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In order to identify the parameters of nonlinear Hammerstein model which are contaminated by colored noise and peak noise,
the least absolute deviation (LAD) is selected as the objective function to solve the problem of large residual square when the
identification data is disturbed by the impulse noisewhich obeys symmetrical alpha stable (S𝛼S) distribution.However, LAD cannot
meet the need of differentiability required by most algorithms. To improve robustness and to solve the nondifferentiable problem,
an approximate least absolute deviation (ALAD) objective function is established by introducing a deterministic function to replace
absolute value under certain situations. The proposed method is derived from ALAD criterion and extended stochastic gradient
method. Due to the differentiability of the objective function, we can get a recursive identification algorithm which is simple and
easy to calculate compared with LAD.The convergence of the proposed identification method is also proved by Lyapunov stability
theory, and the simulation experiments show that the proposed method has higher accuracy and stronger robustness than the least
square (LS) method in the identification of Hammerstein model with colored noise and impulse noise.The impact of impulse noise
can be restrained effectively.

1. Introduction

In recent years, the Hammerstein model has drawn a lot of
attention because of its block-oriented nonlinear (BONL)
character. It can be used to describe a variety of nonlinear
systems such as nonlinear filtering, actuator saturation, signal
analysis, and chemistry in biology system. So far, there have
been several kinds of methods for the identification of Ham-
mersteinmodel with white noise such as the iterative method
[1, 2], the overparameterization method [3], the support vec-
tor machine (SVM) method [4], the subspace method [5–7],
the blind method [8], the frequency domain identification
method [9], and the artificial intelligence method [10–12]. In
industry process control, however, the noise always includes
colored noise and peak noise. It is necessary to consider the
identificationmethod for Hammerstein model when data are
contaminated by colored noise and peak noise. Chang and
Luus proposed an iterative method for Hammerstein model

with colored noise [13], but it cannot be used for online-
identification. Ding andChen proposed an extended stochas-
tic gradient method based on least squares for the nonlinear
Hammerstein ARMAX system and proved its convergence by
the martingale convergence theorem [2]. In most researches,
the LS criterion is taken as the objective function during
the identification of Hammerstein model. The studies show
that the LS method has better identification effect when the
stochastic noise is normally distributed [14]. However, the LS
method cannot work as well as the LAD method in certain
conditions; for example, if the noise does not obey the normal
distribution, the statistics performance of LAD estimation is
better than LS estimation with irreplaceable advantages [15].
As to the square term in the objective function of LS method,
a small change of the measured data will lead to a great
influence on the identification results when there are outliers
in the measured data [16].
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Figure 1: The structure of Hammerstein model.

To compensate the effect of the impulse noise and
outliers on the identification accuracy, the LAD criterion
is chosen to be the objective function which replaces the
square terms with absolute deviation. The LAD method
decreases the sensitivity to impulse noise and outliers and
greatly improves the robustness because the LAD criterion
only does the first power computation of the deviation.
The LAD objective function is not differentiable. It needs
to solve a nonsmooth optimization problem [17], which
complicates the computation.The proposed method replaces
the absolute deviation in LAD with a certain differentiable
function and rebuilds the ALAD objective function. This
paper derives the identification algorithm for Hammerstein
model from ALAD objective function and the extended
stochastic gradient method. To improve the identification
accuracy and convergence rates, we add an inertial term
to the proposed method. The convergence of the algorithm
is proved by Lyapunov stability theory at the same time.
The simulation experiments show that the proposed method
can effectively eliminate the influence of impulse noise and
outliers. Compared with the LS method, the ALAD method
has stronger robustness and higher identification accuracy,
demonstrating the superiority of the proposed method.

The rest of this paper is organized as follows. Sec-
tion 2 describes the identification problem of nonlinear
Hammerstein systems with colored noise. Section 3 derives
the proposed identification algorithm from ALAD criterion.
The convergence of the proposed method is also discussed
in Section 3. Section 4 offers an illustrative example and
compares the proposed algorithm with existing LS methods.
Some concluding remarks are provided in Section 5.

