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We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes
how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process,
in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic
image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in
velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic
data. We provide synthetic diffraction imaging examples to illustrate the concept and potential applications of azimuthal velocity
continuation and to analyze the impulse response of the 3D velocity continuation operator.

1. Introduction

Velocity continuation [1, 2] provides a framework for
describing how a seismic image changes given a change
in the migration velocity model. Similar in concept to
residual migration [3], and cascaded migrations [4], velocity
continuation is a continuous formulation of the same
process. Velocity continuation has found applications in
migration velocity analysis [5, 6] and diffraction imaging
[7, 8].

Fomel [1] and Hubral et al. [9] point out that veloc-
ity continuation is a wave propagation process. Instead
of wavefronts propagating as a function of time, images
propagate as a function of migration velocity. Recent work
has extended the concept to heterogeneous and anisotropic
velocity models [10–15]. To account for anisotropy, the
seismic velocity model must become multiparameter. Con-
sequentially, velocity continuation generalizes to a process of
implementing image transformations caused by changes in
multiple parameters rather than the single isotropic velocity
alone.

Accounting for azimuthal variations in seismic velocity
results in better event focusing and improved imaging in
such media [16]. Azimuthal variation in velocity has been
shown to be an indicator of preferentially aligned vertical

fractures [17], lateral heterogeneity [18], regional stress [19],
or a combination of these factors. However, velocity analysis
is commonly first performed on prestack common midpoint
(CMP) gathers, where the geologic cause of any observed
azimuthal velocity variation is ambiguous. Without the help
of additional diagnostic gathers such as hybrid or cross-
spread gathers [20], or an interpretive comparison between
picked root mean square (RMS) and interval velocities [21],
the cause of azimuthal variations in velocity can be identified
only after migration.

Azimuthal seismic imaging commonly requires iterations
between velocity analysis and imaging. Residual azimuthal
variations in traveltime after migration can be measured by
using migration binning schemes which preserve both offset
and azimuth information [22, 23]. After the first pass of
(isotropic) migration, azimuthal variations in velocity are
detected from residual moveout, which then provides the
velocity model for anisotropic migration. Iterative processing
flows that use these strategies are popular not only because
they are fairly efficient and intuitive, but also because they
can be implemented with minimal modification to existing
software. However, iterative imaging flows cannot guarantee
convergence to the correct or optimal velocity model [24].
Velocity continuation has the underlying strategy of per-
forming velocity analysis and imaging simultaneously and
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can thus be used to directly find an optimal velocity model
without iteration. Sicking et al. [19] have demonstrated the
success of a similar strategy of using imaging as a velocity
analysis tool for 3D multiazimuth reflection seismic data.
Azimuthal velocity continuation can provide a theoretical
framework for this approach. With these benefits as moti-
vation, we extend time-domain velocity continuation to 3D,
accounting for the case of azimuthally variable migration
velocity.

2. Theory

The theory of velocity continuation formulates the connec-
tion between the seismic velocity model and the seismic
image as a wavefield evolution process. In doing so, the
process can be implemented in the same variety of ways as
seismic migration. Seismic migration in its many forms is
commonly derived starting at the wave equation, which is
approximated by its time and amplitude components by the
eikonal and transport equations, and if necessary, a system of
ray tracing equations. Velocity continuation is derived in the
opposite order [2]. Starting with a geometrical description
of the image, a corresponding kinematic equation for travel-
time is derived to describe how the image moves according to
changes in imaging parameters. Subsequently, the kinematic
equation is used to derive a corresponding wave equation,
which describes the dynamic behavior of the image as
an evolution through imaging parameter coordinates. This
section outlines the key steps of this derivation, starting with
a traveltime equation that permits azimuthal variations in
velocity.

Grechka and Tsvankin [25] truncate a two-dimensional
Taylor series expansion for a generally inhomogeneous
anisotropic media to derive the “NMO ellipse” move-
out equation. Geometrically, the NMO ellipse model still
assumes that events have hyperbolic moveout with offset, but
it allows the velocity to change with azimuth. We start here
by using the same truncated 2D Taylor series expansion to
describe an azimuth-dependent traveltime equation for the
summation surface of zero-offset time migration,

T2(x, y, W
) = 4

(
τ2 +

(
x− y

)TW
(

x− y
))

, (1)

where τ is the one-way vertical traveltime after migration,
x is the (x1, x2) surface position of the zero-offset receiver
in survey coordinates, y is the surface position of the point
source image, and superscript T denotes transpose. The three
independent elements of the symmetric slowness matrix,

