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An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data
mining techniques, namely, Artificial Neural Networks (ANNs) and Genetic Programming (GP). The data for analysis and model
development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard
controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison
of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training
function Levenberg-Marquardt (LM) for the prediction of concrete compressive strength is the best prediction tool.

1. Introduction

Conventional concrete is a mixture of cement, water, and
coarse and fine aggregates. Supplementary components such
as chemical and mineral admixtures may be added to the
basic concrete ingredients to enhance its properties in fresh
or hardened state. The procedure of selecting appropriate
ingredients for concrete and its relative amount with the aim
of producing concrete of obligatory strength, workability, and
durability as cost-spinning as possible is termed mix design.
The development of tools to find the optimized mix propor-
tions has been the subject of research during the last more
than four decades. The aim of any proportioning process is
to determine an ample and cost-effective material to make up
the concrete, which can be used in its fabrication, as near as
possible to the chosen properties.The engineering properties
of cement-based materials and special concretes depend on
various parameters including the nonhomogeneous nature
of their components and the intrinsically different properties
of various elements and sometimes on the twin and/or
contradictory effects of some ingredients on the overall con-
crete performance. Therefore, a clear understanding of such
complex behavior is needed in order to successfully use these
materials in various engineered structures. In recent years,

many researchers have been working on developing accurate
concrete compressive strength prediction models [1–11]. The
prediction of compressive strength of concrete has great
connotation, if it is brisk and consistent because it offers an
option to do the essential modification on themix proportion
used to avoid circumstances where concrete does not attain
the mandatory design strength or by avoiding concrete that
is gratuitously sturdy and also for more economic use of
raw material and fewer construction failures, hence reducing
construction cost. So prediction of compressive strength of
concrete has been an active area of research. The aim of the
present study is to compare two emerging soft computing
techniques, that is, Artificial Neural Network and Genetic
Programming (GP), used for concrete compressive strength
prediction, by using the experimental data.

2. Materials

The experimental data used for the prediction of concrete
compressive strength in the present study have been taken
from the research work conducted by Kumar [12]. For
generating a trustworthy information bank on concrete
compressive strength, variation in five parameters, namely,
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water-cementitious material ratio (W/CM), water content,
workability, cementitious content (which includes either
cement or both cement and fly ash), and curing ages, has
been considered. The range for the water-cementitious ratio
is between 0.42 and 0.55, for cement content (C); it is 350–
475 at 25 kg/m3, for water content; it is 180–230 at 10 kg/m3,
with both medium and high workability, and cured at the
ages of 28, 56, and 91 days. The experiments were performed
under controlled laboratory conditions. As per IS: 8112-1989,
the Ordinary Portland Cement (OPC) is of grade 43 having
specific gravity of 3.12. The specific gravity of the aggregate
(sand) is 2.54 with a fineness modulus of 2.09. The sand con-
forms to zone III as per IS: 383-1970. Coarse aggregate (CA),
used herein, consists of two sizes, 20mm and 10mm, having
specific gravity of 2.61 and 2.63, respectively,mixed in varying
proportion.The details of the proportions for concrete mixes
without fly ash (FA) are shown in Table 1 and the compressive
strength data at varying curing ages for these mixes is pre-
sented in Table 2. Table 3 shows proportions of ingredients
of mixes containing 0.15 FA as substitution of cement and
Table 4 gives the compressive strength data at the above ages
for the FA concrete mixes.

3. Methods

3.1. Artificial Neural Network. An Artificial Neural Network
is a network of artificial neurons, which can reveal intricate
global performance, determined by the associations between
the processing elements and element parameters. In a neural
network model, simple nodes, which are called “neurons”
or “neurodes” or “processing elements” (PEs) or “units,”
are linked jointly to form a network of units, hence called
“Artificial Neural Network.”

ANNs consist of the following three major essentials [13]:

Topology: organization and interconnection of a neu-
ral network into layers.
Learning: related with the information storage in the
network.
Recall: retrieval of information from the network.

The architecture of an ANN consists of synthetic or artificial
neurons. These are analogous to natural neurons in the brain
of a human, which are clumped into layers. Atypical neural
network architecture consists of an input layer, one hidden
layer, and an output layer [14].