2. Hammerstein Model with Colored Noise

As is shown in Figure 1, the structure of Hammerstein model
is a series connection of a nonmemory static nonlinear block
and a linear dynamic block. The static nonlinear block is
connected with an input signal; the linear dynamic block is
connected with an output signal.

In Figure 1, 𝑢(𝑘) is an input and 𝑥(𝑘) is the output of the
nonlinear part and it is the input of the linear part as well.
𝑟(𝑘) is a real output. 𝑦(𝑘) is a measured output and the result
of 𝑟(𝑘) which is disturbed by the colored noise 𝑒(𝑘). V(𝑘) is
an additive white noise with zero mean. The colored noise
𝑒(𝑘) is the output of the linear link 𝐿(𝑧) that is driven by the
white noise V(𝑘). 𝐿(𝑧) is the “noise model” which decides the
property of 𝑒(𝑘), and 𝐺(𝑧) is the transfer function. Assuming

the nonlinear part 𝑥(𝑘) could be represented by a polynomial
about the input 𝑢(𝑘) with known order
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the linear block of Hammerstein model is described by
the model of CARMA/ARMAX (Controlled Autoregres-
sive Moving Average/Autoregressive Moving Average eXoge-
nous), the transfer function 𝐺(𝑧) = 𝐵(𝑧)/𝐴(𝑧), and 𝐿(𝑧) =

𝐷(𝑧)/𝐴(𝑧). Therefore, the relationship of input and output
can be written as
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From (1) and (2), it is obtained that
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where 𝐴(𝑧), 𝐵(𝑧), and 𝐷(𝑧) are the polynomials of the shift
operator:
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where 𝑎
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From (3), it is obtained that
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a, b, and d are the parameter vectors of the linear section
and c is the parameter vector of the nonlinear section of the
Hammerstein model:
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We define

𝜑 (𝑘) = [−𝑦 (𝑘 − 1) , −𝑦 (𝑘 − 2) , . . . , −𝑦 (𝑘 − 𝑛
𝑎
) ,

V (𝑘 − 1) , V (𝑘 − 2) , . . . , V (𝑘 − 𝑛
𝑑
) ,𝜓 (𝑘)]

T
,

𝜓 (𝑘) = [𝑓
1
(𝑢 (𝑘 − 1)) , 𝑓

1
(𝑢 (𝑘 − 2)) , . . . ,

𝑓
1
(𝑢 (𝑘 − 𝑛

𝑏
)) , 𝑓
2
(𝑢 (𝑘 − 1)) , 𝑓

2
(𝑢 (𝑘 − 2)) , . . . ,

𝑓
2
(𝑢 (𝑘 − 𝑛

𝑏
)) , . . . , 𝑓

𝑛
𝑐

(𝑢 (𝑘 − 1)) , 𝑓
𝑛
𝑐

(𝑢 (𝑘 − 2)) , . . . ,

𝑓
𝑛
𝑐

(𝑢 (𝑘 − 𝑛
𝑏
))] .

(9)

Then, (5) can be rewritten as

𝑦 (𝑘) = 𝜑
T
(𝑘) 𝜃 + V (𝑘) . (10)

3. The Identification Method Based on
ALAD Criterion and Extended Stochastic
Gradient Method

3.1. Approximate Least Absolute Deviation. As is known,
the absolute deviation is not differentiable. To overcome
this shortage, we choose a certain differentiable function to
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Figure 2: The curve of function property when 𝛽 = 0.01.

approximate the LAD criterion.This requirement can be met
by the following logarithmic function:

𝐽 (𝑥) = 𝛽 ln [cosh(𝑥
𝛽

)] . (11)

In (11), 𝛽 is an adjustable parameter, and the nonlinear
function 𝐽(∗) is related to 𝛽.While 𝛽 is small enough, nonlin-
ear function cosh(𝑥/𝛽) ≈ (1/2)𝑒

|𝑥/𝛽|, and 𝛽 ln[cosh(𝑥/𝛽)] ≈
|𝑥|; that is, 𝐽(𝑥) ≈ |𝑥|, approximating the absolute value
function. The property curve of the logarithmic function
when 𝛽 = 0.01 is shown in Figure 2.

