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Artificial neural networks due to their general-purpose nature are used to solve problems in diverse fields. Artificial neural networks
(ANNs) are very useful for fractal antenna analysis as the development of mathematical models of such antennas is very difficult
due to complex shapes and geometries. As such empirical approach doing experiments is costly and time consuming, in this
paper, application of artificial neural networks analysis is presented taking the Sierpinski gasket fractal antenna as an example. The
performance of three different types of networks is evaluated and the best network for this type of applications has been proposed.
The comparison of ANN results with experimental results validates that this technique is an alternative to experimental analysis.
This low cost method of antenna analysis will be very useful to understand various aspects of fractal antennas.

1. Introduction

Artificial neural networks (ANNs) have been used as efficient
tools for modeling and prediction in almost all disciplines.
The use of ANN has become widely accepted in antenna
design and analysis applications. This is evident from the
increasing number of publications in research/academic
journals [1–8]. Angiulli and Versaci proposed a technique
to evaluate the resonant frequency of microstrip antennas
using neuro-fuzzy networks [1]. The use of ANN for the
design of rectangular patch antenna is explained in [2].
Applications of ANN in various types of antennas and
antenna arrays are explained in [3]. Neog et al. [4] have used
a tunnel based ANN for the parameter calculation of the
wideband microstrip antenna. Lebbar et al. [5] employed a
geometrical methodology based ANN for the design of a
compact broadband microstrip antenna. In [6] the authors
proposed an ANN to predict the input impedance of a
broadband antenna as a function of its geometric parameters.
Guney and Sarikaya [7] presented a hybrid method based
on a combination of ANN and fuzzy inference system to
calculate simultaneously the resonant frequencies of various
microstrip antennas of regular geometries. An equilateral

triangular microstrip antenna has been designed using a
particle swarm optimization driven radial basis function
neural networks by [8]. However, the use of ANN in analysis
& design of fractal antennas is at very early stage. A limited
number of literatures are available in this field of antennas [9–
12]. In this paper, the performance of three different ANNs
on Sierpinski gasket fractal antenna analysis is investigated
by means of two aspects: mean absolute error (MAE) and
coefficient of correlation.

The experimental analysis of antennas involves costly
setup which include anechoic chamber and equipment like
vector network analyzer, synthesized signal generator, pat-
tern recorder, and so forth, in addition to other equip-
ment required for antenna fabrication. Availability of such
resources is limited in academic institutions due to limited
budget. Thus, the proposed technique is a very low cost
method as it requires only a computer and software. So
this method may be used as part of the lab experiments
in undergraduate and postgraduate classes. The method is
explained by taking an example of Sierpinski gasket fractal
antenna for analysis.

The term fractal was originally coined by Mandelbrot to
describe a family of complex shapes that possess an inherent
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Figure 1: First three iterations of Sierpinski gasket antenna.

selfsimilarity in their geometrical structure [15]. Fractals
represent a class of geometries with very unique properties
that have attracted antenna designers in recent years. The
general concept of fractals can be applied to develop various
antenna elements and such antennas are known as fractal
antennas [16]. Applying fractals for antenna elements result
in smaller resonant antennas that are multiband and may
be optimized for gain. The advantages of fractal antennas
include (i) miniaturization and space-filling, (ii) multiband
performance, (iii) input impedance matching, (iv) efficiency
and effectiveness, and (v) improved gain and directivity [17].

Various fractal geometries have been explored by
researcher in past two decades. However, the Sierpinski
gasket fractal antenna geometry has been investigated most
widely than any other geometry since its introduction in 1998
by Puente-Baliarda et al. [13]. The Sierpinski triangle, also
called the Sierpinski gasket, is a fractal geometry named after
the Polish mathematician Waclaw Sierpinski who described
it in 1915. The first three iterations of Sierpinski gasket are
shown in Figure 1. The first iteration gasket is constructed by
subtracting central inverting triangle from a main triangle
shape. After the subtraction three equal triangles remain on
the structure, each one being half of the size of the original.
If the same subtraction procedure is repeated on remaining
triangles, the 2nd iteration is obtained and similarly if
iteration is carried out an infinite number of times, the ideal
Sierpinski gasket is obtained [18]. The ideal Sierpinski gasket
is a selfsimilar structure and each one of its three main parts
has exactly the same shape as that of the whole object but
reduced by a factor of two [13].

The Sierpinski triangle can also be generated by the use
of the iterated function system (IFS) which is generally used
to construct selfsimilar fractal shapes. The IFS is based on
a set of affine transforms and if the side length “𝑠” of the
base equilateral triangle is known, then the following iterated
function system gives the selfsimilar shape of Sierpinski
gasket [18]:
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(1)

The Sierpinski antenna is a multiband antenna and the
number of bands depends on the number of iterations “𝑛”
[13]. The base triangular shape which is also called 0th
iteration has single fundamental resonance frequency. The
first fractal iteration has two resonant frequencies and so on.
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Figure 2: Basic structure of MLPNN.