3.1.1. Construction of Model 1 (ANN Model). A successful
application of an ANN for the prediction of compressive
strength of concrete needs a good conception of the impact
of different internal parameters. For ANN architectures and
training of the same, the significant internal parameters
include learning rate, initial weights, number of training
epochs, number of hidden layers, and number of neurons in
every hidden layer and transfer functions for hidden layers
and output layers [15]. In this work, an ANN model is devel-
oped through experimental exploration of various internal
parameters to predict the compressive strength of concrete.
The initial trialing is commenced with certain randomly

Table 1: Details of proportions for concrete mixes without fly ash.

S. number Mix
designation

W/CM
ratio

Mix proportions
(C : sand : CA)

Cement
content (C)

kg/m3
1 MD-1 0.53 1 : 1.58 : 3.05 375.00
2 MD-2 0.50 1 : 1.43 : 2.82 400.00
3 MD-3 0.53 1 : 1.54 : 2.99 400.00
4 MD-4 0.47 1 : 1.28 : 2.58 425.00
5 MD-5 0.49 1 : 1.39 : 2.77 425.00
6 MD-6 0.44 1 : 1.14 : 2.35 450.00
7 MD-7 0.47 1 : 1.25 : 2.54 450.00
8 MD-8 0.42 1 : 1.05 : 2.19 475.00
9 MD-9 0.44 1 : 1.19 : 2.46 475.00
10 MD-10 0.53 1 : 1.58 : 3.05 375.00
11 MD-11 0.50 1 : 1.43 : 2.82 400.00
12 MD-12 0.53 1 : 1.54 : 2.99 400.00
13 MD-13 0.47 1 : 1.28 : 2.58 425.00
14 MD-14 0.49 1 : 1.39 : 2.77 425.00
15 MD-15 0.51 1 : 1.51 : 2.95 425.00
16 MD-16 0.44 1 : 1.14 : 2.35 450.00
17 MD-17 0.47 1 : 1.25 : 2.54 450.00
18 MD-18 0.49 1 : 1.37 : 2.73 450.00
19 MD-19 0.42 1 : 1.05 : 2.19 475.00
20 MD-20 0.44 1 : 1.19 : 2.46 475.00
21 MD-21 0.46 1 : 1.23 : 2.51 475.00
22 MD-22 0.52 1 : 1.43 : 2.02 425.00
23 MD-23 0.49 1 : 1.29 : 1.86 450.00
24 MD-24 0.51 1 : 0.391 : 1.9 450.00
25 MD-25 0.46 1 : 1.17 : 1.72 475.00
26 MD-26 0.48 1 : 1.26 : 1.83 475.00
27 MD-27 0.51 1 : 1.39 : 3.26 350.00
28 MD-28 0.54 1 : 1.49 : 3.42 350.00
29 MD-29 0.48 1 : 1.25 : 2.99 375.00
30 MD-30 0.51 1 : 1.35 : 3.19 375.00
31 MD-31 0.45 1 : 1.10 : 2.70 400.00
32 MD-32 0.48 1 : 1.21 : 2.92 400.00
33 MD-33 0.42 1 : 0.98 : 2.47 425.00
34 MD-34 0.45 1 : 1.09 : 2.68 425.00
35 MD-35 0.42 1 : 0.98 : 2.45 450.00
36 MD-36 0.54 1 : 1.49 : 3.42 350.00
37 MD-37 0.51 1 : 1.35 : 3.19 375.00
38 MD-38 0.48 1 : 1.21 : 2.92 400.00
39 MD-39 0.45 1 : 1.09 : 2.68 425.00
40 MD-40 0.42 1 : 0.98 : 2.45 450.00
41 MD-41 0.53 1 : 1.47 : 2.41 375.00
42 MD-42 0.50 1 : 1.32 : 2.21 400.00
43 MD-43 0.53 1 : 1.44 : 2.36 400.00
44 MD-44 0.47 1 : 1.19 : 2.03 425.00
45 MD-45 0.49 1 : 1.29 : 2.18 425.00
46 MD-46 0.44 1 : 1.07 : 1.86 450.00
47 MD-47 0.47 1 : 1.17 : 2.00 450.00
48 MD-48 0.42 1 : 0.95 : 1.68 475.00
49 MD-49 0.44 1 : 1.06 : 1.84 475.00

selected parameters on the basis of the technical literature
available. The “trial and error” method is used to reach at
best possible parameter values that would generate the true
predictions.

