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Using a generalized translation operator, we obtain an analog ofTheorem 5.2 in Younis (1986) for the Bessel transform for functions
satisfying the (k,𝛾)-Bessel Lipschitz condition in 𝐿

2,𝛼
(R
+
).

1. Introduction and Preliminaries

Younis Theorem 5.2 [1] characterized the set of functions in
𝐿
2
(R) satisfying the Cauchy Lipschitz condition by means of

an asymptotic estimate growth of the norm of their Fourier
transforms; namely, we have the following.

Theorem 1 (see [1]). Let 𝑓 ∈ L2(R). Then the followings are
equivalent:

(1) ‖𝑓(𝑥 + ℎ) − 𝑓(𝑥)‖
2

= 𝑂(ℎ
𝛼
/(log(1/ℎ))𝛽) 𝑎𝑠 ℎ →

0, 0 < 𝛼 < 1, 𝛽 > 0,
(2) ∫
|𝑥|≥𝑟

|F(𝑓)(𝑥)|
2
𝑑𝑥 = 𝑂(𝑟

−2𝛼
(log 𝑟)−2𝛽) 𝑎𝑠 𝑟 →

+∞,

whereF stands for the Fourier transform of 𝑓.

In this paper, we obtain a generalization ofTheorem 1 for
the Bessel transform. For this purpose, we use a generalized
translation operator.

Assume that 𝐿
2,𝛼
(R
+
); 𝛼 > −1/2 is the Hilbert space of

measurable functions 𝑓(𝑡) on R
+
with finite norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝛼 = (∫

∞

0

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑥
2𝛼+1

𝑑𝑥)

1/2

. (1)

Let

𝐵 =
𝑑
2

𝑑𝑡2
+
(2𝛼 + 1)

𝑡

𝑑

𝑑𝑡
(2)

be the Bessel differential operator.

For 𝛼 ≥ −1/2, we introduce the Bessel normalized
function of the first kind 𝑗

𝛼
defined by

𝑗
𝛼
(𝑧) = Γ (𝛼 + 1)

∞

∑

𝑛=0

(−1)
𝑛

𝑛!Γ (𝑛 + 𝛼 + 1)
(
𝑧

2
)

2𝑛

, (3)

where Γ is the gamma function (see [2]).
The function 𝑦 = 𝑗

𝛼
(𝑥) satisfies the differential equation

𝐵𝑦 + 𝑦 = 0, (4)

with the initial conditions 𝑦(0) = 1 and 𝑦
󸀠
(0) = 0.

𝑗
𝛼
(𝑧) is function infinitely differentiable, even, and,moreover,

entirely analytic.

Lemma 2. For 𝑥 ∈ R
+
the following inequality is fulfilled:
󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝑥)

󵄨󵄨󵄨󵄨 ≥ 𝑐, (5)

with 𝑥 ≥ 1, where 𝑐 > 0 is a certain constant which depends
only on 𝛼.

Proof. Analog of Lemma 2.9 is in [3].

Lemma 3. The following inequalities are valid for Bessel
function 𝑗

𝛼
:

(1) |𝑗
𝛼
(𝑥)| ≤ 1, for all 𝑥 ∈ R+,

(2) 1 − 𝑗
𝛼
(𝑥) = 𝑂(𝑥

2
), 0 ≤ 𝑥 ≤ 1.

Proof. See [4].
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The Bessel transform we call the integral transform from
[2, 5, 6]

𝑓̂ (𝜆) = ∫

∞

0

𝑓 (𝑡) 𝑗
𝛼
(𝜆𝑡) 𝑡
2𝛼+1

𝑑𝑡, 𝜆 ∈ R
+
. (6)

The inverse Bessel transform is given by the formula

𝑓 (𝑡) = (2
𝛼
Γ (𝛼 + 1))

−2

∫

∞

0

𝑓̂ (𝜆) 𝑗
𝛼
(𝜆𝑡) 𝜆

2𝛼+1
𝑑𝜆. (7)

We have the Parseval’s identity
󵄩󵄩󵄩󵄩󵄩
𝑓̂
󵄩󵄩󵄩󵄩󵄩2,𝛼

= 2
𝛼
Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝛼. (8)

In 𝐿
2,𝛼
(R
+
), consider the generalized translation operator

𝑇
ℎ
defined by

𝑇
ℎ
𝑓 (𝑡) = 𝑐

𝛼
∫

𝜋

0

𝑓(√𝑡2 + ℎ2 − 2𝑡ℎ cos𝜑) sin2𝛼𝜑𝑑𝜑, (9)

where

𝑐
𝛼
= (∫

𝜋

0

sin2𝛼𝜑𝑑𝜑)
−1

=
Γ (𝛼 + 1)

Γ (1/2) Γ (𝛼 + (1/2))
. (10)

The following relations connect the generalized transla-
tion operator and the Bessel transform; in [7] we have

(T̂
ℎ
𝑓) (𝜆) = 𝑗

𝛼
(𝜆ℎ) 𝑓̂ (𝜆) . (11)

2. Main Result

In this section we give the main result of this paper. We need
first to define (𝑘, 𝛾)-Bessel Lipschitz class.