W =
⎛

⎝
W11 W12

W12 W22

⎞

⎠, (2)

have units of slowness squared, and the eigenvalues and
eigenvectors of W determine the symmetry axes of the
effective anisotropic medium [25]. In most common geo-
logic situations, the eigenvalues of W are positive [26], and
(1) describes an elliptical-hyperbolic traveltime surface in
3D—hyperbolic in cross-section view and elliptical in map
view. The fast and slow moveout velocities are aligned with

the major and minor axes of this ellipse. W11 and W22 are
the squared moveout slownesses along their respective survey
coordinates, x1 and x2. The third parameter,W12, arises from
observing the ellipse in the x1-x2 survey coordinates, which
are generally rotated relative to its major and minor axes.

The three-parameter moveout model of (1) is analyti-
cally convenient and practical, but the parameters themselves
are not intuitive to interpret in terms of more common
geophysical or geological parameters. However, some simple
geometric observations can help convert the three elements
of W into more intuitive measurements. If the ellipse
happens to be aligned with the survey coordinates, W12 =
0. Finding the rotation angle which properly diagonalizes
W therefore allows one to predict the orientation of the
symmetry axes. This amounts to an eigenvalue problem,
where the fast and slow velocities can be found as the
eigenvalues and eigenvectors of W. The eigenvalues, Wfast

and Wslow, of the slowness matrix can be found following
[25],

Wslow, fast = 1
2

[
W11 +W22 ±

√
(W11 −W22)2 + 4W2

12

]
.

(3)

Since the eigenvalues have units of slowness squared, the
smaller eigenvalue is Wfast = 1/v2

fast. One can solve for
the angle β between the acquisition coordinates and the
symmetry axes by using the formula found by [25],

β = tan−1

⎡

⎣
W22 −W11 +

√
(W22 −W11)2 + 4W2

12

2W12

⎤

⎦. (4)

The eigenvalues can then be used together with β to solve for
the zero-offset migration slowness S as a function of source-
receiver azimuth θ:

S2(θ) =Wslow cos2(θ − β) +Wfast sin2(θ − β). (5)

Equations (3)–(5) allow one to convert the mathe-
matically convenient parameters of W to more intuitive
parameters, such as the fastest and slowest propagation
velocities (Vfast,Vslow), the azimuth of the slowest velocity (β),
and the percent anisotropy (σ = 100 × (1 − Vslow/Vfast)).
Alternatively, W can be converted into other common
geophysical parameterizations. For example, Grechka and
Tsvankin [25] show that once the effective parameters W
have been converted to slowness as a function of azimuth by
(5), they can be expressed in terms of horizontal transverse
isotropy parameters as

S2(θ) = 1
V 2
P0

1 + 2δ(v)sin2(θ)
1 + 2δ(v)

, (6)

where δ(v) is the Thomsen-style parameter [27], introduced
by Tsvankin [28], and VP0 is the vertical P-wave velocity.

Conventionally, one assumes that (1) characterizes a
particular event defined in image coordinates (x, τ), but one
can also describe how that event would transform given a
change in the image parameters W. Regardless of the velocity
model, the traveltime T must remain unchanged between
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different images. From this observation, we arrive at the
following set of conditions:

∇xT2 =
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Combining and reducing these conditions yields a system
of equations that are defined only in the image parameter
coordinates:

2
∂τ

∂W11
+
τ(W22(∂τ/∂x1)−W12(∂τ/∂x2))2

(
W2

12 −W11W22
)2 = 0,

2
∂τ

∂W22
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τ(W12(∂τ/∂x1)−W11(∂τ/∂x2))2

(
W2

12 −W11W22
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(8)

2
∂τ

∂W12
− 2τ(W12(∂τ/∂x1)−W11(∂τ/∂x2))(W22(∂τ/∂x1)−W12(∂τ/∂x2))

(
W2

12 −W11W22
)2 = 0. (9)

The system of kinematic equations describing azimuthally
anisotropic velocity continuation is then found by combin-
ing (8)–(9). In a vector notation, this becomes

∇Wτ +
τ

2
W−1∇xτ(∇xτ)TW−1 = 0, (10)

where ∇x and∇W are in the form given by (7).
The method of characteristics [29] provides a link

between a kinematic equation (such as (10)) and its cor-
responding wave-type equation. Fomel [2] demonstrates
specifically how the method can be used to derive a velocity
continuation wave equation from its kinematic counterpart.
By first setting the characteristic surface condition,