In the starting, most of the variants are examined for the
network performance optimization. Levenberg-Marquardt
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Table 2: Details of compressive strength of concrete mixes without
fly ash after curing for 28, 56, and 91 days.

S. number Mix
designation

W/CM
ratio

28 d
(MPa)

56 d
(MPa)

91 d
(MPa)

1 MD-1 0.53 36.84 40.92 44.52
2 MD-2 0.50 43.13 50.22 51.97
3 MD-3 0.53 38.58 45.51 47.49
4 MD-4 0.47 47.16 51.25 54.27
5 MD-5 0.49 45.05 50.72 52.85
6 MD-6 0.44 49.63 54.48 58.04
7 MD-7 0.47 47.42 51.34 55.30
8 MD-8 0.42 54.01 57.91 60.15
9 MD-9 0.44 50.05 55.72 58.31
10 MD-10 0.53 37.81 43.50 47.55
11 MD-11 0.50 44.11 50.98 52.56
12 MD-12 0.53 40.90 46.56 51.07
13 MD-13 0.47 47.51 52.92 54.47
14 MD-14 0.49 45.30 51.47 53.09
15 MD-15 0.51 42.54 49.05 51.19
16 MD-16 0.44 52.03 56.26 59.19
17 MD-17 0.47 48.74 53.42 55.03
18 MD-18 0.49 46.59 53.21 53.67
19 MD-19 0.42 54.49 58.65 63.07
20 MD-20 0.44 53.06 56.67 62.57
21 MD-21 0.46 49.18 54.04 57.10
22 MD-22 0.52 40.02 46.92 48.48
23 MD-23 0.49 45.25 50.43 53.09
24 MD-24 0.51 42.68 48.54 49.63
25 MD-25 0.46 48.67 53.48 56.50
26 MD-26 0.48 45.52 50.97 53.63
27 MD-27 0.51 39.52 43.31 46.13
28 MD-28 0.54 31.66 37.18 43.92
29 MD-29 0.48 42.73 48.23 52.23
30 MD-30 0.51 40.69 44.46 46.42
31 MD-31 0.45 47.99 52.95 55.51
32 MD-32 0.48 44.89 51.20 53.85
33 MD-33 0.42 51.25 57.55 59.50
34 MD-34 0.45 49.05 54.14 57.35
35 MD-35 0.42 53.69 57.77 59.89
36 MD-36 0.54 36.64 43.46 46.55
37 MD-37 0.51 41.57 46.81 50.04
38 MD-38 0.48 46.22 52.58 53.07
39 MD-39 0.45 50.35 56.02 58.32
40 MD-40 0.42 54.11 58.52 62.28
41 MD-41 0.53 37.30 43.51 46.63
42 MD-42 0.50 44.04 50.53 52.55
43 MD-43 0.53 39.61 46.09 48.17
44 MD-44 0.47 47.37 51.31 54.77
45 MD-45 0.49 44.69 50.69 52.75
46 MD-46 0.44 50.93 55.71 59.05
47 MD-47 0.47 48.08 52.63 55.61
48 MD-48 0.42 54.14 58.21 61.11
49 MD-49 0.44 51.31 56.37 59.51

training (LM) was found to be most suitable for the data pat-
terns for the prediction of concrete compressive strength dur-
ing trail approach. In the present study, two types of datasets
have been taken: dataset 1 has 49 tuples and this dataset is
without the substitution of cement with FA and dataset 2 has
27 tuples and this dataset is with 0.15 substitution of cement

