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Relapse after chemotherapy is inevitable in the majority of patients with acute myeloid leukemia (AML). Thus, it is necessary
to develop novel therapies that have different antileukemic mechanisms. Recent advances in immunology and identification
of promising leukemia-associated antigens open the possibilities for eradicating minimal residual diseases by antigen-specific
immunotherapy after chemotherapy. Several methods have been pursued as immunotherapies for AML: peptide vaccines,
granulocyte-macrophage colony-stimulating factor-secreting tumor vaccines, dendritic cell vaccines, and adoptive T cell
therapy. Whereas immunogenicity and clinical outcomes are improving in these trials, severe adverse events were observed
in highly avid engineered T cell therapies, indicating the importance of the balance between effectiveness and side effects
in advanced immunotherapy. Such progress in inducing antitumor immune responses, together with strategies to attenuate
immunosuppressive factors, will establish immunotherapy as an important armament to combat AML.

1. Introduction

The immune system has an exquisite ability to specifically kill
cells that express particular antigens. This specificity is the
heart of immunotherapies that eliminate tumor cells without
damaging normal cells. Recent advances in immunology
research have revealed many facets in the immune system
that are important to develop tumor immunotherapy. At the
same time, recent studies have identified many promising
acute-myeloid-leukemia- (AML-) associated antigens that
can be targeted by immunotherapy. The combination of such
advancement may enable antigen-specific immunotherapies
to be established as a viable choice of therapy for AML.

Here we review recent advance in antigen-specific autol-
ogous immunotherapy for AML and raise several issues to
overcome in order to improve clinical efficacy in the future.
This review excludes graft-versus-leukemia (GVL) effects
exploited in allogeneic hematopoietic stem cell transplanta-
tion, which are mainly allogeneic immune reactions.

2. Importance of Immunotherapy for AML

Cytotoxic chemotherapy and allogeneic transplantation
are practically the only two modalities to treat AML.
Chemotherapy has inevitable limitations of effectiveness due
to chemoresistance in the majority of AML patients, except
for a small fraction of patients with favorable karyotypes.
Allogeneic transplantation is inherently accompanied by a
variety of life-threatening complications related to graft-
versus-host disease (GVHD), which limits candidates to
younger and fit patients. Given such situations, immunother-
apy may potentially play an important part in the treatment
for AML, mainly from the following two standpoints.

2.1. Treatment of Minimal Residual Disease after Chemother-
apy. Although it is possible to achieve complete remission
by a series of initial chemotherapies in about 80% of
AML patients, recurrence is inevitable in the majority
of the patients without allogeneic transplantation. It has
been reported that leukemia stem cells are resistant to
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chemotherapy and that it may be an important reason why it
is difficult to eradicate AML cells in the majority of patients
[1]. This necessitates the development of novel therapies that
have different antileukemic mechanisms. Immunotherapy
may meet the requirement owing to its antileukemic mecha-
nisms different from those of chemotherapy. Therefore, after
reducing tumor burden by chemotherapy, immunotherapy
is expected to be a suitable treatment modality to eliminate
minimally residual leukemic cells resistant to chemotherapy.

2.2. Treatment of Elderly Patients with AML. AML most often
occurs in elderly people. It has been reported that 2-year
overall survival rate of elderly patients with AML is only 6%
[2]. The main reasons of this poor outcome are that AML
in elderly patients is often more resistant to chemotherapy
than that in younger patients and that elderly patients
are intolerable to intensive chemotherapy and allogeneic
transplantation. The major advantage of immunotherapy
is mild adverse events, and this makes immunotherapy a
suitable treatment option for elderly patients.

3. AML-Associated Antigens

Recent studies have identified several promising AML anti-
gens suitable for targets of immunotherapy.

Wilms’ tumor 1 (WT1) is one of the most promising
AML-associated antigens. It was originally reported that
HLA-A∗2402- [3] and HLA-A∗0201- [4] restricted WT1
peptides induce cytotoxic T lymphocytes (CTLs) that kill
WT1-expressing leukemic cells but not normal progenitor
cells. WT1 is a transcription factor that plays an important
role in leukemogenesis [5], and thus it is less probable
that the expression of WT1 is lost. Notably, it has been
repeatedly reported that immune responses against WT1 are
naturally elicited in cancer patients [6–10], indicating that
WT1 protein is immunogenic. These properties render WT1
highly attractive as a tumor antigen.