The curve shows that while 𝛽 is small enough, non-
linear function 𝐽(𝑥) = 𝛽 ln[cosh(𝑥/𝛽)] can approximate
the absolute value function |𝑥| effectively. Because 𝐽(𝑥) is
differentiable, then the identification algorithm based on 𝐽(𝑥)
can be solved by some optimization methods.

3.2. Algorithm Derivation. In (10), the input 𝑢(𝑘) and output
𝑦(𝑘) are measurement data. According to the known struc-
ture of the nonlinear function 𝑓(∗), we can get the value of
𝑓(𝑢(𝑘)). But V(𝑘− 𝑖) in 𝜑(𝑘) is white noise and immeasurable,
whichmakes it impossible to solve the identification problem.
Based on the idea that the noise can be replaced by its
estimated value, we use V̂(𝑘 − 𝑖), the noise residual in the 𝑖th
step, to replace V(𝑘 − 𝑖) in the 𝑖 + 1th step, so 𝜑(𝑘) can be
replaced by its estimated value �̂�(𝑘):

�̂� (𝑘) = [−𝑦 (𝑘 − 1) , −𝑦 (𝑘 − 2) , . . . , −𝑦 (𝑘 − 𝑛
𝑎
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V̂ (𝑘 − 1) , V̂ (𝑘 − 2) , . . . , V̂ (𝑘 − 𝑛
𝑑
) ,𝜓 (𝑘)]

T
.

(12)

Then, the identification of 𝜃 in (10) is to find 𝜃 that minimizes
the following criterion function (ALAD) based on input data
�̂�(𝑘) and output data 𝑦(𝑘):

𝐽 (𝜃)|
�̂�(𝑘)

= 𝛽 ln cosh[
𝑦 (𝑘) − 𝜑

T
(𝑘) 𝜃

𝛽

]









�̂�(𝑘)

= min. (13)

For (13), it is a typical nonlinear function optimization.
To reduce the computation complexity, we use the stochastic
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gradient method to derive the recursive equation of ̂𝜃(𝑘) [18,
19]. The formula of the stochastic gradient method is

̂𝜃 (𝑘) = ̂𝜃 (𝑘 − 1) − 𝜇
𝑘
grad (𝐽 (𝜃))

�̂�(𝑘−1)
, (14)

where grad(∗) represents gradient and 𝜇
𝑘
is step size. The

formula above shows that ̂𝜃(𝑘) is corrected along the negative
gradient direction until the extreme value of 𝐽(𝜃) is obtained.

Firstly, we get the gradient of 𝐽(𝜃):

grad (𝐽 (𝜃))
�̂�(𝑘−1)

=

𝜕𝐽

𝜕𝜃








�̂�(𝑘−1)

= −�̂� (𝑘) tanh(
𝑦 (𝑘) − �̂�

T
(𝑘)

̂𝜃 (𝑘 − 1)

𝛽

) ;

(15)

then, from (15) and (13), we obtain
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where �̂�(𝑘) = 𝑦(𝑘) − �̂�
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Equation (17) is obtained based on the exact line search
algorithm and always leads to the two adjacent gradient
search directions being orthogonal and usually results in
zigzag phenomenon. When we use (17) to compute the
optimal 𝜇

𝑘
, the convergence rate is slow because of the

linear convergence order, and the identification results of
the parameters may be fluctuated. For this shortcoming, an
improved stochastic gradient method is applied to get 𝜇

𝑘

where 𝜇
𝑘
is based on the information of gradient that is 𝑘

times before the current iteration step; that is,
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From (14), (15), and (19), it is obtained that
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then
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𝑟(𝑘) is computed by the following recursive formula:
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where 𝜆(𝑘) = �̂�(𝑘 − 1)/�̂�(𝑘).
Equation (24) is equivalent for adding an inertial term to

the recursive equation of𝜇(𝑘).Theweights of the inertial term
are related to the iterative output error at 𝑘 − 1 and 𝑘 step.