with FA. Further each dataset is categorized according to
the curing time, that is, 28 days, 56 days, and 91 days. The
four numbers of input parameters have been engaged, that
is, water, cement, coarse aggregate, and fine aggregate, when
the output parameter is 28-day compressive strength. The
five numbers of input parameters have been taken including
the 28-day compressive strength as input parameter, that is,
water, cement, coarse aggregate, fine aggregate, and 28-day
compressive strength, when the output parameter is 56-day
compressive strength. The six numbers of input parameters
have been used including the 28-day compressive strength
and 56-day compressive strength as input parameters, that is,
water, cement, coarse aggregate, fine aggregate, 28-day com-
pressive strength, and 56-day compressive strength, when the
output parameter is 91-day compressive strength. For all the
experiments in model 1, tansig(𝑥) function is selected for the
hidden layer and purelin(𝑥) function is selected for output
layer due to their ability to learn complex nonlinear relation
between the input parameter and output parameter [16]. 50
numbers of neurons are used at hidden layer and 01 neuron
is used at output layer. The values of other parameters, that
is, performance function, learning rate, performance goal,
and epochs, are “mse,” “0.01,” “0.000001,” and “10000” which
have been taken for the construction of ANN model. The
architecture selected for ANN model is given in Table 5.

3.2. Genetic Programming. Genetic Programming (GP) is a
group of instructions and a fitness process to determine how
well a machine has performed a particular task. It is a special-
ization of genetic algorithm (GA) where each node is a com-
puter program. It is a technique used to optimize residents of
computer program in line with a suitable site determined by a
program’s capability to carry out a prearranged computa-
tional condition. The three genetic operations are as follows:

(1) Crossover operates on two programs that are chosen
as per their fitness and produces two subprograms.
The two randomnodes are chosen fromeach program
and then the resultant subtrees are swapped, produc-
ing two new programs. These new programs turned
into a part of the new generation of programs to be
participated further. Population here is increased by
2.

(2) Reproduction: the next important operation is
accomplished by copying an electedmember from the
present generation to the subsequent generation as
per the fitness norm. Population here is increased by
1.

(3) Mutation: inGP,mutation becomes a significant oper-
ator that provides assortment to the population. One
individual is chosen as per the fitness. A subprogram
is substituted by another one randomly.Themutant is
popped into the new population. Population is then
increased by 1.

Saridemir [10] has explained the whole genetic approach
proposed by Koza [17] andGhodratnamaa et al. [18] have also
published the pseudocode for the same. The role of GP in
future computing has been seen as the most potential way to
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Table 3: Details of proportions for concrete mixes with 0.15 fly ash replacement.

S. number Mix designation W/CM ratio Mix proportions
(C : FA : sand : CA)

Cement content (C)
kg/m3

Fly ash content (FA)
kg/m3

1 MDF-1 0.45 1 : 0.15 : 1.10 : 2.70 400.00 60.00
2 MDF-2 0.42 1 : 0.15 : 0.98 : 2.46 425.00 63.75
3 MDF-3 0.45 1 : 0.15 : 1.09 : 2.68 425.00 63.75
4 MDF-4 0.47 1 : 0.15 : 1.28 : 2.58 425.00 63.75
5 MDF-5 0.42 1 : 0.15 : 0.98 : 2.45 450.00 67.50
6 MDF-6 0.44 1 : 0.15 : 1.14 : 2.35 450.00 67.50
7 MDF-7 0.47 1 : 0.15 : 1.25 : 2.54 450.00 67.50
8 MDF-8 0.42 1 : 0.15 : 1.05 : 2.19 475.00 71.25
9 MDF-9 0.44 1 : 0.15 : 1.19 : 2.46 475.00 71.25
10 MDF-10 0.45 1 : 0.15 : 1.09 : 2.68 425.00 63.75
11 MDF-11 0.47 1 : 0.15 : 1.28 : 2.58 425.00 63.75
12 MDF-12 0.42 1 : 0.15 : 0.98 : 2.45 450.00 67.50
13 MDF-13 0.44 1 : 0.15 : 1.14 : 2.35 450.00 67.50
14 MDF-14 0.47 1 : 0.15 : 1.25 : 2.54 450.00 67.50
15 MDF-15 0.49 1 : 0.15 : 1.37 : 2.73 450.00 67.50
16 MDF-16 0.42 1 : 0.15 : 1.05 : 2.19 475.00 71.25
17 MDF-17 0.44 1 : 0.15 : 1.19 : 2.46 475.00 71.25
18 MDF-18 0.46 1 : 0.15 : 1.23 : 2.51 475.00 71.25
19 MDF-19 0.47 1 : 0.15 : 1.19 : 2.03 425.00 63.75
20 MDF-20 0.44 1 : 0.15 : 1.07 : 1.86 450.00 67.50
21 MDF-21 0.47 1 : 0.15 : 1.17 : 2.00 450.00 67.50
22 MDF-22 0.49 1 : 0.15 : 1.29 : 1.86 450.00 67.50
23 MDF-23 0.51 1 : 0.15 : 1.39 : 1.98 450.00 67.50
24 MDF-24 0.42 1 : 0.15 : 0.95 : 1.68 475.00 71.25
25 MDF-25 0.44 1 : 0.15 : 1.06 : 1.84 475.00 71.25
26 MDF-26 0.46 1 : 0.15 : 1.17 : 1.72 475.00 71.25
27 MDF-27 0.48 1 : 0.15 : 1.26 : 1.83 475.00 71.25

