(𝑌

𝑁
) ̸= (𝑆,𝑊)}. Similarly, Decoder 2 is

defined as a mapping ℎ
2
: Z𝑁

→ W. The input of
decoder 2 is 𝑍𝑁, and the output is ̂̂𝑊. The decoding
error probability of receiver 2 is defined as 𝑃

𝑒2
=

Pr{ℎ
2
(𝑍

𝑁
) ̸=𝑊}.

(iv) The equivocation at receiver 2 is defined as

Δ =
1

𝑁
𝐻(𝑆 | 𝑍

𝑁
) . (1)

A rate triple (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) is said to be achievable for the

model in Figure 2 if there exists a channel encoder-decoder
(𝑁, Δ, 𝑃

𝑒1
, 𝑃

𝑒2
) defined in Definition 1, such that

lim
𝑁→∞

log ‖W‖

𝑁
= 𝑅

0
, (2)

lim
𝑁→∞

log ‖S‖
𝑁

= 𝑅
1
, (3)

lim
𝑁→∞

log ‖K‖

𝑁
= 𝑅



𝑓
≤ 𝑅

𝑓
, (4)

lim
𝑁→∞

Δ ≥ 𝑅
𝑒
, (5)

𝑃
𝑒1
≤ 𝜖, 𝑃

𝑒2
≤ 𝜖, (6)

where 𝜖 is an arbitrary small positive real number, 𝑅
0
, 𝑅

1
, 𝑅



𝑓

are the rates of the common messages, confidential mes-
sages, and feedback, and 𝑅

𝑒
is the equivocation rate of the

confidential messages. Note that the feedback rate is limited
by 𝑅

𝑓
. The capacity-equivocation region is defined as the

convex closure of all achievable rate triples (𝑅
0
, 𝑅

1
, 𝑅

𝑒
). The

capacity-equivocation region of the degraded DMBCs with
rate-limited feedback is shown in the following theorem.

Theorem 2. For the degraded DMBCs with limited feedback
rate 𝑅

𝑓
, the capacity-equivocation region is the set

R
𝑑
= { (𝑅

0
, 𝑅

1
, 𝑅

𝑒
) : 0 ≤ 𝑅

𝑒
≤ 𝑅

1
,

𝑅
0
≤ 𝐼 (𝑈; 𝑍) ,

𝑅
1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) ,

𝑅
𝑒
≤ 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) + 𝑅𝑓} ,

(7)

where 𝑈 is an auxiliary random variable and 𝑈 → 𝑋 →

𝑌 → 𝑍 form a Markov chain.

The proof of Theorem 2 is given in Section 3. The remark
of Theorem 2 is shown below.

Remark 3. (i)The secrecy capacity of the model in Figure 2 is
defined as the maximum rate at which confidential messages
can be sent to receiver 1 in perfect secrecy; that is,

𝐶
𝑠
= max

(𝑅0=0,𝑅1 ,𝑅𝑒=𝑅1)∈R
𝑅
1
, (8)

where R is the capacity-equivocation region. Therefore, by
the definition in (8), the secrecy capacity of the degraded
DMBCs with limited feedback rate 𝑅

𝑓
is

𝐶
𝑠𝑑

= max min {𝐼 (𝑋; 𝑌 | 𝑈) , 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) + 𝑅𝑓} .

(9)

This result subsumes the secrecy capacity of the degraded
wiretap channel with rate-limited feedback (see [4]) by
setting the auxiliary random variable 𝑈 to be constant in (9).
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(ii)The capacity-equivocation region in (7) is bigger than
that in [2] without feedback. This implies that feedback can
be used to enhance the secrecy in the DMBCs. Note that this
finding had already been verified in [3–6].

2.2.2. Less and Reversely Less Noisy DMBCs with Noiseless
Causal Feedback. The model in Figure 3 is based on the
assumption that the channel to receiver 1 is independent of
the channel to receiver 2; that is, 𝑝(𝑦, 𝑧 | 𝑥) = 𝑝(𝑦 | 𝑥)𝑝(𝑧 |

𝑥). The definition of the encoder-decoder for this model
is similar to Definition 1 except for the feedback and the
encoder. Different from the model in Figure 2, the feedback
in Figure 3 is originated causally from the channel outputs of
receiver 1 to the transmitter. The stochastic encoder for this
model at time 𝑖, 1 ≤ 𝑖 ≤ 𝑁, is defined as 𝑓

𝑖
(𝑥

𝑖
| 𝑤

𝑖
, 𝑠
𝑖
, 𝑦

𝑖−1
),

where 𝑤
𝑖
∈ W, 𝑠

𝑖
∈ S, 𝑦𝑖−1 ∈ Y𝑖−1 (the channel outputs of

receiver 1 before time 𝑖) and ∑
𝑥𝑖∈X

𝑓
𝑖
(𝑥

𝑖
| 𝑤

𝑖
, 𝑠
𝑖
, 𝑦

𝑖−1
) = 1.

A rate triple (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) is said to be achievable for the

model in Figure 3 if there exists a channel encoder-decoder
(𝑁, Δ, 𝑃

𝑒1
, 𝑃

𝑒2
) such that (2), (3), (5), and (6) hold. Note that

the definition of “achievable” here does not include (4) since
the feedback in the model of Figure 3 is not rate limited. The
definition of secrecy capacity is the same as that in Remark 3.
Then, we present the capacity-equivocation regions of the less
and reversely less noisyDMBCswith noiseless causal feedback
inTheorems 4 and 5, respectively.

Theorem 4. For the less noisy DMBCs with noiseless causal
feedback, the capacity-equivocation region is the set

R
𝑙
= {(𝑅

0
, 𝑅

1
, 𝑅

𝑒
) : 0 ≤ 𝑅

𝑒
≤ 𝑅

1
,

𝑅
0
≤ 𝐼 (𝑈; 𝑍) ,

𝑅
1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) ,

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍)} ,

(10)

where 𝑈 → 𝑋 → (𝑌,𝑍) form a Markov chain.

Theorem 5. For the reversely less noisy DMBCs with noiseless
causal feedback, the capacity-equivocation region is the set

R
𝑟𝑙
= {(𝑅

0
, 𝑅

1
, 𝑅

𝑒
) : 0 ≤ 𝑅

𝑒
≤ 𝑅

1
,

𝑅
0
≤ 𝐼 (𝑈; 𝑌) ,

𝑅
1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) ,

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑋)} ,

(11)

where 𝑈 → 𝑋 → (𝑌,𝑍) form a Markov chain.

The proof of Theorems 4 and 5 is given in Section 4. The
remark of Theorems 4 and 5 is given below.

Remark 6. (i) By the definition in (8), the secrecy capacity of
the less noisy DMBCs with noiseless causal feedback is

𝐶
𝑠𝑙
= max min {𝐼 (𝑋; 𝑌 | 𝑈) ,𝐻 (𝑌 | 𝑍)} . (12)

The secrecy capacity of the reversely less noisy DMBCs with
noiseless causal feedback is

𝐶
𝑠𝑟𝑙
= max min {𝐼 (𝑋; 𝑌 | 𝑈) ,𝐻 (𝑌 | 𝑋)} . (13)

Setting the auxiliary random variable𝑈 to be constant in (12)
and (13), the capacity-equivocation region of the model in [5]
is obtained.

(ii) In themodel of Figure 3, it is assumed that the channel
to receiver 1 is independent of the channel to receiver 2;
that is, 𝑝(𝑦, 𝑧 | 𝑥) = 𝑝(𝑦 | 𝑥)𝑝(𝑧 | 𝑥). This implies
𝑌 → 𝑋 → 𝑍. Therefore, it is easy to see 𝐻(𝑌 |

𝑋) = 𝐻(𝑌 | 𝑋𝑍) ≤ 𝐻(𝑌 | 𝑍); that is, the upper
bound on the equivocation rate 𝑅

𝑒
in (11) for the reversely

less noisy case is smaller than that in (10) for the less noisy
case. This tells that when the eavesdropper is in a better
position than the legitimate receiver (see the reversely less
noisy case), the uncertainty about the confidentialmessages at
the eavesdropper is decreased. Besides, from (13), we see that
even if the eavesdropper is in a better position, the secrecy
capacity is a positive value, which means provable secure
communication could also be implemented in such a bad
condition.

3. Proof of Theorem 2

In this section, Theorem 2 is proved. The converse part
of Theorem 2 gives the outer bound on the capacity-
equivocation region of the degraded DMBCs with rate-
limited feedback. The proof of the converse part is shown in
Section 3.1. The key tools used in the proof include the iden-
tification of the random variables and Csiszár’s sum equality
[2]. In Section 3.2, to prove the direct part of Theorem 2,
a coding scheme is provided to achieve the achievable rate
triples inR

𝑑
.The key ideas in the coding scheme are inspired

by [4]. However, [4] only considers the transmission of the
confidentialmessages. Our coding scheme considers both the
confidential and common messages.