In conclusion, we can obtain the extended stochastic
gradient identification method based on approximate least
absolute deviation (ALADESG):
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3.3. Analysis of Convergence. Rewrite (22) as

̂𝜃 (𝑘) = ̂𝜃 (𝑘 − 1) + 𝑐 (𝑘) �̂� (𝑘) �̂� (𝑘) , (26)
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0
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̂𝜃(𝑘), according to (26), we have

̂𝜃 (𝑘) = ̂𝜃 (𝑘 − 1)

+ 𝑐 (𝑘) �̂� (𝑘) (𝑦 (𝑘) − �̂�
T
(𝑘)

̂𝜃 (𝑘 − 1)) ;

(28)

subtracting 𝜃
0
on both sides of (28)

−
̃𝜃 (𝑘) = −

̃𝜃 (𝑘 − 1) + 𝑐 (𝑘) �̂� (𝑘) �̂�
T
(𝑘)

̃𝜃 (𝑘 − 1) (29)

then

̃𝜃 (𝑘) = [𝐼 − 𝑐 (𝑘) �̂� (𝑘) �̂�
T
(𝑘)]

̃𝜃 (𝑘 − 1) . (30)

Constructing the Lyapunov function

𝑉(
̃𝜃 (𝑘) , 𝑘) = ̃𝜃

T
(𝑘)

̃𝜃 (𝑘) > 0 (31)

then

Δ𝑉(
̃𝜃 (𝑘) , 𝑘) = 𝑉 (

̃𝜃 (𝑘) , 𝑘) − 𝑉 (
̃𝜃 (𝑘 − 1) , 𝑘 − 1)

=
̃𝜃
T
(𝑘 − 1) 𝐺 (𝑘)

̃𝜃 (𝑘 − 1) ,

(32)

where

𝐺 (𝑘)

= [𝐼 − 𝑐 (𝑘) �̂� (𝑘) �̂�
T
(𝑘)]

T
[𝐼 − 𝑐 (𝑘) �̂� (𝑘) �̂�

T
(𝑘)]

− 𝐼 = [�̂�
T
(𝑘) �̂� (𝑘) 𝑐

2
(𝑘) − 2𝑐 (𝑘)] �̂� (𝑘) �̂�

T
(𝑘) .

(33)

𝐺(𝑘) is a real symmetric matrix, and the rank of 𝑟(𝐺) = 1.
Obviously, when the following inequality in (34) is fulfilled,
the matrix 𝐺(𝑘) is negative and semidefinite, and then (28)
will be asymptotically stable in a large scope at the balance
point ̃𝜃(𝑘) = 0:

𝑐
2
(𝑘) �̂�

T
(𝑘) �̂� (𝑘) − 2𝑐 (𝑘) ≤ 0. (34)

According to (27),

𝑐
2
(𝑘) �̂�

T
(𝑘) �̂� (𝑘) − 2𝑐 (𝑘) =

tanh2 (�̂� (𝑘) /𝛽) �̂�T (𝑘) �̂� (𝑘)

[∑
𝑘

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)]

2
−

2 tanh (�̂� (𝑘) /𝛽)
∑
𝑘

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)

=

tanh2 (�̂� (𝑘) /𝛽) �̂�T (𝑘) �̂� (𝑘)

[∑
𝑘

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)]

2
−

2 tanh (�̂� (𝑘) /𝛽)∑𝑘
𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)

[∑
𝑘

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)]

2

=

−tanh2 (�̂� (𝑘) /𝛽)∑𝑛
𝑗=1

𝜑
2

𝑗
(𝑘) − 2 tanh (�̂� (𝑘) /𝛽)∑𝑘−1

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)

[∑
𝑘

𝑙=1
�̂�
T
(𝑙) �̂� (𝑙) tanh (�̂� (𝑙) /𝛽)]

2
.