automatically write computer programs. Nowadays, some
commercial Genetic Programming kernels are also available
that will help to apply the technique and to use the GP kernels
the user needs to take some decisions before the GP system
to begin. Firstly, the available genes need to be selected and
created. Secondly, the user has to specify a number of control
parameters.

3.2.1. Construction of Model 2 (GP Model). Koza [17] has
listed some of the important control parameters. For the
construction of GP, the initial population size is 49 for
dataset 1 without substitution of cement with FA and 27
with 0.15 substitution of cement with FA for dataset 2. As in
model 1, each dataset is further categorized according to the
curing time; the same has been taken for model 2. The four
numbers of input parameters have been taken, that is, water,
cement, coarse aggregate, and fine aggregate, when the output
parameter is 28-day compressive strength.

The five numbers of input parameters have been engaged
including the 28-day compressive strength as input param-
eter, that is, water, cement, coarse aggregate, fine aggregate,
and 28-day compressive strength, when the output parameter

is 56-day compressive strength. The six numbers of input
parameters have been used including the 28-day compressive
strength and 56-day compressive strength as input param-
eters, that is, water, cement, fine aggregate, coarse aggre-
gate, 28-day compressive strength, and 56-day compressive
strength, when the output parameter is 91-day compressive
strength. The population size (Mu) and the number of chil-
dren produced (Lamda) have been taken 100 and 150, respec-
tively. The greater the number of generations, the greater the
chance of evolving a solution, so the number of generations is
taken as 100000 for this model.The values for the parameters
crossover rate and mutation rate have been selected as 0.70
and 5.𝑒 − 002, respectively, on the trial and error basis. The
values of other parameters, that is, function set, training per-
centage, selection method, and tournament size of substitu-
tion, are “+, −, ∗, /, sqrt,” “75,” “tournament,” and “03” which
have been selected for the construction of GP model. The
parameters settings for model 2 are lodged in Table 6.

3.3. Testing of Model 1 and Model 2. Namyong et al. [19]
have offered the regression equations for prediction of in situ
concrete compressive strength and for this purpose they have
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Table 4: Details of compressive strength of concrete mixes with fly ash after curing of 28, 56, and 91 days.

S. number Mix designation W/CM
ratio

28 d
(MPa)

56 d
(MPa)

91 d
(MPa)

1 MDF-1 0.45 39.04 47.65 52.20
2 MDF-2 0.42 45.09 50.21 55.75
3 MDF-3 0.45 41.14 48.67 52.69
4 MDF-4 0.47 38.35 43.27 50.42
5 MDF-5 0.42 46.13 51.01 56.51
6 MDF-6 0.44 42.50 49.17 53.11
7 MDF-7 0.47 39.58 44.02 51.07
8 MDF-8 0.42 47.34 52.30 57.70
9 MDF-9 0.44 43.55 49.79 53.79
10 MDF-10 0.45 42.01 49.68 53.39
11 MDF-11 0.47 38.85 44.96 50.50
12 MDF-12 0.42 47.25 51.95 57.17
13 MDF-13 0.44 43.09 50.30 53.67
14 MDF-14 0.47 40.26 45.30 51.62
15 MDF-15 0.49 37.15 44.52 48.08
16 MDF-16 0.42 48.41 53.58 58.19
17 MDF-17 0.44 44.02 51.81 54.12
18 MDF-18 0.46 40.73 45.95 52.10
19 MDF-19 0.47 38.90 43.20 50.50
20 MDF-20 0.44 43.22 49.93 53.62
21 MDF-21 0.47 39.85 44.61 51.42
22 MDF-22 0.49 36.87 41.25 47.30
23 MDF-23 0.51 35.23 40.05 46.11
24 MDF-24 0.42 47.94 53.05 57.82
25 MDF-25 0.44 43.87 50.48 54.38
26 MDF-26 0.46 40.34 45.61 52.39
27 MDF-27 0.48 37.65 42.28 48.55