ψ = t − τ(x, W) = 0, (11)

and replacing τ with ψ and t, we obtain an alternative form
of (10):

ψt∇Wψ +
t

2
W−1∇xψ

(∇xψ
)TW−1 = 0. (12)

Equation (11) guarantees that the wavefronts of time-
domain image wavefield P exist only where the arrival time
τ is equal to the recorded time t at a given location. Now
take both ξi and ξ j to represent each of t, W11, W12, W22, x1,
and x2. According to the method of characteristics, if Λi j is
the coefficient in front of (∂ψ/∂ξi)(∂ψ/∂ξj) from kinematic
equation (12), then the corresponding wave equation will
have the same coefficients Λi j in front of each ∂2P/∂ξi∂ξ j
derivative. The time derivative ψt is equal to 1 given (11),
and is included in the first term of (12) to facilitate the use
of the method of characteristics. Then, by introducing Pxx as
the spatial Hessian matrix of the wavefield,

Pxx =
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1
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, (13)

we arrive at the azimuthally anisotropic post-stack velocity
continuation wave equation,

∇WPt = − t2 W−1PxxW−1. (14)

In the isotropic case, W is diagonal andW11 =W22. Equation
(14) then reduces to the isotropic velocity continuation
equation first derived by Claerbout [30].

3. Method

Since velocity continuation is described by a wave equation,
it can be implemented in analogous ways to seismic migra-
tion. Here, we demonstrate a spectral implementation of
(14). By first stretching the time coordinate of an input image
from t to t̃ = t2/2, and then taking its 3D Fourier transform,
(14) becomes the reduced partial differential equation:

iΩ∇WP̂ = 1
2

W−1kkTW−1P̂, (15)

where Ω is the Fourier dual of t̃ and k is the wavenumber
vector (Fourier dual of x). Equation (15) has the analytical
solution,

P̂(Ω, k1, k2, W) = P̂(Ω, k1, k2, W0)e−i/2ΩkT (W−1−W−1
0 )k,

(16)

which shows that continuation of an image from an arbitrary
W0 to W can be achieved by multiplication with a shifting
exponential in the Fourier domain. One can also directly
migrate an unmigrated image by using the 2 × 2 matrix
W−1

0 = 0 for the initial velocity. In practice, the coordinate
stretch from t to t̃ should be carefully applied as data will be
compressed along the time axis for early samples.

With a range of slowness matrices W, equation (16)
can be used to quickly generate the corresponding range of
anisotropically migrated images. When the correct velocity
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(c) Isotropic
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(d) Correct parameter

Figure 1: (a) A single azimuthally anisotropic diffraction. (b) The diffraction migrated by velocity continuation using correct parameters
except σ = 10, resulting in overmigration along x2. (c) Migration using the correct W11, but assuming isotropy. The result is now
undermigrated along x2. (d) Migration using correct parameters. The image is well focused in both directions.

model is used, diffractions collapse to points, which we
recognize as the image coming into focus. Although constant
velocity models are used for each image, this type of spectral
implementation can still be useful in the heterogeneous case,
as different parts of the image will come into focus locally as
the appropriate velocity is used [31, 32]. Once the range of
images is generated, we search for the best focused image at
each output location. We use the image attribute of kurtosis,
defined as,

φ(W) =
∫∫
P4(x, t, W)dxdt

[∫∫
P2(x, t, W)dx dt

]2 , (17)

to quantify how well a location is focused in a particular
image [8, 33]. Including integration limits specifies a window
size for locally measuring kurtosis in the image. In applica-
tion, either the integration limits control the size of a “sliding
window,” or when viewing kurtosis as a local attribute,

[34], they can be used to control the smoothness enforced
by shaping regularization. In either case, the integration
limits control a trade-off between the robustness of the
focusing measurement and the resolution. From experience,
typical limits for field data correspond to window sizes
on the order of 101 samples in each dimension. It should
be noted that the traveltime approximation of (1) loses
accuracy in the presence of strong lateral heterogeneity, but
is commonly used to estimate smooth effective parameter
models. Following the maximum values through the result-
ing six-dimensional kurtosis hypercube, φ(t, x, W), and then
slicing corresponding pieces from the output images volume,
P(t, x, W), reveals an effective medium-based heterogeneous
velocity model and a well focused image. This spectral
implementation and slicing procedure is similar to searching
through a set of constant-velocity f –k migrations and can
be completed without any prior knowledge of the velocity
model [32, 35].
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4. Examples