(35)

The second term of (35) can be written as

−2 tanh (�̂� (𝑘) /𝛽) 𝑟 (𝑘 − 1) 𝑒 (𝑘 − 1)

𝑟
2
(𝑘) 𝑒
2
(𝑘)

=

−2 tanh (�̂� (𝑘) /𝛽)
𝑒 (𝑘)

1

𝑟
2
(𝑘)

𝑒 (𝑘 − 1) 𝑟 (𝑘 − 1)

𝑒 (𝑘)

,

(36)

where
tanh (�̂� (𝑘) /𝛽)

𝑒 (𝑘)

> 0,

1

𝑟
2
(𝑘)

> 0.

(37)

During the iterative process, if we could make sure that

𝑒 (𝑘 − 1) 𝑟 (𝑘 − 1)

𝑒 (𝑘)

≥ 0 (38)

then we get

𝑐
2
(𝑘) �̂�

T
(𝑘) �̂� (𝑘) − 2𝑐 (𝑘) ≤ 0. (39)

Therefore, in order to guarantee the convergence of the
proposed algorithm, we need to add (38) as a constraint when
(24) is used for iteration.

3.4. Separation of Parameters by Average Method. It is note-
worthy that in the description of the Hammerstein model (as
shown in Figure 1), for some nonzero and finite constant 𝑎,
any 𝑎𝑓(𝑢) and𝐺(𝑧)/𝑎 canmatch and yield identical input and
output measurements; thus, the nonlinear function 𝑓(𝑢) and
the transfer function𝐺(𝑧) are not unique. In other words, any
identification scheme will not be able to distinguish between
(𝑓(𝑢), 𝐺(𝑧)) and (𝑎𝑓(𝑢), 𝐺(𝑧)/𝑎). Therefore, without any loss
of generality, one of the gains of𝑓(𝑢) and𝐺(𝑧) has to be fixed.
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There are several ways to normalize these gains [20, 21]. We
adopt the following method.

Assumption 1. The first coefficient of the function 𝑓(⋅) equals
1 [22]; that is to say, in (1), 𝑐

1
= 1.

Based on the relationship between the parameters, �̂� can
be computed using

�̂�
𝑗𝑖
(𝑘) =

̂𝜃
𝑛
𝑎
+𝑛
𝑏
+𝑖
(𝑘)

̂
𝑏
𝑖
(𝑘)

,

𝑗 = 2, 3, . . . , 𝑛
𝑐
, 𝑖 = 1, 2, . . . , 𝑛

𝑏
.

(40)

From (40), we can see that the number of �̂�
𝑗𝑖
(𝑘) is 𝑛

𝑏
, and

�̂�
𝑗𝑖
(𝑘) is the estimated value of 𝑐

𝑗
(𝑘). In order to obtain the

estimated value of the parameterswithmuch higher accuracy,
we use the average method below to estimate �̂�:

�̂�
𝑗
(𝑘) =

1

𝑛
𝑏

𝑛
𝑏

∑

𝑖=1

�̂�
𝑗𝑖
(𝑘) =

1

𝑛
𝑏

𝑛
𝑏

∑

𝑖=1

̂𝜃
𝑛
𝑎
+𝑛
𝑏
+𝑖
(𝑘)

̂
𝑏
𝑖
(𝑘)

,

𝑗 = 2, 3, . . . , 𝑛
𝑐
.