3.1. The Converse Part of Theorem 2. In order to find the
identification of the auxiliary random variables that satisfy
the capacity-equivocation region characterized by R

𝑑
, we

prove the converse part for the equivalent region (the fact
that the two regions are equivalent follows similarly from
[10, Chapter 5, problem 5.8]) containing all the rate triples
(𝑅

0
, 𝑅

1
, 𝑅

𝑒
) such that

0 ≤ 𝑅
𝑒
≤ 𝑅

1
, (14)

𝑅
0
≤ 𝐼 (𝑈; 𝑍) , (15)

𝑅
0
+ 𝑅

1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) + 𝐼 (𝑈; 𝑍) , (16)

𝑅
𝑒
≤ 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) + 𝑅𝑓. (17)



Mathematical Problems in Engineering 5

Nowwe show that all achievable triples (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) satisfy

(14), (15), (16), and (17).
Condition (14) is proved as follows:

𝑅
𝑒
≤ lim

𝑁→∞

Δ

= lim
𝑁→∞

𝐻(𝑆 | 𝑍
𝑁
)

𝑁

≤ lim
𝑁→∞

𝐻(𝑆)

𝑁

= 𝑅
1
.

(18)

To prove condition (15), we calculate

𝐻(𝑊) = 𝐼 (𝑊;𝑍
𝑁
) + 𝐻(𝑊 | 𝑍

𝑁
)

≤
(𝑎3.1)

𝐼 (𝑊;𝑍
𝑁
) + 𝜖

1

=

𝑁

∑

𝑖=1

𝐼 (𝑊;𝑍
𝑖
| 𝑍

𝑖−1
) + 𝜖

1

=

𝑁

∑

𝑖=1

𝐼 (𝑊;𝑍
𝑖
| 𝑍

𝑁

𝑖+1
) + 𝜖

1

=

𝑁

∑

𝑖=1

[𝐼 (𝑊𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
)− 𝐼 (𝑌

𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
𝑊)]+ 𝜖

1

≤

𝑁

∑

𝑖=1

[𝐼 (𝑊𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) − 𝐼 (𝑌

𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
𝑊)] + 𝜖

1

≤

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) + 𝜖

1
,

(19)

where (𝑎3.1) follows from Fano’s inequality and 𝜖
1
is a small

positive number. Note that𝐾𝑁
= (𝐾

1
, 𝐾

2
, . . . , 𝐾

𝑁
), where𝐾

𝑖

is the feedback symbol at time 𝑖, 1 ≤ 𝑖 ≤ 𝑁.
To prove condition (16), we consider

𝐻(𝑆) + 𝐻 (𝑊) = 𝐻(𝑆 | 𝑊𝐾
𝑁
) + 𝐻 (𝑊)

= 𝐼 (𝑆; 𝑌
𝑁
| 𝑊𝐾

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
𝑊𝐾

𝑁
)

+ 𝐼 (𝑊;Z𝑁) + 𝐻(𝑊 | 𝑍
𝑁
)

≤
(𝑎3.2)

𝐼 (𝑆; 𝑌
𝑁
| 𝑊𝐾

𝑁
) + 𝜖

2

+ 𝐼 (𝑊𝐾
𝑁
; 𝑍

𝑁
) + 𝜖

1

=

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
)

+

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
) + 𝜖

1
+ 𝜖

2

=

𝑁

∑

𝑖=1

[𝐼 (𝑆𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
)

−𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
𝑆)]

+

𝑁

∑

𝑖=1

[𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
)

−𝐼 (𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
𝑊𝐾

𝑁
)] + 𝜖

1
+ 𝜖

2

=

𝑁

∑

𝑖=1

[𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
)

+ 𝐼 (𝑆; 𝑌
𝑖
| 𝑍

𝑁

𝑖+1
𝑌
𝑖−1
𝑊𝐾

𝑁
)

−𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
𝑆)]

+

𝑁

∑

𝑖=1

[𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
)

−𝐼 (𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
𝑊𝐾

𝑁
)] + 𝜖

1
+ 𝜖

2

≤

𝑁

∑

𝑖=1

[𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
)

+ 𝐼 (𝑆; 𝑌
𝑖
| 𝑍

𝑁

𝑖+1
𝑌
𝑖−1
𝑊𝐾

𝑁
)

−𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
𝑆)]

+

𝑁

∑

𝑖=1

[𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
)

−𝐼 (𝑌
𝑖−1
; 𝑍

𝑖
| 𝑍

𝑁

𝑖+1
𝑊𝐾

𝑁
)] + 𝜖

1
+ 𝜖

2

=
(𝑎3.3)

𝑁

∑

𝑖=1

[𝐼 (𝑆; 𝑌i | 𝑍
𝑁

𝑖+1
𝑌
𝑖−1
𝑊𝐾

𝑁
)

−𝐼 (𝑍
𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
𝑆)]

+

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) + 𝜖

1
+ 𝜖

2

≤

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑍

𝑁

𝑖+1
𝑌
𝑖−1
𝑊𝐾

𝑁
)

+

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) + 𝜖

1
+ 𝜖

2
,

(20)

where 𝜖
2
is a small positive number and (𝑎3.2) and (𝑎3.3)

follow from Fano’s inequality and Csiszár’s sum equality [2];
that is, ∑𝑁

𝑖=1
𝐼(𝑍

𝑁

𝑖+1
; 𝑌

𝑖
| 𝑌

𝑖−1
𝑊𝐾

𝑁
) = ∑

𝑁

𝑖=1
𝐼(𝑌

𝑖−1
; 𝑍

𝑖
|

𝑍
𝑁

𝑖+1
𝑊𝐾

𝑁
).

To prove condition (17), we calculate

𝐻(𝑆 | 𝑍
𝑁
) = 𝐻(𝑆 | 𝑍

𝑁
,𝑊) + 𝐼 (𝑆;𝑊 | 𝑍

𝑁
)

≤ 𝐻(𝑆 | 𝑍
𝑁
,𝑊) + 𝐻(𝑊 | 𝑍

𝑁
)

= 𝐼 (𝑆; 𝐾
𝑁
, 𝑌

𝑁
| 𝑍

𝑁
,𝑊)

+ 𝐻(𝑆 | 𝑍
𝑁
, 𝐾

𝑁
, 𝑌

𝑁
,𝑊) + 𝐻(𝑊 | 𝑍

𝑁
)
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≤ 𝐼 (𝑆; 𝐾
𝑁
, 𝑌

𝑁
| 𝑍

𝑁
,𝑊)

+ 𝐻(𝑆 | 𝐾
𝑁
, 𝑌

𝑁
) + 𝐻(𝑊 | 𝑍

𝑁
)

= 𝐼 (𝑆; 𝐾
𝑁
| 𝑍

𝑁
,𝑊) + 𝐼 (𝑆; 𝑌

𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊)

+ 𝐻(𝑆 | 𝐾
𝑁
, 𝑌

𝑁
) + 𝐻(𝑊 | 𝑍

𝑁
)

≤ 𝐻(𝐾
𝑁
) + 𝐼 (𝑆; 𝑌

𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊)

+ 𝐻(𝑆 | 𝐾
𝑁
, 𝑌

𝑁
) + 𝐻(𝑊 | 𝑍

𝑁
)

≤ 𝑁𝑅
𝑓
+ 𝐼 (𝑆; 𝑌

𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊) + 𝜖

1
+ 𝜖

2
.