Also, the actual value of resonant frequencies depends on
dielectric constant “𝜀

𝑟
” and on the thickness “𝑡” of the

substrate and side length “𝑠.” So to determine the resonant
frequencies 𝑓

𝑛
in a particular iteration, the values of 𝜀

𝑟
, 𝑡, 𝑠

and number of iterations “𝑛” must be known. An expression
for predicting the resonant frequency of this antenna has been
proposed in 2008 by Mishra et al. [14].

The rest of the paper is organized as follows. Section 2
briefly describes the ANN types which are being investigated.
Section 3 describes the details of ANN models, results, and
the performance comparison. The conclusion is presented in
Section 4.

2. Artificial Neural Networks:
Brief Description

The brief of three types of networks, namely, multilayer
perceptron neural network (MLPNN), radial basis function
neural network (RBFNN), and general regression neural
network (GRNN) which are used in this work, are described
in the following sections.

2.1. Multilayer Perceptron Neural Network. Multilayer per-
ceptron neural network (MLPNN) is a widely used neural
network structure in antenna applications. It consists of
multiple layers of neurons that are connected in a feed
forward manner [6]. The base structure of an MLPNN is
shown in Figure 2.

Figure 2 depicts that the network has 𝐿 layers. The first
layer is the input layer and the last layer (𝐿th layer) is the
output layer. The other layers, that is, layers from 2 to 𝐿 − 1

are hidden layers. Each layer has a number of neurons [19].
In the input and output layers, the number of neurons are
equal to the number of inputs and outputs, respectively. The
number of neurons in the hidden layers is chosen using a trial
and error process so that accurate output is obtained. Usually,
the MLPs with one or two hidden layers are commonly used
for antenna applications. Each neuron processes the inputs to
produce output using a function called activation function.
Input neurons normally use a relay activation function and
simply relay (pass) the external inputs to the hidden layer
neurons. The most commonly used activation function for
hidden layer neuron is the sigmoid function defined as

𝜎 (𝑟) =

1

1 − 𝑒
−𝑟

. (2)
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The connection between the units in subsequent layers
has an associated weight which is computed during training
using error backpropagation algorithm [20]. The backprop-
agation learning algorithm consists of two steps. In the first
step, the input signal is passed forward through each layer of
the network. The actual output of the network is calculated
and this output signal is subtracted from desired output
signal to generate an error signal. In the second step, error
is fed backward through the network from the output layer,
through the hidden layers.The synapticweights between each
layer are updated based on the computational error. These
two steps are repeated for each input-output pair of training
data and process is iterated for a number of times until the
output value converges to a desired solution [21]. The details
of MLPNN can be further seen from [22–25].

2.2. Radial Basis Function Neural Networks. Radial basis
function neural network (RBFNN) has several special charac-
teristics like simple architecture and faster performance [26].
It is a special neural network with a single hidden layer. The
hidden layer neurons use radial basis function to apply a
nonlinear transformation from the input space to the hidden
space [27]. The nonlinear basis function is a function of the
normalized radial distance between the input vector and the
weight vector. The most widely used form of radial basis
function is the Gaussian function given by [26]

Φ
𝑗
(𝑥) = exp(

−

󵄩
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󵄩
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󵄩
󵄩
󵄩
󵄩

2

2𝜎
2

𝑗

) , (3)

where 𝑥 is 𝑑-dimensional input vector with elements 𝑥
𝑖
and

𝜇
𝑗
is vector determining the centre of basis function Φ

𝑗
and

has elements 𝜇
𝑗𝑖
. The symbol 𝜎

𝑗
denotes width parameter

whose value is determined during training. The RBFNN
involves two-stage training procedure. In the first stage, the
parameters governing the basis functions, that is, centers
(𝜇
𝑗
) and widths (𝜎

𝑗
), are determined using the relatively fast,

unsupervised methods. The unsupervised training methods
use only the input data and not the target data. In second stage
of training, the weights of the output layer are determined
[27]. For these networks, output layer is a linear layer, so
fast linear supervised methods are used. Due to this reason
these networks have faster performances [26]. The number
of neurons in all layers of RBFNN, that is, input, output, and
hidden layers, is determined by the dimensions and number
of input-output data sets. The basic structure of RBFNN is
shown in Figure 3. RBFNN can be explored in detail from
[25–29].