(41)

4. Simulation Results and Discussions

Consider the following Hammerstein model:

𝐴 (𝑧) 𝑦 (𝑘) = 𝐵 (𝑧) 𝑥 (𝑘) + 𝐷 (𝑧) V (𝑘) , (42)

where 𝐵(𝑧−1) = 𝑏
1
𝑧
−1
+ 𝑏
2
𝑧
−2

= 0.85𝑧
−1
+ 0.65𝑧

−2; 𝐷(𝑧−1) =
1 + 𝑑
1
𝑧
−1

= 1 − 0.64𝑧
−1; 𝐴(𝑧−1) = 1 + 𝑎

1
𝑧
−1

+ 𝑎
2
𝑧
−2

= 1 −

1.60𝑧
−1
+ 0.80𝑧

−2. The nonlinear static part can be described
as the polynomial below:

𝑥 (𝑘) = 𝑓 (𝑢 (𝑘)) = 𝑐
1
𝑢 (𝑘) + 𝑐

2
𝑢
2
(𝑘) + 𝑐

3
𝑢
3
(𝑘)

= 𝑢 (𝑘) + 0.5𝑢
2
(𝑘) + 0.25𝑢

3
(𝑘) ,

(43)

where the input sequence 𝑢(𝑘) is a series of uncorrelated,
continuous, and stochastic sequences with zero mean and
unit variance 𝜎2

𝑢
= 1. The noise sequence {V(𝑘)} is a group of

stochasticwhite noise sequenceswith zeromean and variance
𝜎
2

V = 0.5.The input and output data for the identification pro-
cedure are obtained from thismodel.We then apply proposed
algorithm (25) to estimate the parameters of this system
at different situation. The identification process and result
analysis are demonstrated in the following. The simulation
experiments are performed in Matlab.The value of 𝛽 is taken
as 0.01.

The relative error of the parameters estimation is used as
the evaluation criteria of the algorithm which is defined as
follows:

𝛿 =







̂𝜃 (𝑘) − 𝜃






‖𝜃‖
. (44)

In order to verify the performance of the proposed
algorithm, we designed two simulation cases.

Case 1. Only colored noise exists in the measured data. This
case is used to prove the impact of inertial term on the
identification results of ALADESG method.

Case 2. Not only colored noise but also impulse noise
exists in the measured data. This case is used to compare
the identification effects of ALADESG method with that
of LSESG method when measured data are contaminated
by impulse noise. The robustness of ALADESG method is
also verified when impulse noise with different amplitude is
added.

The impulse noise in the experiment is subject to S𝛼S
distribution [23], and the probability density function of the
standard S𝛼S distribution is

𝑓
𝛼
(𝑥)

=

{
{
{
{
{
{

{
{
{
{
{
{

{

1

𝜋𝑥

∞

∑

𝑘=1

(−1)
𝑘−1

𝑘!

Γ (𝛼𝑘 + 1) |𝑥|
−𝛼𝑘 sin(𝑘𝛼𝜋

2

) , 0 < 𝛼 < 1,

1

𝜋𝑥

∞

∑

𝑘=1

(−1)
𝑘

2𝑘!

Γ [

(2𝑘 + 1)

𝛼

] 𝑥
2𝑘
, 1 < 𝛼 ≤ 2,

(45)

where Γ(∗) is Γ gamma function and 𝛼 is characteristics
exponent. The less 𝛼 is, the higher chance of large amplitude
sample of the random variable which is subject to S𝛼S
distribution takes place, and the stronger pulse strength is.

The way to get a random variable which obeys the
standard S𝛼S distribution follows the steps below [24]:

(1) Get a random variable𝑈 subject to uniform distribu-
tion on (−𝜋/2, 𝜋/2).

(2) Get a random variable 𝐸 subject to exponential
distribution and mean value is 1.

(3) Get the variable subject to standard S𝛼S distribution
by the following formula:

𝑌 =

sin𝛼𝑈
(cos𝑈)1/𝛼

(

cos ((1 − 𝛼)𝑈)

𝐸

)

(1−𝛼)/𝛼

, (46)

where 𝑈 and 𝐸 are independent.

4.1. The Effect of Inertial Term 𝜆(𝑘) on the Identification
Results. (1) Let 𝜆(𝑘) = 0; namely, 𝜇

𝑘
is computed by (17) with

current gradient information only. The curve of the relative
error is shown in Figure 3.