(21)

The last inequality in (21) follows from the Fano’s inequality
and the fact that the feedback rate is limited by 𝑅

𝑓
. Then,

𝐼(𝑆; 𝑌
𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊) will be calculated as follows:

𝐼 (𝑆; 𝑌
𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊)

=

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
𝑍
𝑁
𝑊𝐾

𝑁
)

=

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑖−1
, 𝑍

𝑖
, 𝑍

𝑁

𝑖+1
,𝑊,𝐾

𝑁
)

=
(𝑎3.4)

𝑁

∑

𝑖=1

[𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑖−1
, 𝑍

𝑖
, 𝑍

𝑁

𝑖+1
,𝑊,𝐾

𝑁
)

+ 𝐼 (𝑍
𝑖−1
; 𝑌

𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁

𝑖
,𝑊,𝐾

𝑁
)

−𝐼 (𝑍
𝑖−1
; 𝑌

𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁

𝑖
,𝑊, 𝑆, 𝐾

𝑁
)]

=

𝑁

∑

𝑖=1

[𝐼 (𝑆, 𝑍
𝑖−1
; 𝑌

𝑖
| 𝑌

𝑖−1
, 𝑍

𝑖
, 𝑍

𝑁

𝑖+1
,𝑊,𝐾

𝑁
)

−𝐼 (𝑍
𝑖−1
; 𝑌

𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁

𝑖
,𝑊, 𝑆, 𝐾

𝑁
)]

=

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑖
, 𝑍

𝑁

𝑖+1
,𝑊,𝐾

𝑁
) ,

(22)

where (𝑎3.4) follows from the Markov chain 𝑌
𝑖

→

𝑌
𝑖−1
𝑍
𝑁

𝑖
𝑊𝐾

𝑁
→ 𝑍

𝑖−1 and 𝑌
𝑖

→ 𝑌
𝑖−1
𝑍
𝑁

𝑖
𝑊𝑆𝐾

𝑁
→

𝑍
𝑖−1. Then, we introduce a random variable 𝑄 which is

independent of 𝑆𝑊𝐾
𝑁
𝑋
𝑁
𝑌
𝑁
𝑍
𝑁 and uniformly distributed

over {1, 2, . . . , 𝑁}. Set 𝑈 = 𝑍
𝑁

𝑄+1
𝑌
𝑄−1

𝑊𝐾
𝑁
𝑄,𝑉 = 𝑈𝑆, 𝑌 =

𝑌
𝑄
, 𝑋 = 𝑋

𝑄
, 𝑍 = 𝑍

𝑄
. It is straightforward to see that 𝑈 →

𝑉 → 𝑋 → 𝑌 → 𝑍 form a Markov chain. After using the
standard time sharing argument [10, Section 5.4], (19), (20),
and (22) are simplified into

𝐻(𝑊) ≤

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) + 𝜖

1

= 𝑁𝐼 (𝑈; 𝑍) + 𝜖1,

(23)

𝐻(𝑆) + 𝐻 (𝑊) ≤

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑍

𝑁

𝑖+1
𝑌
𝑖−1
𝑊𝐾

𝑁
)

+

𝑁

∑

𝑖=1

𝐼 (𝑊𝐾
𝑁
𝑌
𝑖−1
𝑍
𝑁

𝑖+1
; 𝑍

𝑖
) + 𝜖

1
+ 𝜖

2

= 𝑁𝐼 (𝑆; 𝑌 | 𝑈) + 𝑁𝐼 (𝑈; 𝑍) + 𝜖1 + 𝜖2

= 𝑁𝐼 (𝑉; 𝑌 | 𝑈) + 𝑁𝐼 (𝑈; 𝑍) + 𝜖1 + 𝜖2,

(24)

𝐼 (𝑆; 𝑌
𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊) =

𝑁

∑

𝑖=1

𝐼 (𝑆; 𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑖
, 𝑍

𝑁

𝑖+1
,𝑊,𝐾

𝑁
)

= 𝑁𝐼 (𝑆; 𝑌 | 𝑍, 𝑈)

= 𝑁𝐼 (𝑈𝑆; 𝑌 | 𝑍, 𝑈)

= 𝑁𝐼 (𝑉; 𝑌 | 𝑍,𝑈) .

(25)

Substituting (25) into (21) and utilizing (5), we get

𝑅
𝑒
≤ lim

𝑁→∞

Δ

= lim
𝑁→∞

𝐻(𝑆 | 𝑍
𝑁
)

𝑁

≤ lim
𝑁→∞

𝑁𝑅
𝑓
+ 𝐼 (𝑆; 𝑌

𝑁
| 𝐾

𝑁
, 𝑍

𝑁
,𝑊) + 𝜖

1
+ 𝜖

2

𝑁

= 𝐼 (𝑉; 𝑌 | 𝑍, 𝑈) + 𝑅𝑓

= 𝐼 (𝑉; 𝑌 | 𝑈) − 𝐼 (𝑉; 𝑍 | 𝑈) + 𝑅𝑓.

(26)

The last equality in (26) follows from the Markov chain𝑈 →

𝑉 → 𝑌 → 𝑍.
To finish the proof of (16) and (17), we need to show that

𝐼(𝑉; 𝑌 | 𝑈) ≤ 𝐼(𝑋; 𝑌 | 𝑈) and 𝐼(𝑉; 𝑌 | 𝑈) − 𝐼(𝑉; 𝑍 | 𝑈) ≤

𝐼(𝑋; 𝑌 | 𝑈) − 𝐼(𝑋; 𝑍 | 𝑈). We first prove 𝐼(𝑉; 𝑌 | 𝑈,𝑋) = 0

and 𝐼(𝑉; 𝑍 | 𝑈,𝑋) = 0:

𝐼 (𝑉; 𝑌 | 𝑈,𝑋) = 𝐻 (𝑌 | 𝑈,𝑋) − 𝐻 (𝑌 | 𝑈, 𝑉,𝑋)

=
(𝑎3.5)

𝐻(𝑌 | 𝑋) − 𝐻 (𝑌 | 𝑋)

= 0,

𝐼 (𝑉; 𝑍 | 𝑈,𝑋) = 𝐻 (𝑍 | 𝑈,𝑋) − 𝐻 (𝑍 | 𝑈,𝑉,𝑋)

=
(𝑎3.6)

𝐻(𝑍 | 𝑋) − 𝐻 (𝑍 | 𝑋)

= 0,

(27)

where (𝑎3.5) follows from the Markov chains 𝑈 → 𝑋 → 𝑌

and (𝑈𝑉) → 𝑋 → 𝑌 and (𝑎3.6) follows from the Markov
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chains 𝑈 → 𝑋 → 𝑍 and (𝑈𝑉) → 𝑋 → 𝑍. Utilizing (27),
we obtain

𝐼 (𝑉; 𝑌 | 𝑈)

= 𝐼 (𝑉,𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑌 | 𝑈, 𝑉)

= 𝐼 (𝑋; 𝑌 | 𝑈) + 𝐼 (𝑉; 𝑌 | 𝑈,𝑋) − 𝐼 (𝑋; 𝑌 | 𝑈, 𝑉)

= 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑌 | 𝑈, 𝑉) ,

(28)

𝐼 (𝑉; 𝑍 | 𝑈)

= 𝐼 (𝑉,𝑋; 𝑍 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈, 𝑉)

= 𝐼 (𝑋; 𝑍 | 𝑈) + 𝐼 (𝑉; 𝑍 | 𝑈,𝑋) − 𝐼 (𝑋; 𝑍 | 𝑈, 𝑉)

= 𝐼 (𝑋; 𝑍 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈, 𝑉) .

(29)

From (28), it is straightforward to see that 𝐼(𝑉; 𝑌 | 𝑈) ≤

𝐼(𝑋; 𝑌 | 𝑈). This proves condition (16).
Then, we prove 𝐼(𝑉; 𝑌 | 𝑈) − 𝐼(𝑉; 𝑍 | 𝑈) ≤ 𝐼(𝑋; 𝑌 |

𝑈) − 𝐼(𝑋; 𝑍 | 𝑈). Since the channel model in Figure 1 is
(physically) degraded, 𝐼(𝑋; 𝑌 | 𝑈 = 𝑢, 𝑉 = V) − 𝐼(𝑋; 𝑍 |

𝑈 = 𝑢, 𝑉 = V) ≥ 0 holds for every (𝑢, V), which implies

𝐼 (𝑋; 𝑌 | 𝑈, 𝑉) − 𝐼 (𝑋; 𝑍 | 𝑈, 𝑉) ≥ 0. (30)

Therefore, utilizing (28), (29), and (30), we get

𝐼 (𝑉; 𝑌 | 𝑈) − 𝐼 (𝑉; 𝑍 | 𝑈)

= 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈)

− [𝐼 (𝑋; 𝑌 | 𝑈, 𝑉) − 𝐼 (𝑋; 𝑍 | 𝑈, 𝑉)]

≤ 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) .

(31)

This proves condition (17).
The converse part of Theorem 2 is proved.