Two simple synthetic examples are provided below to
illustrate 3D velocity continuation over a range of velocity
models. In the first example, we apply velocity continuation
to a point diffractor. In the second example, we apply the
method to a synthetic post-stack image of a set of faults.
The second example illustrates fracture characterization
through diffraction imaging as a potential application for 3D
azimuthal velocity continuation. The data in both examples
are modeled using (1), which geometrically approximates a
diffraction surface as an elliptical-hyperbolic surface. Field
data and more accurately modeled data will generally also
exhibit nonhyperbolic moveout, for which (1) does not
account. The physical validity and limitations of (1) are
thoroughly discussed by Grechka and Tsvankin [25], but we
focus here on how well diffractions can be collapsed, and how
well the velocity parameters can be measured, if the data are
ideally described by (1).

Figure 1(a) shows a single diffraction event, modeled
using (1). The fastest direction of propagation is at β = 105◦

counterclockwise from the x1 axis, with Vfast = 3.50 km/s.
The data in Figure 1(a) were modeled with σ = 7%
anisotropy, which may be quite high for most field cases, but
it was chosen to allow the azimuthal variations in diffraction
moveout to be visibly pronounced. As described above, we
first stretch the time axis from t to t̃ and take the 3D
Fourier transform of the data. Then we apply the phase-
shift prescribed by (16) for a range of W. We found it more
intuitive to specify the parameter ranges in terms of Vx1 , β,
and σ , and then convert them at each step into the three
parameters of W for use in (16). The inverse of the in-line
velocity squared 1/V 2

x1
is equivalent to W11, which, along

with a given fast azimuth β and percent anisotropy σ , can be
used to calculate W12 and W22 using (3)–(5). Last, we apply
the 3D inverse Fourier transform and unstretch from t̃ to t
to obtain the 6D image volume. Examples from the image
volume using incorrect parameters are shown in Figures 1(b)
and 1(c). The correct parameters are used in Figure 1(d),
where the image is well focused.

Since only a single diffraction is present in this example,
we can measure kurtosis over a window spanning the entirety
of each 3D image, reducing the kurtosis volume from 6D
to 3D. Figure 2 is a 2D slice of the kurtosis volume at the
correct W11 = 1/V 2

x1
value of 0.0935 = 1/(3.27 km/s)2. The

peak of the kurtosis map is near the correct values of σ =
7 and β = 105◦. Once the peak of the kurtosis map is
identified, one could refine the increments around the peak
to yield more accurate estimates. The physical limitations of
resolving azimuthal velocity parameters are discussed by Al-
Dajani and Alkhalifah [37].

In practice, a conventional in-line 2D velocity analysis
directly yields W11 from 1/V 2

x1
, so Figure 2 could illustrate

a realistic scenario for using 3D velocity continuation to
improve upon a previous isotropic velocity model. In such
a case, one would use previous Vx1 picks to hold W11

constant and then effectively test a variety of W12 and W22

values. Since W11 and W22 are measured with respect to
the survey coordinates, either (or both) can be measured
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Figure 2: Kurtosis values for the velocity continuation of the
diffraction in Figure 1(a). The map covers a range of anisotropy and
angle values with an increment in β of 5◦ and an increment in σ of
0.5%. The correct values at 105◦ and 7% anisotropy (indicated by
crosshairs) coincide with the peak of the kurtosis map.

independently via a single-azimuth semblance scan, along
x1 or x2, respectively. The best isotropic velocity based
on a fully multiazimuth semblance scan will generally not
represent either W11 or W22, but it can help limit the range
of test parameters. Note that our method does not require
prior knowledge of the velocity model, but without prior
knowledge, the kurtosis measure remains a 6D volume.
Although more difficult to visualize, the 6D kurtosis volume
is computationally just as easily scanned for optimal imaging
parameters as the 2D map in Figure 2.