Proteinase 3 is a myeloid cell-restricted serine protease
abundantly expressed in azurophilic granules and is another
promising myeloid leukemia-associated antigen. It was origi-
nally reported that HLA-A∗0201-restricted proteinase 3 pep-
tides induce CTLs that preferentially kill myeloid leukemia
cells compared to normal marrow cells [11]. Proteinase 3
has also been shown to be immunogenic, as proteinase-3-
specific CTLs are induced in a substantial fraction of myeloid
leukemia patients in vivo [8, 9, 12].

Other than WT1 and proteinase 3, the receptor for
hyaluronic-acid-mediated motility (RHAMM/CD168) [13],
human telomerase reverse transcriptase (hTERT) [14], pref-
erentially expressed antigen in melanoma (PRAME) [15, 16],
and Aurora-A [17] have been reported as potentially useful
AML-associated antigens. Notably, WT1 [18] and Aurora-A
[17] are reported to be expressed in leukemia stem cells and
may thus be suitable targets to eradicate AML.

4. Methods of Antigen-Specific Immunotherapy
for AML: Active Immunization

Antigen-specific immunotherapies can be largely divided
into two categories: active immunization and adoptive T cell

therapy. In active immunization, tumor antigens are injected
in order to provoke antigen-specific immune responses
in vivo. To do so, there are mainly the following three
ways reported for AML: peptide vaccines, granulocyte-
macrophage colony-stimulating-factor- (GM-CSF) secreting
tumor vaccines, and dendritic cell (DC) vaccines.

4.1. Peptide Vaccines. Peptides in combination with an
appropriate adjuvant are injected to stimulate CD8+ CTLs
specific to the MHC-class-I-restricted peptides. WT1 peptide
vaccines have been actively pursued. Oka et al. have first
reported a clinical trial of HLA-A∗2402-restricted WT1
peptide vaccination for malignancies including 12 AML
patients [19]. Among 8 patients with evaluable disease,
5 patients achieved decreases in their AML. Notably, in
two myelodysplastic syndrome (MDS) patients, numbers of
leukocytes in peripheral blood, the majority of which was
likely to derive from MDS clones, precipitously decreased
after the first administration of the WT1 peptide [20]. This
implies remarkable antitumor immune responses in these
patients.

Keilholz et al. reported a clinical trial of HLA-A∗0201-
restricted WT1 peptide vaccination for 19 AML or MDS
patients, most of whom had large tumor burden [21]. They
observed clinical benefit, that is, stable disease or better, in
14 patients and increases in WT1 tetramer+ T cells in blood
in 8 patients. Intriguingly, 4 patients had clinical benefit after
initial progression, illustrating the importance of evaluating
clinical responses to tumor vaccines at later time points even
in the presence of initial progression.

Rezvani et al. reported a clinical trial of combined
administration of HLA-A∗0201-restricted WT1 and pro-
teinase 3 peptides to 8 patients with myeloid malignancies
[22]. Immune responses to both WT1 and proteinase 3
were detected after a single vaccination in all the patients,
suggesting expansion of preexisting memory CD8+ T cells.
However, the responses were short-lived and became unde-
tectable after 4 weeks, indicating the necessity of repetitive
boost injection.

Maslak et al. reported a clinical trial of a novel combi-
nation of WT1 peptide vaccination for 9 AML patients [23].
They used a mixture of 4 peptides; one is an HLA-A∗0201-
restricted heteroclitic peptide that has higher affinity to the
HLA class I molecule than a native peptide, and three are
long peptides that bind to multiple HLA-DRB1 haplotypes
[24]. Interestingly, one of the long peptides embeds the HLA-
A∗0201-restricted heteroclitic peptide in it. The combination
of peptides has three potential advantages. First, the hete-
roclitic peptide is expected to stimulate low avidity tumor-
specific CD8+ T cells that preferentially remain in cancer
patients. Second, the MHC-class-II-binding peptides can
exploit CD4+ T cell help that is required to induce a robust
memory CD8+ T cell response. Third, it has been reported
that a long peptide containing an MHC-class-I-restricted
peptide can be preferentially targeted to professional antigen-
presenting DCs that are capable of presenting the embedded
MHC-class-I-restricted peptide for a long period [25]. This
may avoid suboptimal stimulation of CD8+ T cells resulting
from administration of a short peptide that is nonselectively
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presented by nonprofessional antigen-presenting cells [26].
It is difficult to judge whether this theoretically advantageous
strategy leads to a better clinical outcome from the small scale
of the study. However, the authors observed the induction of
immune responses in 8 out of 9 patients, warranting further
study in a larger clinical trial.