3.2. A Coding Scheme Achieving R
𝑑
. A coding scheme is

provided to achieve the achievable triples (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) ∈

R
𝑑
. The key methods used in the scheme include the

superposition coding, rate splitting, and random binning.
The confidential message is split into two parts. One part is
reliably transmitted using superposition coding and random
binning; the other part is securely transmittedwith the help of
the feedback. Note that Section 3.1 has already given the outer
bound on the capacity-equivocation region. When 𝑅

𝑓
≥

𝐼(𝑋; 𝑍 | 𝑈), it can be seen from (9) that the secrecy capacity
for the degraded DMBCs with rate-limited feedback always
equals to 𝐼(𝑋; 𝑌 | 𝑈). Therefore, in order to investigate the
effects of the feedback, the feedback rate 𝑅

𝑓
< 𝐼(𝑋; 𝑍 | 𝑈)

will only be considered in this subsection.
We need to prove that all the triples (𝑅

0
, 𝑅

1
, 𝑅

𝑒
) ∈ R

𝑑
for

themodel of Figure 2 with any feedback rate𝑅
𝑓
limited by𝑅

𝑓

are achievable (see Definition 1). This subsection is organized
as follows. The codebook generation and encoding scheme
is given in Section 3.2.1. The decoding scheme is given in
Section 3.2.2. The analysis of error probability and equivoca-
tion are shown in Sections 3.2.3 and 3.2.4, respectively.

3.2.1. Codebook Generation and Encoding. Split the confiden-
tial message into two parts; that is, S = (M

1
,M

2
). The

corresponding variables 𝑀
1
, 𝑀

2
are uniformly distributed

over {1, 2, 3, . . . , 2𝑁𝑅


} and {1, 2, 3, . . . , 2
𝑁𝑅


𝑓}, where (when
𝑅
𝑓
≥ 𝑅

1
, the confidential message 𝑆 can be totally protected

by using part of the feedback (as the shared key between
the transmitter and receiver 1). The remaining part of the
feedback is redundant.Therefore, in order to study the effects
of the feedback on the capacity region, only 𝑅

𝑓
< 𝑅

1
comes

into our consideration)

0 ≤ 𝑅


𝑓
≤ 𝑅

𝑓
,

𝑅

= 𝑅

1
− 𝑅



𝑓
> 0.

(32)

It is important to notice that 𝑅
1
is the rate of the private

message S, which consists ofM
1
andM

2
. This means that

𝑅
1
= lim

𝑁→∞

log (M1



M2

)

𝑁

= lim
𝑁→∞

(
log M1



𝑁
+
log M2



𝑁
) .

(33)

Define the index setsJ
𝑁
,L

𝑁
,F

𝑁
, andM

𝑁
satisfying

lim
𝑁→∞

1

𝑁
log J𝑁

 = 𝐼 (𝑋; 𝑍 | 𝑈) − 𝑅


𝑓
,

lim
𝑁→∞

1

𝑁
log L𝑁

 = 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) ,

lim
𝑁→∞

1

𝑁
log F𝑁

 = 𝑅


𝑓
,

lim
𝑁→∞

1

𝑁
log M𝑁

 = 𝐼 (𝑈; 𝑍) .

(34)

We use 𝑗 ∈ J
𝑁
, 𝑙 ∈ L

𝑁
, 𝑓 ∈ F

𝑁
, 𝑚 ∈ M

𝑁
to index

the codeword 𝑥𝑁. Take W ⊂ M
𝑁
such that (2) holds. Since

𝑅
1
≤ 𝐼(𝑋; 𝑌 | 𝑈), it is easy to see ‖J

𝑁
×L

𝑁
×F

𝑁
‖ ≥ 2

𝑁𝑅1 .
Therefore, let M

1
= D

𝑁
×L

𝑁
, M

2
= F

𝑁
, where D

𝑁
is an

arbitrary set such that (3) holds. Let 𝑔
𝑗
be a mapping of J

𝑁

into D
𝑁
partitioning J

𝑁
into subsets of size ‖J

𝑁
‖/‖D

𝑁
‖;

that is,

𝑔
𝑗
: J

𝑁
→ D

𝑁
, (35)

where 𝑔
𝑗
(𝑗) = 𝑑, 𝑗 ∈ J

𝑁
, 𝑑 ∈ D

𝑁
.

For each 𝑤 ∈ W, we generate a codeword 𝑢𝑁(𝑤) accord-
ing to ∏𝑁

𝑖=1
𝑝(𝑢

𝑖
). Then, for each 𝑢

𝑁
(𝑤), a codebook CB

𝑤

(see Figure 4) containing ‖J
𝑁
‖ ⋅ ‖L

𝑁
‖ ⋅ ‖F

𝑁
‖ codewords

𝑥
𝑁

𝑗𝑙𝑓𝑚
is constructed according to ∏𝑁

𝑖=1
𝑝(𝑥

𝑖
| 𝑢

𝑖
), where 𝑗 ∈

J
𝑁
, 𝑙 ∈ L

𝑁
, 𝑓 ∈ F

𝑁
, 𝑚 = 𝑤 ∈ M. Those 𝑥𝑁 are put into

‖L
𝑁
‖⋅‖F

𝑁
‖ bins so that each bin contains ‖J

𝑁
‖ codewords.

Each bin is indexed by (𝑙, 𝑓), where 𝑙 ∈ L
𝑁
, 𝑓 ∈ F

𝑁
. Then,

we divide each bin into ‖D
𝑁
‖ subbins such that each subbin

contains ‖J
𝑁
‖/‖D

𝑁
‖ codewords. The codebook structure is

presented in Figure 4.
LetK = {1, 2, 3, . . . , 2

𝑁𝑅


𝑓}, where 𝑘 ∈ K is the key sent to
the transmitter from receiver 1 through the secure feedback
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...

· · ·f = 1

...

· · ·l = 1

2

...
...

...
...

...
...

...
...

...

...
...

...

· · ·

· · ·

· · ·

2

Bin
Subbin
Codewords

‖ℱN‖

‖𝒟N‖‖ℒN‖

‖ℐN‖/‖𝒟N‖

Figure 4: The codebookCB
𝑤
for each 𝑢𝑁(𝑤).

link. It is kept secret from receiver 2. The corresponding
variable 𝐾 is uniformly distributed overK and independent
of 𝑆 and𝑊.

In order to send 𝑠 = (𝑑, 𝑙, 𝑚
2
) ∈ D

𝑁
× L

𝑁
× F

𝑁
and

𝑤 ∈ W, a codeword 𝑥𝑁
𝑗𝑙𝑓𝑚

is chosen as follows. According to
the commonmessage𝑤, we first find the sequence𝑢𝑁(𝑤). For
the determined 𝑢

𝑁
(𝑤), there is a corresponding codebook

CB
𝑤
; see Figure 4. Then, the corresponding codeword 𝑥𝑁

𝑗𝑙𝑓𝑚

is sent into the channel, where 𝑗 is chosen randomly from the
set 𝑔−1

𝑗
(𝑑), 𝑓 = 𝑘 ⊕ 𝑚

2
, and 𝑚 = 𝑤 (here ⊕ is modulo

addition over F
𝑁
). Figure 4 shows how to select 𝑥𝑁

𝑗𝑙𝑓𝑚
in

detail. According to 𝑢𝑁(𝑤), we can find the corresponding
codebook CB

𝑤
. In the codebook CB

𝑤
, we choose the

corresponding bin according to𝑓 and 𝑙.Then, in that bin, the
subbin is found according to𝑑. Finally, a codeword𝑥𝑁 (which
is denoted by 𝑥𝑁

𝑗𝑙𝑓𝑚
) is randomly chosen from that subbin.

3.2.2. Decoding. Receiver 2 tries to find a unique sequence
𝑢
𝑁
(̂̂𝑤) such that (𝑢𝑁(̂̂𝑤), 𝑧𝑁) ∈ 𝑇

𝑁

𝑈𝑍
(𝜖
1
). If there exists such

a unique sequence, decoder 2 outputs ̂̂𝑤; otherwise, an error
is declared. Since the size of W is smaller than 2𝑁𝐼(𝑈;𝑍), the
decoding error probability for receiver 2 approaches zero.

For receiver 1, he can also decode the common message
𝑤 since the output of channel 2 is a degraded version of the
output of channel 1. Then, receiver 1 tries to find a unique
codeword 𝑥𝑁

𝑗�̂�𝑓�̂�
indexed by 𝑗, �̂�, 𝑓, �̂�, such that (𝑥𝑁

𝑗𝑙𝑓�̂�
, 𝑦

𝑁
) ∈

𝑇
𝑁

𝑋𝑌|𝑈
(𝜖
2
). If there exists such a unique codeword 𝑥

𝑁

𝑗𝑙𝑓�̂�
,

receiver 1 calculates𝑓⊖𝑘 as �̂�
2
(here ⊖ is modulo subtraction

over F
𝑁
, and �̂� = 𝑤) and finds 𝑑 according to 𝑔

𝑗
(𝑗). Note

that receiver 1 knows the secret key 𝑘. Decoder 1 outputs
𝑠 = (𝑑, �̂�, �̂�

2
) and 𝑤. If no such 𝑥𝑁

𝑗𝑙𝑓�̂�
or more than one such

𝑥
𝑁

𝑗�̂�𝑓�̂�
exist, an error is declared.