2.3. General Regression Neural Network. General regression
neural network (GRNN) introduced by Specht in 1991 is a
one-pass learning algorithm network with a highly parallel
structure [30]. It is a memory based network that pro-
vides estimates of continuous variables and converges to
underlying linear or nonlinear regression surface. Nonlinear
regression analysis forms the theoretical base of GRNN. If
joint probability density function of random variables 𝑥 and
𝑦 is 𝑓(𝑥, 𝑦) andmeasured value of 𝑥 is𝑋, then the regression
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Figure 3: Basic structure of RBFNN.

of 𝑦with respect to𝑋 (which is also called conditional mean)
is [31]

𝑌̂ (𝑋) = 𝐸 [

𝑦

𝑋

] =

∫

∞

−∞

𝑦 ⋅ 𝑓 (𝑋, 𝑦) 𝑑𝑦

∫

∞

−∞

𝑓 (𝑋, 𝑦) 𝑑𝑦

, (4)

where 𝑌̂(𝑋) is the prediction output of 𝑌 when input is𝑋.
For GRNN, Nose-Filho et al. [32] have shown that 𝑌̂(𝑋)

can be calculated by
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where 𝑋
𝑖 and 𝑌

𝑖 are sample values of random variables 𝑥

and 𝑦, 𝑛 is number of samples in training set, 𝜎 is smoothing
parameter, and𝐷

2

𝑖
is the Euclidean matrix defined by

𝐷
2

𝑖
= (𝑋 − 𝑋

𝑖
)

𝑇

(𝑋 − 𝑋
𝑖
) . (6)

The estimate 𝑌̂(𝑋) can be visualized as a weighted average
of all of the observed values, 𝑌

𝑖
, where each observed value

is weighted exponentially according to its Euclidean distance
from𝑋.

The basic structure of GRNN is shown in Figure 4. The
input units are merely distribution units, which provide all
of the inputs (scaled measurement variables) to all of the
neurons on the second layer called pattern units.The number
of neurons in input layer and output layer of GRNN is
equal to the dimensions of the input data and output data,
respectively. The pattern unit consists of neurons equal to
number of sample in training set and each pattern unit is
dedicated to one cluster centre. When a new vector, 𝑋, is
entered into the network, it is subtracted from the stored
vector representing each cluster center. The sum of squares
or the absolute values of the differences is calculated and fed
into a nonlinear activation function which is generally an
exponential function.

The outputs of pattern units are passed on to third layer
neurons known as summation units. There are two types
of neurons in summations units: numerator neurons whose
number is equal to output dimensions and one denominator
neuron. The first type generates an estimate of 𝑓(𝑥)𝐾 by
adding the outputs of pattern units weighted by the number
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of observations each cluster centre represents. The second
type generates estimate of 𝑌̂𝑓(𝑥)𝐾 and multiplies each value
from a pattern unit by the sum of samples associated with
cluster center 𝑋𝑖. 𝐾 is a constant determined by the Parzen
window. The desired estimate of 𝑌 is yielded by output unit
by dividing 𝑌̂𝑓(𝑥)𝐾 by 𝑓(𝑥)𝐾 [32]. The detailed explanation
of GRNN can be seen from [30–32].

3. The Proposed ANN Analysis of
the Sierpinski Gasket Fractal Antenna

In presented work, three above discussed ANN models have
been implemented and compared for Sierpinski gasket fractal
antenna. In each model, the parameters dielectric constant
“𝜀
𝑟
,” the thickness “𝑡” of the substrate, side length “𝑠” and the

number of iterations “𝑛” of the antenna are taken as inputs
and the resonant frequency (𝑓

𝑛
) is taken as outputs. A set

of 45 values of inputs along with desired output values are
taken for training.The block diagram of the proposedmodels
is depicted in Figure 5. Thus, the networks models have four
inputs and one output with intermediate hidden layers. The
parametric details of the models are shown in Figure 5.

3.1. Multilayer Perceptron Neural Network Parameters. For
the training of MLPNN, 4 input neurons, 15 neurons in
hidden layer, and 1 output neuron are used. The trainlm
function is used as training function and learning rate is
selected as 0.2. Trainlm is a network training function that
updates weight and bias values according to the Levenberg-
Marquardt algorithm. The architecture used for the analysis
is shown in Figure 6.

3.2. Radial Basis Function Neural Networks Parameters. For
the training of RBFNN, the value of spread constant has been
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Figure 6: Architecture of MLPNN.
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Figure 7: Architecture of RBFNN.

selected as 1.05. The value of spread constant should be large
enough so that several radial basis neurons always have fairly
large outputs at any given moment. This makes the network
function smoother and results in better generalization for
new input vectors occurring between input vectors used in
the design. However, for very large value of spread constant,
each neuron is effectively responding in the same large area
of the input space. As there are 45 sets of training data
so number of neurons in hidden layer is 45. The detailed
architecture is depicted in Figure 7.