Schmitt et al. reported a clinical trial of the HLA-A2-
restricted RHAMM peptide vaccination in patients with
AML, MDS, and multiple myeloma [27]. In 7 of 10 patients,
RHAMM-specific immune responses were detected. Three
of 6 patients with myeloid disorders (1/3 AML, 2/3
MDS) achieved clinical responses. This study indicates that
RHAMM constitutes a promising target for immunotherapy
of AML.

Collectively, these clinical trials of peptide vaccines have
established safety and immunogenicity of this modality.
Efforts to improve clinical efficacy by combining with
superior adjuvants or with other therapeutic modalities will
increase the potential of peptide vaccines for AML.

4.2. GM-CSF-Secreting Tumor Vaccines. Random mutations
in tumor cells are expected to generate many individually
specific antigens that may induce multivalent antitumor
immune responses of both CD4+ and CD8+ T cells. Thus,
the whole autologous tumor cell vaccination is a viable
option as long as a sufficient number of tumor cells are
harvested in advance.

A mixture of killed autologous leukemia cells and a
GM-CSF gene-transduced K562 leukemia cell line was used
for vaccination in combination with primed T cells after
autologous stem cell transplantation for 54 patients with
AML [28]. Leukemic cells are expected to be incorporated
into DCs activated by GM-CSF in vivo, and the DCs
stimulate antigen-specific T cells. Induction of delayed-
type hypersensitivity reactions to autologous tumor cells
was associated with 3-year relapse free survival, suggesting
a correlation between an immune response and a clinical
outcome.

Autologous leukemia cells transduced with GM-CSF
were administered after allogeneic transplantation to 28
patients with AML or high-risk MDS [29]. Vaccination
elicited local and systemic immune responses despite the
administration of a calcineurin inhibitor as prophylaxis
against GVHD. Whereas the incidence of GVHD did not
increase by vaccination, 9 of 10 patients achieved durable
complete remission. Thus, this immunotherapy may poten-
tiate GVL reaction without causing GVHD.

4.3. DC Vaccines. DCs generated ex vivo from monocytes
or CD34+ progenitor cells are modified to present tumor
antigens and are injected. It has also been reported that AML
cells can be differentiated into DCs and they can be injected.

In the first DC vaccination for AML, Fujii et al. used
CD34+ progenitor cell-derived DCs pulsed with autologous
leukemic cells in combination with primed T cells for
4 relapsed patients after allogeneic stem cell transplanta-
tion [30]. This method induced tumor-specific immune
responses. However, most of the later studies used monocytes

as a source of DCs, mainly because it is technically easier
to obtain DCs for vaccination from monocytes than CD34+
progenitor cells.

Clinical trials of DC-based immunotherapy for AML
using leukemic cell-derived DCs have also been reported
[31, 32]. However, the generation of leukemic cell-derived
DCs was feasible only in a limited number of patients, and,
even in patients with successful generation and vaccinations
of leukemic cell-derived DCs, the DC vaccinations could not
induce clinically relevant immune responses [32]. This may
be due to lower immunostimulatory activity of leukemic
cell-derived DCs compared with monocyte-derived DCs
(MoDCs) [33], providing a rationale for the use of MoDCs
in immunotherapy for AML.

Lee et al. reported the first study of MoDC-based
immunotherapy for 2 AML patients with relapse after
autologous peripheral blood stem cell transplantation [34].
Although immune responses were induced, the diseases pro-
gressed possibly because of high tumor burden before vac-
cination. In contrast, Van Tendeloo et al. recently reported
immunotherapy for AML, 8 patients at complete remission
and 2 at partial remission [35]. MoDCs transfected with
WT1 mRNA were administered, and molecular remission
was achieved in 4 patients including the 2 patients of
partial remission. Clinical responses were correlated with
increases in WT1-specific CD8+ T cells. This study indicates
that vaccination with WT1 mRNA-loaded MoDCs as a
postremission treatment may prevent full relapse.