In the next example, we illustrate the concept of applying
3D anisotropic velocity continuation to diffraction imag-
ing and fracture characterization. Figure 3(a) shows a 3D
synthetic post-stack diffraction data set, equivalent to the
ideal separation of diffractions from specular reflections in
post-stack data following Fomel et al. [8]. A fault map
from Hargrove [36] (shown in Figure 3(a)) was digitized
and used to create a 3D fracture model. Each fault location
was used to generate a point diffraction in a homogeneous
anisotropic background via (1). A timeslice of the modeled
diffraction data is shown in Figure 3(b). The faults in the
model typically have a strike of 112◦, and in cases where
faults and nearby fractures (which more likely influence the
seismic velocity) are similarly aligned, the fast direction of
seismic wave propagation tends to align with their strike.
By assuming a typical tight sandstone velocity of Vfast =
4.0 km/s with 3% anisotropy, we choose the modeling W
to be comprised of W11 = 0.0659, W22 = 0.0631, and
W12 = 0.0014 (all in s2/km2). This results in a fast velocity
direction along the strike of the faults. In Figure 3(d), we see
that 3D velocity continuation using the correct parameters
(again found by maximum kurtosis) allows the faults to be
clearly imaged. If an intermediate isotropic velocity model is
used, as in Figure 3(c), the diffractions are still imaged, but
they are not as well focused compared to the anisotropically
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Figure 3: (a) Fault map from Northwest Scotland [36] used to model diffraction data. (b) Synthetic post-stack diffraction data modeled using
(1) and a 3D model based on the fault map in (a). (c) Diffractions from (b) migrated using an isotropic velocity model. (d) Diffractions
from (b) migrated by anisotropic 3D velocity continuation.

migrated diffractions in Figure 3(d). Conventionally, diffrac-
tion arrivals such as those in Figure 3(a) may be viewed as
noise, but by separating them and treating them as signal,
we can see here that imaging of steep and detailed features
while simultaneously extracting anisotropy information may
be possible.

5. Discussion and Conclusions

By extending time-domain velocity continuation to the
azimuthally anisotropic 3D case, we have combined the
concepts of azimuthal imaging and diffraction imaging. We
assume a three-parameter migration slowness model that
allows velocity to vary elliptically with azimuth. We have
provided simple examples to illustrate the potential appli-
cation of our method to fracture characterization through
diffraction imaging. By treating diffractions as signal, our
method performs azimuthal analysis on post-stack data,

without the requirement for common-offset-vector or offset-
vector-tile binning schemes. This is possible because, unlike
reflections, diffractions can preserve azimuthal information
post-stack. Post-stack data volumes have obvious advantages
over prestack or vector-binned data for analysis, including
smaller memory size and improved signal-to-noise ratio.

Allowing azimuthal variation in the migration velocity
will result in improved imaging, which is clearly a benefit
of 3D velocity continuation. However, the potential for
fracture characterization may be even more useful. Our
method has many of the same ideas as the azimuthal
imaging and fracture characterization flow proposed by
Sicking et al. [19] for reflection data. Under the velocity
continuation framework, we can extend the azimuthal
imaging idea to 3D diffraction imaging. Since diffraction-
generating fractures and faults are often nearly vertical and
preferentially aligned, they can be associated with azimuthal
anisotropy. Fomel et al. [8] demonstrate that it is possible
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to separate diffractions from specular reflections and then
image their associated discontinuities through the use of
velocity continuation. Their method operates on post-stack
data, as they show that diffractions are highly sensitive to
migration velocity, even in the zero-offset case. Al-Dajani
and Fomel [38] have successfully demonstrated zero-offset
diffraction image focusing as a fracture detection attribute
on azimuth-sectored 3D field data. Our proposed method
uses multiazimuth image focusing primarily as a velocity
analysis criterion, but kurtosis could also be used as an image
attribute. In cases where subsurface fractures cause azimuthal
anisotropy, kurtosis as an attribute may be indicative of
fracture intensity [38]. By applying velocity continuation to
3D diffraction imaging, one may be able to estimate both the
orientation and the intensity of fractures from the resulting
anisotropic velocity model and maximum kurtosis volumes,
respectively. This information can be useful in reservoir
development, as it can provide insight to subsurface fluid
flow behavior.

Although the spectral implementation of our method
allows a range of possible images to be computed efficiently,
it demands large amounts of memory to store a suite of
images as well as the kurtosis volume. Modern computa-
tional hardware makes our approach feasible as is, especially
for target-oriented imaging and analysis strategies. Future
studies may lead to better optimization-based approaches to
finding local kurtosis maxima, in which case, our method
could be practical for dense parameter estimation through-
out full 3D volumes.

The underlying strategy of velocity continuation is to
simultaneously estimate the velocity model as the data
are imaged. This is beneficial in the case of azimuthal
anisotropy discussed here, as the ambiguity between struc-
tural heterogeneity and anisotropy is handled without the
need for iteration. Other multiparameter seismic imaging
problems, such as converted-wave imaging, which are also
conventionally handled by iterative flows, could also benefit
from prestack versions of the 3D velocity continuation
strategy.
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