3.2.3. Analysis of Error Probability. Since the number of
𝑢
𝑁
(𝑤) is upper bound by 2𝑁𝐼(𝑈;𝑍) and the DMBCs under

discussion are degraded, both receivers can decode the com-
mon message 𝑤 with error probability approaching zero by
applying the standard channel coding theorem [11, Theorem
7.7.1]. Moreover, it can be calculated that given the codeword
𝑢
𝑁
(𝑤), the number of 𝑥𝑁 is

F𝑁

 ⋅
J𝑁

 ⋅
L𝑁

 = 2
𝑁𝐼(𝑋;𝑌|𝑈)

. (36)

So, after determining the codeword 𝑢
𝑁
(𝑤), receiver 1 can

decode the codeword 𝑥𝑁 with error probability approaching
zero by applying the standard channel coding theorem [11,
Theorem 7.7.1]. This proves (6).

3.2.4. Analysis of Equivocation. The proof of (5) is given
below:

𝐻(𝑆 | 𝑍
𝑁
) = 𝐻(𝑀

1
,𝑀

2
| 𝑍

𝑁
)

= 𝐻(𝑀
1
| 𝑍

𝑁
) + 𝐻(𝑀

2
| 𝑍

𝑁
,𝑀

1
)

≥ 𝐻(𝑀
1
| 𝑍

𝑁
) + 𝐻(𝑀

2
| 𝑍

𝑁
,𝑀

1
, 𝐾 ⊕𝑀

2
)

=
(𝑏3.1)

𝐻(𝑀
1
| 𝑍

𝑁
) + 𝐻 (𝑀

2
| 𝐾 ⊕𝑀

2
)

=
(𝑏3.2)

𝐻(𝑀
1
| 𝑍

𝑁
) + 𝐻 (𝑀

2
)

=
(𝑏3.3)

𝐻(𝑀
1
| 𝑍

𝑁
) + 𝑁𝑅



𝑓
,

(37)

where (𝑏3.1) follows from the Markov chain 𝑀
2
→ 𝑀

2
⊕

𝐾 → (𝑍
𝑁
,𝑀

1
), (𝑏3.2) follows from the fact that 𝑀

2
is

independent of 𝑀
2
⊕ 𝐾, and (𝑏3.3) follows from that 𝑀

2
is

uniformly distributed over {1, 2, 3, . . . , 2𝑁𝑅


𝑓}.The proof of the
fact that𝑀

2
is independent of𝑀

2
⊕𝐾 is shown as follows (the

proof can also be seen in [6]):

𝑝 (𝑀
2
⊕ 𝐾 = 𝑎)

= ∑

𝑘

𝑝 (𝑀
2
⊕ 𝐾 = 𝑎 | 𝐾 = 𝑘) 𝑝 (𝐾 = 𝑘)

=
(𝑏3.4)

∑

𝑘

𝑝 (𝑀
2
⊕ 𝐾 = 𝑎 | 𝐾 = 𝑘)

1

F𝑁
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=
1

F𝑁



∑

𝑘

𝑝 (𝑀
2
⊕ 𝐾 = 𝑎 | 𝐾 = 𝑘)

=
1

F𝑁



∑

𝑘

𝑝 (𝑀
2
= 𝑎 ⊖ 𝑘 | 𝐾 = 𝑘)

=
(𝑏3.5) 1

F𝑁



∑

𝑘

𝑝 (𝑀
2
= 𝑎 ⊖ 𝑘)

=
1

F𝑁



𝑝 (𝑀
2
⊕ 𝐾 = 𝑎,𝑀

2
= 𝑚

2
)

= 𝑝 (𝐾 = 𝑎 ⊖ 𝑚
2
,𝑀

2
= 𝑚

2
)

=
(𝑏3.6)

𝑝 (𝐾 = 𝑎 ⊖ 𝑚
2
) 𝑝 (𝑀

2
= 𝑚

2
)

=
(𝑏3.7) 1

F𝑁



⋅
1

F𝑁



,

(38)

where (𝑏3.5) and (𝑏3.6) follow from that𝑀
2
is independent

of 𝐾, and (𝑏3.4) and (𝑏3.7) follow from that 𝑀
2
and 𝐾 are

both uniformly distributed overF
𝑁
. According to (38),

𝑝 (𝑀
2
⊕ 𝐾 = 𝑎,𝑀

2
= 𝑚

2
)

= 𝑝 (𝑀
2
⊕ 𝐾 = 𝑎) 𝑝 (𝑀

2
= 𝑚

2
) .

(39)

Therefore,𝑀
2
is independent of𝑀

2
⊕ 𝐾.

Next, we focus on the first term in (37).Themethod of the
equivocation analysis in [2] will be used:

𝐻(𝑀
1
| 𝑍

𝑁
)

≥ 𝐻(𝑀
1
| 𝑍

𝑁
,𝑊)

= 𝐻(𝑀
1
, 𝑍

𝑁
| 𝑊) − 𝐻(𝑍

𝑁
| 𝑊)

= 𝐻(𝑀
1
, 𝑍

𝑁
, 𝑋

𝑁
| 𝑊) − 𝐻(𝑋

𝑁
| 𝑀

1
, 𝑍

𝑁
,𝑊)

− 𝐻(𝑍
𝑁
| 𝑊)

= 𝐻(𝑀
1
, 𝑋

𝑁
| 𝑊) + 𝐻(𝑍

𝑁
| 𝑀

1
, 𝑋

𝑁
,𝑊)

− 𝐻(𝑋
𝑁
| 𝑀

1
, 𝑍

𝑁
,𝑊) − 𝐻(𝑍

𝑁
| 𝑊)

≥ 𝐻(𝑋
𝑁
| 𝑊) + 𝐻(𝑍

𝑁
| 𝑀

1
, 𝑋

𝑁
,𝑊)

− 𝐻(𝑋
𝑁
| 𝑀

1
, 𝑍

𝑁
,𝑊) − 𝐻(𝑍

𝑁
| 𝑊) .

(40)

Note that𝑊 in inequality (40) is the random variable of the
common message W. The four terms 𝐻(𝑋𝑁

| 𝑊), 𝐻(𝑍𝑁
|

𝑀
1
, 𝑋

𝑁
,𝑊), 𝐻(𝑋𝑁

| 𝑀
1
, 𝑍

𝑁
,𝑊), and 𝐻(𝑍𝑁

| 𝑊) will be
bounded as follows.

Given 𝑤 ∈ W, the number of 𝑥𝑁 is ‖J
𝑁
‖ ⋅ ‖L

𝑁
‖ ⋅ ‖F

𝑁
‖.

By applying [12, Lemma 2.5], we obtain

𝐻(𝑋
𝑁
| 𝑊) ≥ log (J𝑁

 ⋅
L𝑁

 ⋅
F𝑁

) − 1

= 𝑁𝐼 (𝑋; 𝑌 | 𝑈) − 1.

(41)

Since (𝑀
1
,𝑊) → 𝑋

𝑁
→ 𝑍

𝑁 and the channel to
receiver 2 is discrete memoryless, it is easy to get

𝐻(𝑍
𝑁
| 𝑀

1
, 𝑋

𝑁
,𝑊) = 𝐻(𝑍

𝑁
| 𝑋

𝑁
)

= 𝑁𝐻 (𝑍 | 𝑋) .

(42)

With the knowledge of (𝑑, 𝑙) ∈ M
1
and 𝑤 ∈ W, the

number of 𝑥𝑁 is

2
𝑁𝑅


𝑓 ⋅

J𝑁


D𝑁



< 2
𝑁𝑅


𝑓 ⋅
J𝑁



= 2
𝑁𝑅


𝑓 ⋅ 2
𝑁(𝐼(𝑋;𝑍|𝑈)−𝑅



𝑓
)

= 2
𝑁𝐼(𝑋;𝑍|𝑈)

.

(43)

So, receiver 2 can decode the codeword 𝑥
𝑁 with error

probability approaching zero by using the standard channel
coding theorem [11, Theorem 7.7.1]. Therefore, using Fano’s
inequality, we get

𝐻(𝑋
𝑁
| 𝑀

1
, 𝑍

𝑁
,𝑊) → 0. (44)

Moreover, using the similar deduction in [2, Section 4],
we get

𝐻(𝑍
𝑁
| 𝑊) ≤ log 𝑇

𝑁

𝑍|𝑈
(𝜖
1
)


≤ 𝑁𝐻 (𝑍 | 𝑈) .