used the information of mixture proportions of ready-mixed
concrete and test results of compressive strength from con-
struction sites. In their study, they have used 1442 compres-
sive strength test results obtained from the specimens having
68 different kinds of mixtures with specified compressive
strength of 18∼27MPa, water-cement ratio of 0.39∼0.62, and
maximum aggregate size of 25mm. In this study, Namyong
et al. [19] in situ data has been used for the testing of the
suggested model for the prediction of concrete compressive
strength.

4. Results and Discussion

The objective of the present study was to explore the
applicability of the suggested models, that is, model 1 and
model 2, for the prediction of concrete compressive strength.
This section presents the comparative investigation of results
obtained from these approaches and quantitative assessment
of the models’ predictive abilities. For model 1, the LM
algorithm is used for training, whereas tan-sigmoid is used as
an activation function for evaluating the prediction accuracy

parameters. The results, as presented in Table 7, give the
values of𝑅2 andRMSE for prediction of concrete compressive
strength for both types of mixtures, namely, R1 (dataset with
no substitution of cement with FA) and R2 (dataset with
substitution of cement with 0.15 FA). From the results in
Table 7, it can be observed that, for all the curing days, in both
the cases, either R1 or R2, 𝑅2 is above 0.90 except for R1 at a
curing age of 28 days wherein it is 0.898. The low values of
RMSE for all the mixes at different curing ages also indicate
that the model can predict compressive strength of the mixes
with high reliability. Also it can be seen that model 1, with
LM as the training function, retrieves the result in just a few
epochs.Themaximum number of epochs taken by the model
is just five, which clearly indicates that the time taken for the
prediction is also very much less.

In model 2, the addition is chosen as the linking utility.
The values of 𝑅2 and RMSE for prediction of concrete
compressive strength for both types of mixtures, namely,
R3 (dataset with no substitution of cement with FA) and
R4 (dataset with substitution of cement with 0.15 FA),
obtainedusing model 2 are provided in Table 7. Prediction
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Table 5: Architecture selected for model 1 (ANN model).

Parameters Values Description

Dataset Dataset 1: 49 (without fly ash)
Dataset 2: 27 (with fly ash)

Dataset is of two types. One is without any
substitution of cement by fly ash and the second
one is with 15% of the cement replaced by fly ash.
Dataset 1 is of 49 tuples in total. Dataset 2 is of 27
tuples in total

Number of input
parameters

04 (cement (C), water (W), fine aggregate (sand),
coarse aggregate (CA)); in case of 05 (cement (C),
water (W), fine aggregate (sand), coarse aggregate
(CA), 28-day compressive strength (CS28)); in
case of 06 (cement (C), water (W), fine aggregate
(sand), coarse aggregate (CA), 28-day compressive
strength (CS28), 56-day compressive strength
(CS56)). Fly ash (FA) is used with dataset 2 only;
all other parameters are the same as dataset 1

When output is 28 days, then the number of input
parameters is 04; when output is 56 days, the
number of input parameters is 05 as 28-day
compressive strength is taken as input; when
output is 91 days, the number of input parameters
is 06 as 28-day compressive strength and 56-day
compressive strength are also taken as input. In
dataset 2, FA is replacing 15% of the cement