We recently reported two clinical studies of MoDC-
based immunotherapy for AML at morphologic complete
remission in elderly patients. In one study, we administered
MoDCs that engulfed autologous apoptotic leukemic cells
to 4 patients [36]. We observed immune responses in
2 patients who exhibited disease stabilization. WT1- and
hTERT-specific CD8+ T cell responses were observed in
an HLA-A∗2402-positive patient, indicating cross-priming
in vivo. In another study, we administered MoDCs pulsed
with an HLA-A∗2402-restricted modified WT1 peptide that
has higher affinity to the HLA molecule than the natural
peptide to 3 patients [37]. We observed immune responses
in 2 patients who exhibited transient disease stabilization.
Notably, CD8+ T cells reactive to the WT1 natural peptide
but not to the modified peptide persisted after terminating
vaccination, implying that the natural peptide-reactive T
cells survived due to stimulation by endogenous cognate
antigens.

Collectively, these studies indicate that MoDC-based
immunotherapy is immunogenic even in elderly patients
with AML after remission-inducing chemotherapy and war-
rant further study of this strategy.

5. Methods of Antigen-Specific Immunotherapy
for AML: Adoptive T Cell Therapy

Active immunization relies on immune competence of
cancer patients. However, tumor antigen-specific T cells may
be nonfunctional or deleted in the presence of tumor cells
in vivo in cancer patients [38]. In addition, chemotherapy
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and immunosuppressive factors from tumor cells may
undermine antitumor immunity in cancer patients [39].
Based on these ideas, adoptive transfer of tumor-specific T
cells is actively pursued.

Tumor-specific adoptive T cell therapy was initially
developed by expanding tumor-infiltrating lymphocytes
from melanoma lesions in vitro [40]. However, complicated
procedures and difficulty in timely preparation of a suffi-
cient number of cytotoxic T lymphocytes (CTLs) preclude
generalization of this strategy. To overcome these drawbacks,
adoptive T cell therapies using genetically engineered T cells
have recently been prevailing. There are two measures: (i)
CD8+ T cells transduced with genes encoding T cell receptor
(TCR) that recognizes the complex of a tumor peptide and a
particular MHC class I molecule and (ii) T cells transfected
with genes encoding chimeric antigen receptor (CAR) that is
composed of antibody and cytoplasmic domain of the CD3
molecule.

5.1. Adoptive Transfer of T Cells with Transgenic TCR. The
first clinical trial of TCR-transduced T cell transfer was
performed to advanced melanoma patients by Rosenberg’s
group, using HLA-A∗0201-restricted MART-1, gp100, NY-
ESO-1, and p53 as targeted antigens [41]. The transduced
T cells were administered after lymphodepleting regimen of
fludarabine and cyclophosphamide. Two out of 17 patients
achieved partial remission. The absence of therapeutic effects
in most cases may be related to the failure of the infused cells
to accumulate into the tumor or to exert their effector func-
tion in the immunosuppressive tumor microenvironment.

Subsequently, the same group reported a clinical trial
using high avidity TCR against HLA-A∗0201-restricted
MART-1 and gp100 peptides [42]. Objective cancer regres-
sions were observed in 30% of patients. Gene-engineered
cells persisted at high levels in the blood of all patients 1
month after treatment. However, patients exhibited destruc-
tion of normal melanocytes in the skin, eye, and ear. In
another study by the same group, a retrovirus encoding
the high avidity murine CEA-reactive TCR was used to
transduce peripheral blood lymphocytes from 3 HLA-
A∗0201+ patients with metastatic colorectal cancer [43].
All patients experienced profound decreases in serum CEA
levels. However, a severe transient inflammatory colitis was
induced in all 3 patients. These studies indicate excellent
antitumor activity as well as destructive power of highly avid
T cells against normal tissues, suggesting the importance of
careful assessment of possible damage to normal tissues that
share the target antigen with tumor cells.

These promising results of adoptive transfer of TCR-
transduced T cells for solid tumors pave the way for
its application to hematological malignancies. Two groups
reported mouse models of adoptive transfer of T cells with
WT1-specific TCR genes [44, 45]. Both of the groups recently
reported in vivo therapies for AML using mouse xenograft
models transferred with WT1 TCR-transduced T cells [46,
47].

In the T cells transduced with a new TCR gene, their
original TCRs are still functional, and thus mispairing
of endogenous and introduced TCR chains occurs. This

decreases the expression level of introduced TCR, resulting
in reduced antitumor activity [48]. In addition, studies in
murine models with TCR gene transfer have shown that the
mispairing may generate neoreactivity against autoantigens,
resulting in GVHD [49]. Ochi et al. circumvented the
mispairing problem in an elegant way by developing a
novel retroviral vector system for TCR gene transfer that
can selectively express target antigen-specific TCR while
expression of intrinsic TCRs is suppressed by built-in siRNAs
[47, 50]. In a mouse xenograft model, adoptively transferred
WT1-siTCR gene-transduced T cells exerted distinct anti-
leukemia efficacy, but did not inhibit human hematopoiesis
[47]. This is a promising report heading for a clinical trial to
treat AML using WT1-TCR T cell transfer.