(45)

Substituting (41), (42), (44), and (45) into (40), we get

𝐻(𝑀
1
| 𝑍

𝑁
)

≥ 𝑁𝐼 (𝑋; 𝑌 | 𝑈) + 𝑁𝐻 (𝑍 | 𝑋) − 𝑁𝐻 (𝑍 | 𝑈)

= 𝑁𝐼 (𝑋; 𝑌 | 𝑈) − 𝑁𝐼 (𝑋; 𝑍 | 𝑈) ,

(46)

where the equality in (46) follows from the Markov chain
𝑈 → 𝑋 → 𝑍.

Finally, (5) is verified by substituting (46) into (37):

lim
𝑁→∞

Δ = lim
𝑁→∞

𝐻(𝑆 | 𝑍
𝑁
)

𝑁

≥ lim
𝑁→∞

(

𝐻(𝑀
1
| 𝑍

𝑁
)

𝑁
+ 𝑅



𝑓
)

≥ lim
𝑁→∞

(
𝑁𝐼 (𝑋; 𝑌 | 𝑈) − 𝑁𝐼 (𝑋; 𝑍 | 𝑈)

𝑁
+ 𝑅



𝑓
)

= 𝐼 (𝑋; 𝑌 | 𝑈) − 𝐼 (𝑋; 𝑍 | 𝑈) + 𝑅


𝑓

≥ 𝑅
𝑒
.

(47)

This completes the proof of Theorem 2.
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4. Proof of Theorems 4 and 5

In this section, Theorems 4 and 5 are proved. In the model
of Figure 3, it is assumed that the channel to receiver 1 is
independent of the channel to receiver 2; that is, 𝑝(𝑦, 𝑧 |

𝑥) = 𝑝(𝑦 | 𝑥)𝑝(𝑧 | 𝑥). To prove Theorem 4, we first
give the outer bound on the capacity-equivocation region
of the less noisy DMBCs with noiseless causal feedback in
Section 4.1. Then, a coding scheme is provided to achieve the
outer bound. Similarly, to prove Theorem 5, the outer bound
on the capacity-equivocation region of the reversely less noisy
DMBCswith noiseless causal feedback is given in Section 4.2.
Moreover, we also provide a coding scheme to achieve the
outer bound. The methods used to prove the converse parts
of the two theorems are from [5]. The coding schemes are
inspired by [3, 5].

4.1. Less Noisy DMBCs with Noiseless Causal Feedback. We
first show the converse part ofTheorem 4, and then we prove
the direct part of Theorem 4 by providing a coding scheme.

In order to find the identification of the auxiliary random
variables that satisfy the capacity-equivocation region charac-
terized by R

𝑙
, we prove the converse part for the equivalent

region containing all the rate triples (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) such that

0 ≤ 𝑅
𝑒
≤ 𝑅

1
, (48)

𝑅
0
≤ 𝐼 (𝑈; 𝑍) , (49)

𝑅
0
+ 𝑅

1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) + 𝐼 (𝑈; 𝑍) , (50)

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍) . (51)

The proof of (48), (49), and (50) follows exactly the same
line of proving (14), (15), and (16) in Section 3 except for the
identification of the auxiliary random variable 𝑈,𝑉 (which
will be given subsequently) and therefore is omitted.We focus
on proving (51):

𝐻(𝑆 | 𝑍
𝑁
) ≤ 𝐻(𝑆 | 𝑍

𝑁
) + 𝐼 (𝑆; 𝑍

𝑁
| 𝑌

𝑁
)

= 𝐻(𝑆 | 𝑍
𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
) − 𝐻(𝑆 | 𝑌

𝑁
, 𝑍

𝑁
)

= 𝐼 (𝑆; 𝑌
𝑁
| 𝑍

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
)

≤ 𝐻(𝑌
𝑁
| 𝑍

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
)

=

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
)

≤

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑍

𝑖
) + 𝜖

3
,

(52)

where 𝜖
3
is a small positive number. The last inequality

in (52) follows from the fact that conditioning does not

increase entropy and Fano’s inequality. To complete the proof
of (51), define a time-sharing random variable 𝑄 which is
uniformly distributed over 1, 2, . . . , 𝑁 and independent of
𝑆𝑊𝑋

𝑁
𝑌
𝑁
𝑍
𝑁. Set 𝑈 = 𝑍

𝑁

𝑄+1
𝑌
𝑄−1

𝑊𝑄, 𝑉 = 𝑈𝑆, 𝑋 = 𝑋
𝑄
,

𝑌 = 𝑌
𝑄
, 𝑍 = 𝑍

𝑄
. It is easy to see 𝑈 → 𝑉 → 𝑋 → (𝑌,𝑍)

form a Markov chain. After using the standard time-sharing
argument [10, Section 5.4], (52) simplifies to

𝐻(𝑆 | 𝑍
𝑁
) ≤ 𝑁𝐻 (𝑌 | 𝑍) + 𝜖3. (53)

Finally, utilizing lim
𝑁→∞

Δ ≥ 𝑅
𝑒
in the definition of

“achievable” and (53), we obtain (51).This completes the proof
of the converse part of Theorem 4.

Next, a coding scheme is presented to achieve the rate
triple (𝑅

0
, 𝑅

1
, 𝑅

𝑒
) ∈ R

𝑙
. We should prove that all triples

(𝑅
0
, 𝑅

1
, 𝑅

𝑒
) ∈ R

𝑙
are achievable. Note that the noiseless feed-

back for the less noisy DMBCs is causally transmitted from
receiver 1 to the transmitter. The scheme includes codebook
generation and encoding scheme in Section 4.1.1, decoding
scheme in Section 4.1.2, analysis of error probability in
Section 4.1.3, and equivocation analysis in Section 4.1.4.
Techniques like block Markov coding, superposition coding,
and random binning are used.

To serve the block Markov coding, let random vectors
𝑈
𝑁,𝑋𝑁,𝑌𝑁, and𝑍𝑁 consist of 𝑛blocks of length𝑁. Let𝑊𝑛

≜

(𝑊
1
, . . . ,𝑊

𝑛
) stand for the common messages of 𝑛 blocks,

where𝑊
1
, . . . ,𝑊

𝑛
are independent and identically distributed

random variables over W. Let 𝑆𝑛 ≜ (𝑆
2
, . . . , 𝑆

𝑛
) stand for

the confidential messages of 𝑛 blocks, where 𝑆
2
, . . . , 𝑆

𝑛
are

independent and identically distributed random variables
over S. Note that in the first block, there is no 𝑆

1
. Let 𝑍𝑛

=

(𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑛
),𝑍𝑏

= (𝑍
1
, 𝑍

2
, . . . , 𝑍

𝑏−1
, 𝑍

𝑏+1
, . . . , 𝑍

𝑛
), where

𝑍
𝑏
is the output vector at receiver 2 at the end of the 𝑏th block,

where 1 ≤ 𝑏 ≤ 𝑛. Similarly, �̃�
𝑏
denotes the output vector

at receiver 1 at the end of the 𝑏th block, and 𝑋
𝑏
denotes the

input vector of the channel in the 𝑏th block. These notations
coincide with [6].

4.1.1. Codebook Generation and Encoding. Let the common
message setW and the confidential message set S satisfy

lim
𝑁→∞

log ‖W‖

𝑁
= 𝑅

0
,

lim
𝑁→∞

log ‖S‖
𝑁

= 𝑅
1
,

(54)

where 𝑅
0
and 𝑅

1
satisfy (10).

Fix 𝑝(𝑢) and 𝑝(𝑥 | 𝑢). In the 𝑏th block, 1 ≤ 𝑏 ≤

𝑛, we generate 2𝑁𝑅0 independent and identically distributed
(i.i.d) sequences 𝑢𝑁(𝑤

𝑏
) according to∏𝑁

𝑖=1
𝑝(𝑢

𝑖
), where 𝑤

𝑏
∈
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W is the common message to be sent in the 𝑏th block.
For each 𝑢𝑁(𝑤

𝑏
), generate 2𝑁𝐼(𝑋;𝑌|𝑈) codewords 𝑥𝑁(𝑢𝑁(𝑤

𝑏
))

according to∏𝑁

𝑖=1
𝑝(𝑥

𝑖
| 𝑢

𝑖
). Put the 2𝑁𝐼(𝑋;𝑌|𝑈) codewords into

2
𝑁𝑅1 bins, so each bin contains 2𝑁(𝐼(𝑋;𝑌|𝑈)−𝑅1) codewords.The
2
𝑁𝑅1 bins are denoted by𝑄

1
, 𝑄

2
, . . . , 𝑄

‖S‖, where ‖S‖ = 2
𝑁𝑅1 .

The codebook structure is shown in Figure 5. Reveal all the
codebooks to the transmitter, receiver 1, and receiver 2.