Activation function 1 tansig(𝑥) tansig (𝑥) = 2

(1 + exp (−2 ∗ 𝑥))
− 1

Activation function 2 purelin(𝑥) purelin(𝑥) = 𝑥

Performance function MSE MSE =
∑
𝑛

𝑖=1
(predictedoutput − actualoutput)2

𝑛

,
where 𝑛 is the input patterns

Net.trainparam.lr 0.01 Learning rate
Net.trainfcn trainlm Levenberg-Marquardt algorithm
Net.trainparam.epochs 10000 Maximum number of epochs to train
Net.trainparam.goal 0.000001 Performance goal
Number of hidden layer
neurons 50 —

Number of output layer
neurons 1 —

equations ((1)–(6)) generated using model 2 are detailed as
follows:

𝑓
28
= √CA(((((((((FA + FA)

FA
) + (√(FA) + ((FA + 0.640295148) +

((((FA/0.661794484) + √CA)))
√FA

)))) + CA) + CA) + FA)

− √(√((√(((1 + FA) + FA)) ∗W)))))
−1

,

(1)

𝑓
56
= (((

((W + (√((W +W)) ∗W)) ∗ 𝑓28)

(W ∗ (𝑓
28
+ ((W + ((𝑓

28
+ √(𝑓

28
)) +W)) + 𝑓

28
)))

) + (W + 0.488720804)) ∗ 𝑓
28
), (2)

𝑓
91
=(

√

√

√

√

(((𝑓
56
∗

√(√((((((𝑓
28
/W)) /W) /W) + ((√(W ∗ (CA − FA)) + 𝑓

28
)))) + 𝑓

28
)

W
))∗ ((W + (

𝑓
28

W
)) ∗ ((W ∗W) + (

𝑓
28

W
))))), (3)

𝑓


28
= (√CA (W + ((((FA ∗ √(((((FA + CA) + FA) + FA) ∗ FA))) + ((FA + (√CA + ((W + CA) +W))) + CA)) + (√FA + FA)) + (W + FA)))

−1

) , (4)

𝑓


56
=
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(

√

√

√

√

√

√

√

√
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(((−6.43𝑒 − 002 + 𝑓
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± 6.78𝑒 − 002))) + √FA))/√(√(√CA))) + 𝑓

28
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)

)

)

)

)

∗𝑓


28
, (5)

𝑓


91
= (√((((W ∗ 0.577551961) ∗ √((√(((W ∗ 0.572648823)))))))) ∗ (𝑓

28
∗ 3.1462729)) , (6)
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Table 6: Architecture selected for model 2 (GP model).

Parameters Values Description

Initial population size Dataset 1: 49 (without fly ash)
Dataset 2: 27 (with fly ash)

Dataset is of two types. One is without any
substitution of cement by fly ash and the
second one is with 0.15 of the cement replaced
by fly ash. Dataset 1 is of 49 tuples in total.
Dataset 2 is of 27 tuples in total

Number of input
parameters

04 (cement (C), water (W), fine aggregate
(sand), coarse aggregate (CA)). 05 (cement (C),
water (W), fine aggregate (sand), coarse
aggregate (CA), 28-day compressive strength
(CS28)), 06 (cement (C), water (W), fine
aggregate (sand), coarse aggregate (CA),
28-day compressive strength (CS28), 56-day
compressive strength (CS56)). Fly ash (FA) is
used with dataset 2 only; all other parameters
are the same as dataset 1

When output is 28 days, then the number of
input parameters is 04; when output is 56 days,
the number of input parameters is 05 as 28-day
compressive strength is taken as input; when
output is 91 days, the number of input
parameters is 06 as 28-day compressive
strength and 56-day compressive strength are
also taken as input. In dataset 2, FA is replacing
15% of the cement

Function set +, −, ∗, /, sqrt Set of functions used
Training percentage 75 —
Selection method Tournament —
Tournament size of
replacement 3 —

Maximum generations 100000 Maximum number of iterations
Crossover 0.7 Probability of crossover
Mutation 5.𝑒 − 002 Probability of mutation
Mu 100 Population size
Lamda 150 Number of children produced

Objectives COD, RMSE Coefficient of determination, root mean square
error

Table 7: Results of model 1 (ANN) and model 2 (GP).