According to theoretical analysis, there are some draw-
backs when (17) is used to compute the optimal search step
size, such as linear convergence order, slow convergence
rate, and fluctuant estimation of parameters. As shown in
Figure 3, the curve of the relative error of the parameters
of Hammerstein model fluctuates severely, and the estimated
parameters cannot converge to the true value. That is to say,
the method cannot provide a reliable parameter estimation
for the identification of Hammerstein model when 𝜆(𝑘) = 0.

(2) In order to improve the accuracy and convergence rate
and to enhance the reliability of the identification results, we
add an inertial term 𝜆(𝑘) = �̂�(𝑘 − 1)/�̂�(𝑘) to the method,
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Table 1: Identification results when 𝜆(𝑘) = �̂�(𝑘 − 1)/�̂�(𝑘).

Parameters a
1

a
2

b
1

b
2

c
2

c
3

d
1

𝛿 (%)
Estimated value −1.5937 0.7943 0.8173 0.6895 0.5062 0.2533 −0.5452 6.8363
True value −1.600 0.800 0.850 0.650 0.500 0.250 −0.640 0
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Figure 3: Relative error curve when 𝜆(𝑘) = 0.
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Figure 4: Relative error curve when 𝜆(𝑘) = �̂�(𝑘 − 1)/�̂�(𝑘).

namely, applying (24) and (38) to parameter identification.
The results are shown in Table 1.

Obviously, when 𝜆(𝑘) = �̂�(𝑘 − 1)/�̂�(𝑘), the deviations of
the estimated values and true values of model parameters are
small, and the identification accuracy ismuch better than that
of 𝜆(𝑘) = 0. This shows that the inertial term coming from
the improved stochastic gradient method enhances the iden-
tification accuracy effectively and insures the convergence of
the ALADESG method. The relative error curve is shown in
Figure 4.

Comparing Figure 3 with Figure 4 shows that the relative
error curve in Figure 4 is much smoother, the estimated
parameters converge to those true values steadily, and the
relative error is smaller than the situation as shown in

0.0
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0.8
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k

0 500 1000 1500 2000 2500 3000 3500 4000
𝛿

Figure 5: Relative error with colored noise.

Figure 3. Simulation results in Figures 3 and 4 show that the
inertial term can greatly improve the identification accuracy
and significantly enhance the reliability of the parameter
estimation.

4.2. Comparison of ALADESG and LSESG

4.2.1. Considering the Measured Data with Colored Noise
Only. According to the same idea in Section 3.2, we can get
the iterative equations of LSESG also containing a similar
inertial term. Then the proposed ALADESG method was
compared with the LSESG method when the measured data
are contaminated with colored noise.The simulation result is
shown in Figure 5.

As shown in Figure 5, the identification accuracies of
the ALADESG method and the LSESG method are both
acceptable when the measured data are only disturbed by
colored noise, but the identification accuracy of the LSESG
method is higher and the convergence rate is faster. So when
the measured data is contaminated with colored noise only,
the identification performance of the LSESGmethod is better
than the ALADESG method.

4.2.2. The Measured Data with Impulse Noise Subject to
𝑆𝛼𝑆 Distribution. The measured data are contaminated with
both colored noise and impulse noise. Let the characteristics
exponent of the impulse noise be 1.5. The time-domain
waveform of the impulse noise is shown in Figure 6. Then
the measured data are identified by the ALADESG method
and the LSESG method, respectively. The relative errors are
shown in Figure 7.
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Table 2: Identification results with different 𝛼.

Parameters a
1

a
2

b
1

b
2

c
2

c
3

d
1

𝛿 (%)
𝛼 = 1.5 −1.5711 0.7832 0.8461 0.7040 0.4769 0.2501 −0.7541 10.2411
𝛼 = 1.2 −1.5177 0.7147 0.8189 0.7741 0.4764 0.2580 −0.7038 11.4612
𝛼 = 0.9 −1.4660 0.6617 0.8396 0.7817 0.4818 0.2515 −0.6394 15.1781
True value −1.600 0.800 0.850 0.650 0.500 0.250 −0.640 0
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Figure 6: The time-domain waveform of the impulse noise when
𝛼 = 1.5.
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Figure 7: Relative error with impulse noise of 𝛼 = 1.5.