Let 𝑔 be a mapping fromY𝑁 intoS. Reveal the mapping
𝑔 to the transmitter, receiver 1, and receiver 2. Define a
random variable 𝑆 = 𝑔(𝑌

𝑁
) uniformly distributed over S

and independent of the confidential message 𝑆. It can be
similarly proved from (39) that 𝑆 ⊕ 𝑆

 is independent of 𝑆.
In the first block, that is, 𝑏 = 1, to send the common message
𝑤
1
(note that there is no confidential message to be sent in the

first block), the transmitter tries to find 𝑢𝑁(𝑤
1
) and randomly

choose a codeword 𝑥
𝑁
(𝑢

𝑁
(𝑤

1
)) from the corresponding

2
𝑁𝐼(𝑋;𝑌|𝑈) codewords. In the 𝑏th block (𝑏 = 2, 3, . . . , 𝑛), to
send the common message 𝑤

𝑏
and confidential message 𝑠

𝑏
,

the transmitter calculates 𝑠
𝑏
= 𝑔(𝑦

𝑏−1
) and randomly chooses

a codeword 𝑥𝑁(𝑢𝑁(𝑤
𝑏
), 𝑠

𝑏
) from the bin 𝑄

𝑠𝑏⊕𝑠


𝑏

. Here, 𝑦
𝑏−1

is
the output vector of the (𝑏 − 1)th block at receiver 1, and ⊕ is
the modulo addition over S.

4.1.2. Decoding. In the first block, as there is no confidential
message, only the common message needs to be decoded
for both receivers. For receiver 2, he tries to find a unique
sequence 𝑢𝑁(̂̂𝑤

1
) such that (𝑢𝑁(̂̂𝑤

1
), �̃�

1
) ∈ 𝑇

𝑁

𝑈𝑍
(𝜖


1
), where

𝜖


1
is a small positive number. If there exists such a unique

sequence, decoder 2 outputs ̂̂𝑤
1
; otherwise, an error is

declared. For receiver 1, he tries to find a unique sequence
𝑢
𝑁
(𝑤

1
) such that (𝑢𝑁(𝑤

1
), 𝑦

1
) ∈ 𝑇

𝑁

𝑈𝑌
(𝜖


1
), where 𝜖

1
is a

small positive number. If there exists such a unique sequence,
output is 𝑤

1
; otherwise, declare an error.

In the 𝑏th block, 2 ≤ 𝑏 ≤ 𝑛, receiver 2 aims to decode
the common message, and receiver 1 aims to decode both
confidential and commonmessages.Themethod of decoding
the common message 𝑤

𝑏
for both receivers follows the same

as that in the first block.Then, receiver 1 tries to find a unique
sequence 𝑥

𝑁
(𝑢

𝑁
(𝑤

𝑏
), 𝑠

𝑏
) such that (𝑥𝑁(𝑢𝑁(𝑤

𝑏
), 𝑠

𝑏
), 𝑦

𝑏
) ∈

𝑇
𝑁

𝑋𝑌|𝑈
(𝜖


2
), where 𝜖



2
is a small positive number. If there

exists such a unique sequence in one bin, denoting the
corresponding index of that bin by 𝑠

𝑏
, receiver 1 calculates

𝑠


𝑏
⊖𝑠



𝑏
as 𝑠

𝑏
(here⊖ ismodulo subtraction overS, and receiver

1 knows 𝑠
𝑏
= 𝑔(𝑦

𝑏−1
)); otherwise, declare an error.

4.1.3. Analysis of Error Probability. Since the number of
𝑢
𝑁
(𝑤

𝑏
) is upper bounded by 2𝑁𝐼(𝑈;𝑍), receiver 2 can decode

the common message 𝑤
𝑏
with error probability approaching

zero by applying the standard channel coding theorem [11,
Theorem 7.7.1]. Moreover, since the DMBCs under discus-
sion in Section 4.1 are less noisy, receiver 1 can also decode
the common message with error probability approaching
zero. It can be calculated that given the codeword 𝑢

𝑁
(𝑤

𝑏
),

the number of 𝑥𝑁 is 2𝑁𝐼(𝑋;𝑌|𝑈). So, after determining the
codeword 𝑢

𝑁
(𝑤

𝑏
), receiver 1 can decode the codeword 𝑥

𝑁

with error probability approaching zero by applying the

uN(w1) uN(w2) uN(w‖W‖)

2

1

Bin
Codewords

...

· · ·

...
...

...
...

· · ·

· · ·

· · ·

· · ·
‖S‖

2N(I(X;Y | U)−R1)

Qi, 1 ≤ i ≤ ‖S‖ = 2NR1

Figure 5: The codebook structure.

standard channel coding theorem [11, Theorem 7.7.1] and
obtain the confidential message with the help of the feedback.

4.1.4. Analysis of Equivocation. In this part, lim
𝑁→∞

Δ ≥ 𝑅
𝑒

is proved by utilizing the methods in [5, 6]:

lim
𝑁→∞

Δ = lim
𝑁,𝑛→∞

𝐻(𝑆
𝑛
| 𝑍

𝑛
)

𝑛𝑁

= lim
𝑁,𝑛→∞

𝑛

∑

𝑖=2

𝐻(𝑆
𝑖
| 𝑆

𝑖−1
, 𝑍

𝑛
)

𝑛𝑁

=
(𝑎4.1) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖
)

𝑛𝑁

≥ lim
𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖
, 𝑍

𝑖−1
, 𝑆

𝑖
⊕ 𝑆



𝑖
)

𝑛𝑁

=
(𝑎4.2) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖−1
, 𝑆

𝑖
⊕ 𝑆



𝑖
)

𝑛𝑁

=
(𝑎4.3) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
min {𝑁𝐻 (𝑌 | 𝑍) , log ‖S‖}

𝑛𝑁

= lim
𝑛→∞

∑
𝑛

𝑖=2
min {𝐻 (𝑌 | 𝑍) , 𝑅1}

𝑛

= min {𝐻 (𝑌 | 𝑍) , 𝑅1}

≥
(𝑎4.4)

𝑅
𝑒
.

(55)

In the above deduction, (𝑎4.1) follows from 𝑆
𝑖
→ 𝑍

𝑖
→

(𝑆
𝑖−1
, 𝑍

𝑖
). (𝑎4.2) follows from 𝑆

𝑖
→ (𝑆

𝑖
⊕ 𝑆



𝑖
, 𝑍

𝑖−1
) → 𝑍

𝑖
.

(𝑎4.3) follows from the fact that receiver 2 can choose a
better way to intercept the secret key at will and 𝑆

𝑖
⊕ 𝑆



𝑖
is
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independent of 𝑆
𝑖
and uniformly distributed over S. (𝑎4.4)

follows from (10).
This completes the proof of Theorem 4.

4.2. Reversely Less Noisy DMBCs with Noiseless Causal Feed-
back. In this subsection, Theorem 5 will be proved. The
converse part will be shown first, and then a coding scheme
is given for proving the direct part.

In order to find the identification of the auxiliary random
variables that satisfy the capacity-equivocation region charac-
terized byR

𝑟𝑙
, we prove the converse part for the equivalent

region containing all the rate triples (𝑅
0
, 𝑅

1
, 𝑅

𝑒
) such that

0 ≤ 𝑅
𝑒
≤ 𝑅

1
, (56)

𝑅
0
≤ 𝐼 (𝑈; 𝑌) , (57)

𝑅
0
+ 𝑅

1
≤ 𝐼 (𝑋; 𝑌 | 𝑈) + 𝐼 (𝑈; 𝑌) , (58)

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑋) . (59)

The inequalities (56), (57), and (58) can be proved using
similar deduction of the converse part of Theorem 2 in
Section 3 except for the identification of the auxiliary random
variables. We focus on (59):

𝐻(𝑆 | 𝑍
𝑁
)

= 𝐻(𝑆 | 𝑋
𝑁
, 𝑍

𝑁
) + 𝐼 (𝑆; 𝑋

𝑁
| 𝑍

𝑁
)

=
(𝑏4.1)

𝐻(𝑆 | 𝑋
𝑁
) + 𝐼 (𝑋

𝑁
; 𝑆 | 𝑍

𝑁
)

= 𝐻(𝑆, 𝑌
𝑁
| 𝑋

𝑁
) − 𝐻(𝑌

𝑁
| 𝑋

𝑁
, 𝑆)

+ 𝐼 (𝑋
𝑁
; 𝑆 | 𝑍

𝑁
)

= 𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
, 𝑋

𝑁
)

− 𝐻(𝑌
𝑁
| 𝑋

𝑁
, 𝑆) + 𝐼 (𝑋

𝑁
; 𝑆 | 𝑍

𝑁
)