3.3. General Regression Neural Network Parameters. For the
training of GRNN, the value of spread constant has been
selected as 0.85. In GRNN, the transfer function of first hid-
den layer is radial basis function. For small spread constant,
the radial basis function is very steep so the neuron with the
weight vector closest to the input will have a much larger
output than other neurons.The network will tend to respond
with the target vector associated with the nearest design input
vector. For large values of spread constant the radial basis
function’s slope becomes smoother and several neurons can
respond to an input vector. The network then acts as if it
is taking a weighted average between target vectors whose
design input vectors are closest to the new input vector. As
in case of RBFNN, the number of neurons in hidden layer is
45. The architecture is shown in Figure 8.

The trained ANN models are used to predict resonant
frequencies (𝑓

0
, 𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
) of 4th iteration Sierpinski gas-

ket antenna with parameters 𝜀
𝑟

= 2.5, 𝑠 = 102.7683mm,
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Table 1: Simulation results of all three ANN models. Absolute error calculated by subtracting from experimental results.

Resonant
frequency

Experimental
results (GHz) [13]

Theoretical results [14] MLPNN results RBFNN results GRNN results
Output
(GHz)

Absolute
error

Output
(GHz)

Absolute
error

Output
(GHz)

Absolute
error

Output
(GHz)

Absolute
error

𝑓
0

0.520 0.5140 0.0060 0.5122 0.0078 0.5123 0.0077 0.8922 0.3722
𝑓
1

1.740 1.7420 0.0020 1.7362 0.0038 1.7360 0.0040 1.9097 0.1697
𝑓
2

3.510 3.4840 0.0260 3.4712 0.0388 3.4717 0.0383 3.9282 0.4182
𝑓
3

6.950 6.9680 0.0180 6.9437 0.0063 6.9434 0.0066 7.6243 0.6743
𝑓
4

13.89 13.9340 0.0440 13.8865 0.0035 13.8867 0.0033 11.8325 2.0575

Table 2: Values of performance measures.

Performance measure Theoretical results MLPNN results RBFNN results GRNN results
Mean absolute error (MAE) 0.0192 0.0120 0.0120 0.7384
Coefficient of correlation, 𝑅 1.0000 1.0000 1.0000 0.9899
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Figure 8: Architecture of GRNN.

and 𝑡 = 1.588mm. ANN results are compared with the
experimental and theoretical results as shown in Table 1.
The absolute error values are calculated by comparing with
measured results of Puente-Baliarda et al. [13]. Also the
theoretical results obtained using the expressions of Mishra
et al. [14] are provided for comparison.

The performance comparison of different types of ANNs
is important to find the best suitable model for specific
problem. In recent years, a number of studies are done on
performance comparison of ANNs for a range of applications
[19, 21, 26, 33–39]. The performance of the proposed models
is compared on the basis of two different measures that
is, (1) mean absolute error (MAE), which gives the quality
of training the model. The smaller the value of MAE of
a model better will be its performance, and (2) coefficient
of correlation (𝑅) is the other measure of strength of the
linear relationship developed by a particular model. The
values of 𝑅 close to 1.0 indicate a good model performance.
The quantitative performance is given in Table 2. The values
of MAE and 𝑅 for theoretical results are also shown for
comparison purposes.

The comparison between these three algorithms on the
basis of MAE shows that the MLPNN and RBFNN have
smallest error values and even better than those of theoretical
results. It may be seen that the values of 𝑅 are equal to 1 for
MLPNN, RBFNN, and theoretical results and it is sufficiently
high for GRNN indicating satisfactory performance by all
models.

When both performance criteria are considered together,
the most satisfactory model is RBFNN, which has better
performance thanMLPNNandGRNNand it is even accurate
than theoretical method in predicting resonant frequencies.

4. Conclusion

The application of the artificial neural networks method
in Sierpinski gasket fractal antenna analysis is evaluated in
this work. The performances of the three neural networks
are evaluated to realize the possible applications of ANN
in fractal antenna design. The obtained ANN results are
compared with the published experimental results which
show percentage of error less than 1.5% for RBFNN. Due to
fast adaptive properties of ANN, the simulation time required
is very less. It has been observed that RBFNN method
outperforms the theoretical method in accuracy. Among the
different neural models compared, the RBFNN is found as
the best suitable model for this type of antenna analysis.
Thus, ANN approach to Sierpinski fractal antenna analysis
seems to be a low cost, accurate, and computationally fast
approach.The same concept can be explored for other fractal
geometries.
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