Model 1: Training of the dataset
Artificial Neural Network (ANN) Epochs taken Coefficient of determination (𝑅2) Root mean square error (RMSE)

Result number Curing time

R1 (without fly ash)
28 days 04 0.898 6.9762e − 006
56 days 05 0.998 1.2712e − 007
91 days 03 01 7.3640e − 009

R2 (with 0.15 fly ash)
28 days 05 0.996 3.8809e − 007
56 days 04 01 3.6873e − 009
91 days 04 01 2.2181e − 010

Model 2: Genetic Programming (GP)
28 days

Not applicable

0.77438 0.01067
R3 (without fly ash) 56 days 0.99999 0.00550

91 days 0.99999 0.00644
28 days 0.93781 0.01415

R4 (with 0.15 fly ash) 56 days 0.94483 0.00910
91 days 0.96681 0.00689

where𝑓
28
,𝑓
56
, and𝑓

91
are the concrete compressive strengths

at curing ages of 28, 56, and 91 days, respectively, when no
substitution has been done. 𝑓

28
, 𝑓
56
, and 𝑓

91
are the concrete

compressive strengths at curing ages of 28, 56, and 91 days,
respectively, when 0.15 FA is used as substitution of cement.

W is the W/CM ratio, FA is the FA/CM, and CA is the
CA/CM.

From the results, tabulated in Table 7, it can be observed
that for R3 mixtures, at curing ages of 56 and 91 days, the
values of 𝑅2 are of the order of 0.90 and 0.87, respectively,
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Figure 1: Comparison between actual and predicted values of 28 d
compressive strength of concrete.
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Figure 2: Comparison between actual and predicted values of 56 d
compressive strength of concrete.

with an RMSE value of 0.0029 in case of 56 days and 0.05 in
case of 91 days, indicating a reasonably good fit of the model.
However, in case of 28-day curing, 𝑅2 obtained is 0.77, which
is approximately 0.30 less than the suggested good model fit
(𝑅2more than or equal to 0.80). In case of prediction of com-
pressive strength for R4mixtures, with 0.15 FA,𝑅2 obtained is
above or equal to 0.92 for all the caseswith the highest value of
0.97with anRMSEvalue of 0.009 at curing age of 91 days.This
indicates that model 2 provides the best prediction at 91-day
curing for mixes with FA. Figures 1–6 provide comparison of
the predicted results obtained using model 1, model 2, and
experimental laboratory results.

It can be clearly observed from these figures that model
1 predicts compressive strength values very near to the
experimentally obtained values as compared to model 2
results. To further test the efficacy and reliability of the
models, the in situ compressive strength data at curing age of
28 days (as provided in Namyong et al. [19]) has been used in
the study. Figure 7 shows the results of the testing of models
for the in situ dataset of compressive strength. It has been
clearly observed that model 1 is more reliable and provides
more accurate prediction for the in situ dataset as well.
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Figure 3: Comparison between actual and predicted values of 91 d
compressive strength of concrete.
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Figure 4: Comparison between actual and predicted values of 28 d
compressive strength of concrete with FA.
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Figure 5: Comparison between actual and predicted values of 56 d
compressive strength of concrete with FA.

5. Conclusions

On the comparative analysis of GP and ANN techniques,
used for the prediction of concrete compressive strength
without and with FA, it can be concluded that ANN model
is the most reliable technique for the purpose. The RMSE
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Figure 6: Comparison between actual and predicted values of 91 d
compressive strength of concrete with FA.
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Figure 7: Validation of the proposed model of 28 d compressive
strength of concrete with in situ dataset as per [19].

values, so obtained, are small enough to indicate that the esti-
mates aremost precise and the trained networks supply supe-
rior results. According to statistics, if a proposed model gives
𝑅
2
> 0.8, there is a well-built correlation between predicted

and measured values for the data available in the dataset. As
has been observed, for both the models, 𝑅2 is greater than
0.8 for all cases, except R3 mixture (in Table 7) strength at 28
days, which proves that either of the models can be used for
prediction purposes. However, the prediction model using
model 1, that is, ANNmodel, confirms a high degree of steadi-
ness with experimentally evaluated concrete compressive
strength specimens used. As an outcome, ANN may serve as
a strong predictive tool, for prediction of both experimental
and in situ data and it may provide perfect and valuable
explicit formulation for many civil engineering applications,
wherein predictive pronouncements are required.
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