≤ 𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
, 𝑋

𝑁
) + 𝐼 (𝑋

𝑁
; 𝑆 | 𝑍

𝑁
)

≤ 𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
, 𝑋

𝑁
) + 𝐻(𝑋

𝑁
| 𝑍

𝑁
)

=
(𝑏4.2)

𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
, 𝑋

𝑁
)

+ 𝐻(𝑋
𝑁
| 𝑌

𝑁
)

= 𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆,𝑋

𝑁
| 𝑌

𝑁
)

=
(𝑏4.3)

𝐻(𝑌
𝑁
| 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
)

=

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑌

𝑖−1
, 𝑋

𝑁
) + 𝐻(𝑆 | 𝑌

𝑁
)

≤
(𝑏4.4)

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑋

𝑖
) + 𝜖

3
,

(60)

where (𝑏4.1) from the Markov chain 𝑆 → 𝑋
𝑁

→ 𝑍
𝑁,

(𝑏4.2) from the assumption that the channel is reversely less
noisy (by setting 𝑈 = 𝑋), (𝑏4.3) from that 𝑋𝑁 is a function
of 𝑆, 𝑌𝑁, and (𝑏4.4) from the fact that conditioning does not
increase entropy and Fano’s inequality. To complete the proof
of (59), define a time-sharing random variable 𝑄 which is
uniformly distributed over {1, 2, . . . , 𝑁} and independent of
𝑆𝑊𝑋

𝑁
𝑌
𝑁
𝑍
𝑁. Set 𝑈 = 𝑍

𝑁

𝑄+1
𝑌
𝑄−1

𝑊𝑄, 𝑉 = 𝑈𝑆, 𝑋 = 𝑋
𝑄
,

𝑌 = 𝑌
𝑄
, 𝑍 = 𝑍

𝑄
. It is easy to see 𝑈 → 𝑉 → 𝑋 → (𝑌,𝑍)

form a Markov chain. After using the standard time-sharing
argument [10, Section 5.4], (60) simplifies to

𝐻(𝑆 | 𝑍
𝑁
) ≤ 𝑁𝐻 (𝑌 | 𝑋) + 𝜖3. (61)

Finally, utilizing lim
𝑁→∞

Δ ≥ 𝑅
𝑒
in the definition of

“achievable” and (61), we obtain (59). This completes the
proof of the converse part of Theorem 5.

Next, a coding scheme will be provided for achieving the
triple (𝑅

0
, 𝑅

1
, 𝑅

𝑒
) ∈ R

𝑟𝑙
. We should prove that all triples

(𝑅
0
, 𝑅

1
, 𝑅

𝑒
) ∈ R

𝑟𝑙
are achievable. The codebook generation,

encoding, and decoding follow exactly the lines of the coding
scheme for the less noisy case in Section 4.1. We present the
analysis of error probability and equivocation as follows.

4.2.1. Analysis of Error Probability. Since the number of
𝑢
𝑁
(𝑤

𝑏
) is upper bounded by 2𝑁𝐼(𝑈;𝑌), receiver 1 can decode

the common message 𝑤
𝑏
with error probability approaching

zero by applying the standard channel coding theorem
[11, Theorem 7.7.1]. Moreover, since the DMBCs under
discussion in Section 4.2 are reversely less noisy, receiver 2
can also decode the common message with error proba-
bility approaching zero. It can be calculated that given the
codeword 𝑢𝑁(𝑤

𝑏
), the number of 𝑥𝑁 is 2𝑁𝐼(𝑋;𝑌|𝑈). So, after

determining the codeword 𝑢
𝑁
(𝑤

𝑏
), receiver 1 can decode

the codeword 𝑥𝑁 with error probability approaching zero by
applying the standard channel coding theorem [11, Theorem
7.7.1] and obtain the confidentialmessagewith the help of the
feedback.

4.2.2. Analysis of Equivocation. In this part, lim
𝑁→∞

Δ ≥ 𝑅
𝑒

will be proved. Special attention should be paid to receiver
2 since the DMBCs are reversely less noisy; that is, 𝐼(𝑈; 𝑍) ≥
𝐼(𝑈; 𝑌) for all 𝑝(𝑢, 𝑥), which implies 2𝑁𝐼(𝑋;𝑍|𝑈) ≥ 2

𝑁𝐼(𝑋;𝑌|𝑈).
Therefore, receiver 2 can also decode the codeword 𝑥

𝑁.
With the knowledge of 𝑥𝑁 and 𝑧

𝑁, receiver 2 can guess
receiver 1’s channel output𝑦𝑁 from the conditional typical set
T𝑁

𝑌|𝑋𝑍
(𝜖
3
). Note that receiver 2 can intercept the confidential

messages in two ways. One is guessing the secret key 𝑠
𝑏
from

S directly; the other is guessing the channel output 𝑦
𝑏−1

and
finding 𝑠

𝑏
through 𝑔(𝑦

𝑏−1
) indirectly. Intuitively, receiver 2

will always choose a better way to implement eavesdropping.
More formally,

lim
𝑁→∞

Δ = lim
𝑁,𝑛→∞

𝐻(𝑆
𝑛
| 𝑍

𝑛
)

𝑛𝑁

= lim
𝑁,𝑛→∞

𝑛

∑

𝑖=2

𝐻(𝑆
𝑖
| 𝑆

𝑖−1
, 𝑍

𝑛
)

𝑛𝑁
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=
(𝑏4.5) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖
, 𝑍

𝑖−1
)

𝑛𝑁

≥ lim
𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖
, 𝑍

𝑖−1
, 𝑋

𝑖−1
, 𝑆

𝑖
⊕ 𝑆



𝑖
)

𝑛𝑁

=
(𝑏4.6) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑆

𝑖
| 𝑍

𝑖−1
, 𝑋

𝑖−1
, 𝑆

𝑖
⊕ 𝑆



𝑖
)

𝑛𝑁

=
(𝑏4.7) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
min {𝑁𝐻 (𝑌 | 𝑋𝑍) , log ‖S‖}

𝑛𝑁

=
(𝑏4.8) lim

𝑁,𝑛→∞

∑
𝑛

𝑖=2
min {𝑁𝐻 (𝑌 | 𝑋) , log ‖S‖}

𝑛𝑁

= lim
𝑛→∞

∑
𝑛

𝑖=2
min {𝐻 (𝑌 | 𝑋) , 𝑅1}

𝑛

= min {𝐻 (𝑌 | 𝑋) , 𝑅1}

≥
(𝑏4.9)

𝑅
𝑒
.

(62)

In the above deduction, (𝑏4.5) follows from 𝑆
𝑖

→

(𝑍
𝑖
, 𝑍

𝑖−1
) → (𝑆

𝑖−1
, 𝑍

𝑖−2
, 𝑍

𝑛

𝑖+1
). (𝑏4.6) follows from 𝑆

𝑖
→

(𝑆
𝑖
⊕ 𝑆



𝑖
, 𝑍

𝑖−1
, 𝑋

𝑖−1
) → 𝑍

𝑖
. (𝑏4.7) follows from the fact that

receiver 2 can choose a better way to intercept the secret key at
will, and 𝑆

𝑖
⊕𝑆



𝑖
is independent of 𝑆

𝑖
and uniformly distributed

over S. Note that the number of 𝑦𝑁 ∈ 𝑇
𝑁

𝑌|𝑋𝑍
(𝜖
3
) is about

2
𝑁𝐻(𝑌|𝑋𝑍) based on the property of strong typical sequence
[10]. (𝑏4.8) follows from the fact that 𝑌 is independent of 𝑍
conditioning on 𝑋, which is obtained from the assumption
𝑝(𝑦, 𝑧 | 𝑥) = 𝑝(𝑦 | 𝑥)𝑝(𝑧 | 𝑥). (𝑏4.9) follows from (11).

This completes the proof of Theorem 5.

5. Conclusion

This paper studies two models of the DMBCs with noiseless
feedback. One is the degraded DMBCs with rate-limited
feedback; the other is the less and reversely less noisy DMBCs
with feedback. The difference between them is that the
feedback in the first model is independent of the channel
outputs and rate limited, while the feedback in the second
model is originated causally from the channel outputs. The
capacity-equivocation regions of the twomodels are obtained
in this paper. We should point out that the second model
studied in this paper is under the assumption that the channel
to receiver 1 (the legitimate receiver) is independent of the
channel to receiver 2 (the eavesdropper); that is, the channel
output 𝑌𝑁 is independent of𝑍𝑁 given the channel input𝑋𝑁.
However, without this assumption, the capacity-equivocation
region remains unknown for the general DMBCs with noise-
less feedback.
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