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Quantum state reconstruction in the presence of dissipation
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Abstract

We propose a realistic scheme to determine the quantum state of a single

mode cavity field even after it has started to decay due to the coupling with

an environment. Although dissipation destroys quantum coherences, we show

that at zero temperature enough information about the initial state remains,

in an observable quantity, to allow the reconstruction of its Wigner function.
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Methods to reconstruct quantum states of light are of great importance in quantum

optics. There have been several proposals using different techniques to achieve such recon-

structions [1], amongst them, the direct sampling of the density matrix of a signal mode

in optical homodyne tomography [2], the tomographic reconstruction by unbalanced homo-

dyning [3]; the direct measurement (quantum endoscopy), of the Wigner function of the

electromagnetic field in a cavity or the vibrational state of an ion in a trap [4,5]. It is well

known that dissipation has a destructive effect in most of these schemes, and issues such

as compensation of losses in quantum-state measuments have already been discussed in the

literature [6].

In this contribution we present a novel method of how to reconstruct a quantum state

even after the action of dissipation. We consider a single mode high-Q cavity where a

nonclassical field state ρ̂(0) is prepared and subsequently driven by a coherent pulse. Both

processes are assumed to occur in a time scale much shorter than the decay time of the

cavity. Then the field is allowed to decay. We will show below that by displacing the initial

state we make its quantum coherences robust enough to allow its experimental determination

despite the existence of dissipation.

The master equation in the interaction picture for a damped cavity mode at zero tem-

perature and under the Born-Markov approximation is given by [7]

∂ρ̂

∂t
=

γ

2

(

2âρ̂â† − â†âρ̂− ρ̂â†â
)

, (1)

where â and â† are the annihilation and creation operators and γ the decay constant. We

can define the superoperators Ĵ and L̂ by their action on the density operator [8]

Ĵ ρ̂ = γâρ̂â†, L̂ρ̂ = −
γ

2

(

â†âρ̂+ ρ̂â†â
)

. (2)

The formal solution of (1) can be written as [9]

ρ̂(t) = exp
[

(Ĵ + L̂)t
]

ρ̂(0) = exp(L̂t) exp

[

Ĵ

γ
(1− e−γt)

]

ρ̂(0). (3)

We assume that the initial field ρ̂(0) is prepared in a time scale much shorter than

the decay time of the cavity γ−1. As soon as the field is generated, a coherent field |α〉
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is injected inside the cavity (also in a short time scale) displacing then the initial state

ρ̂α = D̂(α)ρ̂(0)D̂†(α). This procedure will enable us to obtain information about all the

elements of the initial density matrix from the diagonal elements of the time-evolved dis-

placed density matrix only. As diagonal elements decay much slower than off-diagonal ones,

information about the initial state stored this way becomes robust enough to withstand

the decoherence process. We will now show how this robustness can be used to obtain the

Wigner function of the initial state after it has started to decay.

The diagonal matrix elements of ρ̂α(t) = exp
[

(Ĵ + L̂)t
]

ρ̂α in the number state basis are

〈m|ρ̂α(t)|m〉 =
e−mγt

qm

∞
∑

n=0

qn









n

m









〈n|ρ̂α|n〉, (4)

where q = 1− e−γt.

We note that if we multiply those elements by the function

χ(t) = 1− 2eγt (5)

and sum over m we obtain

F =
2

π

∞
∑

m=0

χm(t)〈m|ρ̂α(t)|m〉 =
2

π

∞
∑

n=0

(−1)n〈n|D̂(α)ρ̂(0)D̂†(α)|n〉. (6)

The expression above is exactly the Wigner function corresponding to ρ̂ (the initial field

state) [12] at the point specified by the complex amplitude α. Therefore if we measure the

diagonal elements of the dissipated displaced cavity field Pm(α; t) = 〈m|ρ̂α(t)|m〉 for a range

of α’s, the transformation in Eq. (6) will give us the Wigner function F for this range. This

is the main result of our paper; the reconstruction is made possible even under the normally

destructive action of dissipation. We would like to stress that the identity in Eq. (6) means

that the time-dependence is completely cancelled, bringing out the Wigner function of the

initial state.

One way of determining Pm(α; t) is by injecting atoms into the cavity and measuring

their population inversion as they exit after an interaction time τ much shorter than the
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cavity decay time. We may use three-level atoms in a cascade configuration with the upper

and the lower level having the same parity. In this case the population inversion is given by

[10]

W (α; t+ τ) =
∞
∑

n=0

Pn(α; t)

[

Γn

δ2n
+

(n + 1)(n+ 2)

δ2n
cos (2δnλτ)

]

, (7)

where Γn = [∆ + χ(n+ 1)] /2, δ2n = Γ2

n + λ2(n + 1)(n + 2), ∆ is the atom-field detuning, χ

is the Stark shift coefficient, and λ is the coupling constant. In the case of having ∆ = 0

(two-photon resonance condition), χ = 0, and for strong enough fields, for which it is valid

the approximation [(n + 1)(n+ 2)]1/2 ≈ n + 3/2, the population inversion reduces to

W (α; t+ τ) =
∞
∑

n=0

Pn(α; t) cos ([2n+ 3]λτ) , (8)

By inverting the Fourier series in Eq. (8) we obtain for Pn(α; t)

Pn(α; t) =
2λ

π

∫ π

λ

0

dτ W (t+ τ) cos ([2n+ 3]λτ) . (9)

We need a maximum interaction time τmax = π/λ much shorter than the cavity decay time.

This condition implies that we must be in the strong-coupling regime, i.e. λ ≫ γ.

Our scheme is easily generalized to other (s-parametrized [11]) quasi-probability distri-

butions given by [12],

F (α; s) = −
2

π(s− 1)

∞
∑

n=0

(

s+ 1

s− 1

)n

〈n|ρ̂α|n〉, (10)

by choosing

χ(s; t) = 1 +
2eγt

s− 1
. (11)

In conclusion, we have presented a novel technique to reconstruct the Wigner function

of an initial nonclassical state at times when the field would have normally lost its quantum

coherence [13]. Reconstruction approaches do not usually take into account the effect of

losses. The crucial point of our method is the driving of the initial field immediately after

preparation, that is not only used to cover a region in phase space but also to store quantum
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coherences in the diagonal elements of the time evolved displaced density matrix, making

them robust. In other words, we have shown that the initial displacement transfers to any

initial state the robustness of a coherent state [14] against dissipation.

The possibility of reconstructing quantum states at any time opens up potential applica-

tions in quantum computing. For instance, this method could be used in a scheme to refresh

the state of a quantum computer in order to avoid dissipation-induced errors.
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