5.2. Adoptive Transfer of T Cells with Transgenic CAR. A
CAR contains an extracellular antigen-binding domain, a
transmembrane region, and a signaling endodomain. The
extracellular domain is typically a single chain variable
fragment (scFv) derived from a tumor-specific monoclonal
antibody. There are two advantages of using an antibody-
derived domain for antigen recognition. First, antibodies are
not dependent on MHC presentation. Second, antibodies
bind antigens with much greater affinity than TCRs, permit-
ting the formation of a more stable immunological synapse.

CARs can be grouped into three generations with
progressively increasing costimulatory activity. These differ
primarily in the structure of the signaling endodomain. First-
generation CARs contain a single signaling unit derived
from the CD3ζ chain alone, which transmits a signal
inadequate to fully activate T cells. In second-generation
CARs, the CD28 intracellular domain is inserted proximal to
the CD3ζ endodomain to enhance the stimulatory effects of
the CAR. This encouraged further addition of other signaling
sequences from costimulatory molecules such as 4-1BB and
OX40 in third-generation CARs. A complete response was
observed in a patient with follicular lymphoma who received
T cells transduced with a second-generation anti-CD19 CAR
[51]. However, the supraphysiological signal transmitted
by second- and third-generation CARs is also a source of
concern. In fact, 2 deaths in cancer patients treated with
CAR T cells occurred apparently due to cytokine storm:
one patient with colon cancer treated with ERBB2-specific
CAR [52] and another with chronic lymphocytic leukemia
treated with CD19-specific CAR [53]. Although these serious
adverse events indeed suggest highly active antitumor effects
of CAR, modification to decrease T cell doses and to split
infusions will be important to reduce such risk.

The carbohydrate antigen LewisY is expressed in about
50% of multiple myeloma and AML cases. LewisY CAR-
transduced T cells delayed growth of myeloma xenografts in
NOD/SCID mice [54]. This paper indicates that LewisY CAR
T cell transfer is a promising therapy for myeloma and AML.

6. Conclusions and Future Prospects

Advances in immunology and identification of promising
leukemia-associated antigens are making it possible to
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develop truly effective immunotherapies for AML. Fortu-
nately, AML is relatively more chemosensitive than most
solid tumors, and thus it is possible to reduce a tumor burden
by chemotherapy in the majority of patients. Thereafter,
immunotherapy will play a complementary role in eradicat-
ing minimal residual diseases, which contain chemoresistant
leukemia stem cells. Thus, leukemia-associated antigens
expressed in leukemia stem cells will be important to achieve
cure.

Recent concerns are immunosuppressive factors ex-
pressed by tumor cells or built in the immune system,
which curtail antitumor immunity. Universal immunosup-
pressive factors built in the immune system, such as CTLA-
4 [55, 56], PD-1 [57, 58], and regulatory T cells [59–61], are
widely applicable targets in combination with antitumor vac-
cination. However, CTLA-4 blockade caused autoimmune
manifestations in considerable fractions of patients [55, 56],
which is anticipated from the role of CTLA-4 in maintaining
immune homeostasis. Such adverse events, in addition to the
autoimmunity [42, 43] and life-threatening cytokine storm
[52, 53] observed in the adoptive T cell transfer, indicate that
pursuing effectiveness of tumor immunotherapy inherently
raises the possibility of harmful immune reactions, if the
target antigen is shared by tumor and normal cells or the
tumor burden is high. Balance between effectiveness and
adverse events will thus become a main issue in the era of
advanced immunotherapy. Still, “relative” tumor specificity
of immunotherapy, at least, compared to other modalities of
cancer therapy will make immunotherapy an indispensable
facet of antitumor armamentarium.

Furthermore, epigenetic therapies with DNA methyl-
transferase and histone deacetylase inhibitors are prevailing
as novel therapies for myeloid malignancies. Notably, recent
studies have shown that epigenetic modification upregu-
lates the expression of cancer testis antigens in AML and
induces CTL responses [62, 63]. This raises possibilities for
reasonable combinations of therapies targeting molecular
oncogenic pathways and immunotherapies. Such prospects
will collectively open an exciting new era of AML therapies
in the near future.
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