Figure 7 shows that the identification accuracy of the
ALADESG method is higher than that of the LSESG method
when the measured data are disturbed by colored noise
and impulse noise with 𝛼 = 1.5. From Figures 6 and
7, we notice that the relative error of the LSESG method
will fluctuate severely at the moment when a large impulse
is added, and the larger the amplitude of the impulse is,
the severer the fluctuation is, which makes the parameter
estimation unable to converge steadily. In the LSESGmethod,
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Figure 8: Relative error with impulse noise of different amplitude.

the objective function is the square of the error so the
influence of impulse noise would be amplified especially
when the impulse noise is large. In contrast, the ALADESG
method is based on the ALAD criterion which restrains the
influence of impulse noise and enhances the robustness, the
parameter estimation converges to the true value quickly and
steadily, and the identification accuracy is also improved.The
simulation results indicate that the ALADESG method has a
better identification performance than LSESG method when
impulse noise is added.

4.2.3. The Influence of Different Pulse Amplitude on the
Identification Results of ALADESG Method. In this part, we
conduct three simulations with 𝛼 = 1.5, 𝛼 = 1.2, and 𝛼 = 0.9.
The identification results of theALADESGmethod are shown
in Table 2, and the relative errors are shown in Figure 8. In
addition, the identification results of the ALADESG method
are compared with those of LSESGmethod when 𝛼 = 1.2 and
𝛼 = 0.9. The relative errors curves when 𝛼 = 1.2 and 𝛼 = 0.9

are shown in Figures 9 and 10, respectively.
From Table 2 and Figure 8, the identification accuracy of

the ALADESGmethod becomes worse when 𝛼 decreases, but
the decrease of accuracy is small. In contrast, from Figures 7,
9, and 10, the identification accuracy of the LSESG method
becomes worse when 𝛼 is decreased and the decrease of
accuracy is very obvious. Particularly when 𝛼 = 1.2 and 𝛼 =

0.9, the LSESG method cannot converge indeed, which sug-
gests that the LSESG method cannot identify the parameters
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Figure 9: Relative error with impulse noise of 𝛼 = 1.2.
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Figure 10: Relative error with impulse noise of 𝛼 = 0.9.

of Hammerstein model in this situation. But high accuracy
and stable identification results still can be achieved by the
ALADESG method. Therefore, it can be concluded that the
method based on ALAD criterion overcomes the impact of
impulse noise very well and has better robustness to impulse
noise.

4.3. Identification Results Analysis. According to the identi-
fication results shown in Sections 4.1 and 4.2, the following
conclusions are summarized.

(1) When themeasured data are contaminated by colored
noise, the Hammerstein model can be identified
effectively by the proposed method.

(2) By applying inertial term 𝜆(𝑘) which contains the
gradient information of past time, the identification

accuracy and convergence rates are improved signifi-
cantly.

(3) The identification performance of the LSESGmethod
is better than that of the ALADESG method when
only colored noise exists.

(4) The ALADESG method has better accuracy and con-
vergent rate than LSESG method when both colored
noise and impulse noise exist in measured data. Par-
ticularly when the amplitude of impulse noise is very
large (such as when 𝛼 = 0.9), the ALADESG method
still can get an acceptable identification result, which
proves the adaptability of the method to more serious
noise.The robustness of themethod is also confirmed
by simulation results.

5. Conclusions

In this paper, we expand the application of the LAD technique
to the field of nonlinear identification. A new algorithm is
proposed based on ALAD criterion and improved stochastic
gradient search algorithm for the Hammerstein model, and
the convergence is proven by Lyapunov stability theory. With
the application of ALAD criterion, the proposed method
overcomes the influence of impulse noise and colored noise
on the identification results and improves the robustness to a
large extent. The proposed algorithm is easy to implement.
The simulation results show that the proposed algorithm
yields better robustness against impulse noises and a faster
convergence rate than that by the LSESG method.
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