Definition 4. Let 0 < 𝑘 < 1 and 𝛾 ≥ 0. A function
𝑓 ∈ 𝐿

2,𝛼
(R+) is said to be in the (𝑘, 𝛾)-Bessel Lipschitz class,

denoted by Lip(𝑘, 𝛾, 2), if

󵄩󵄩󵄩󵄩Tℎ𝑓(𝑡) − 𝑓(𝑡)
󵄩󵄩󵄩󵄩2,𝛼 = 𝑂(

ℎ
𝑘

(log (1/ℎ))𝛾
) , as ℎ 󳨀→ 0.

(12)

Our main result is as follows.

Theorem 5. Let 𝑓 ∈ 𝐿
2,𝛼
(R+). Then the followings are

equivalents

(1) 𝑓 ∈ Lip(𝑘, 𝛾, 2).

(2) ∫∞
𝑟
|𝑓̂(𝜆)|

2
𝜆
2𝛼+1

𝑑𝜆 = 𝑂(𝑟
−2𝑘

/(log 𝑟)2𝛾), 𝑎𝑠 𝑟 →

+∞.

Proof. (1) ⇒ (2) Assume that 𝑓 ∈ Lip(𝑘, 𝛾, 2). Then we have

󵄩󵄩󵄩󵄩Tℎ𝑓(𝑡) − 𝑓(𝑡)
󵄩󵄩󵄩󵄩
2

2,𝛼

=
1

(2𝛼Γ (𝛼 + 1))
2
∫

∞

0

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆.

(13)

If 𝜆 ∈ [1/ℎ, 2/ℎ] then 𝜆ℎ ≥ 1 and Lemma 2 implies that

1 ≤
1

𝑐2

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨 . (14)

Then

∫

2/ℎ

1/ℎ

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

≤
1

𝑐2
∫

2/ℎ

1/ℎ

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

≤
1

𝑐2
∫

∞

0

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

= 𝑂(
ℎ
2𝑘

(log (1/ℎ))2𝛾
) .

(15)

We obtain

∫

2𝑟

𝑟

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆 ≤ 𝐶
𝑟
−2𝑘

(log 𝑟)2𝛾
, (16)

where 𝐶 is a positive constant.
So that

∫

∞

𝑟

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

= [∫

2𝑟

𝑟

+∫

4𝑟

2𝑟

+∫

8𝑟

4𝑟

+ ⋅ ⋅ ⋅]
󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

≤ 𝐶
𝑟
−2𝑘

(log 𝑟)2𝛾
+ 𝐶

(2𝑟)
−2𝑘

(log 2𝑟)2𝛾
+ 𝐶

(4𝑟)
−2𝑘

(log 4𝑟)2𝛾
+ ⋅ ⋅ ⋅

≤ 𝐶
𝑟
−2𝑘

(log 𝑟)2𝛾
(1 + 2

−2𝑘
+ (2
−2𝑘

)
2

+ (2
−2𝑘

)
3

+ ⋅ ⋅ ⋅)

≤ 𝐶𝐾
𝑟
−2𝑘

(log 𝑟)2𝛾
,

(17)

where𝐾 = (1 − 2
−2𝑘

)
−1

since 2−2𝑘 < 1.
This proves that

∫

∞

𝑟

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆 = 𝑂(
𝑟
−2𝑘

(log 𝑟)2𝛾
) as 𝑟 󳨀→ +∞.

(18)

(2) ⇒ (1) Suppose now that

∫

∞

𝑟

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆 = 𝑂(
𝑟
−2𝑘

(log 𝑟)2𝛾
) as 𝑟 󳨀→ +∞.

(19)

We write

∫

∞

0

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆 = 𝐼
1
+ 𝐼
2
, (20)
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where

𝐼
1
= ∫

1/ℎ

0

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆,

𝐼
2
= ∫

∞

1/ℎ

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆.

(21)

Estimate the summands 𝐼
1
and 𝐼
2
from above. It follows

from the inequality |𝑗
𝛼
(𝜆ℎ)| ≤ 1 that

𝐼
2
= ∫

∞

1/ℎ

󵄨󵄨󵄨󵄨1 − 𝑗𝛼 (𝜆ℎ)
󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆

≤ 4∫

∞

1/ℎ

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆 = 𝑂(
ℎ
2𝑘

(log (1/ℎ))2𝛾
) .

(22)

To estimate 𝐼
1
, we use the inequality (2) of Lemma 3.

Set

𝜙 (𝑥) = ∫

∞

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑓̂ (𝜆)

󵄨󵄨󵄨󵄨󵄨

2

𝜆
2𝛼+1

𝑑𝜆. (23)

Using integration by parts, we obtain

𝐼
1
≤ −𝐶
1
ℎ
2
∫

1/ℎ

0

𝑠
2
𝜙
󸀠
(𝑠) 𝑑𝑠

≤ −𝐶
1
𝜙(

1

ℎ
) + 2𝐶

1
ℎ
2
∫

1/ℎ

0

𝑠𝜙 (𝑠) 𝑑𝑠

≤ 𝐶
2
ℎ
2
∫

1/ℎ

0

𝑠𝜙 (𝑠) 𝑑𝑠

≤ 𝐶
2
ℎ
2
∫

1/ℎ

0

𝑠𝑠
−2𝑘

(log 𝑠)−2𝛾𝑑𝑠

≤ 𝐶
3
ℎ
2𝑘
(log (1/ℎ))−2𝛾,

(24)

where 𝐶
1
, 𝐶
2
, and 𝐶

2
are positive constants and this ends the

proof.
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