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An adaptive fuzzy control method is developed to control chaos in the permanent magnet
synchronous motor drive system via backstepping. Fuzzy logic systems are used to approximate
unknown nonlinearities, and an adaptive backstepping technique is employed to construct
controllers. The proposed controller can suppress the chaos of PMSM and track the reference signal
successfully. The simulation results illustrate its effectiveness.

1. Introduction

Permanent magnet synchronous motors (PMSMs) are intensively used in industrial
applications due to their high speed, high efficiency, high power density, and large torque
to inertia ratio. Then, it is still a challenging problem to control the PMSM to get the perfect
dynamic performance, because the dynamic model of PMSM is nonlinear, multivariable
and even experiencing Hopf bifurcation, limit cycles, and chaotic attractors with systemic
parameters falling into a certain area [1]. The chaotic behavior in PMSM is undesirable
since it can extremely destroy the stabilization of the motor or even induce drive system
collapse. Chaos in the PMSM and its control have been an active research area in the field
of nonlinear control of electric motors [2]. Up to now, some control methods, such as OGY
method [3], feedback linearization [4], time delay feedback control [5–7], sliding model
control [8], adaptive control method [9, 10], backstepping method [11–14], and dynamic
surface control [9] are successfully used to control or suppress chaos in PMSM. However, the
existing control methods also have some disadvantages. The OGY method requires a variable
system parameter which is usually unavailable in the control of the PMSM. The employed
method of feedback linearization requires the exact mathematical model; so the controller
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requires the desired dynamics to replace the system at the d − q axis stator currents. The time
delay feedback control was successfully implemented to control the PMSM, but it is difficult
to determine the time delay for TDFC method given a special target and is not suitable when
the desired target is not the equilibrium or an unstable periodic orbit of the system. Chattering
phenomenon and high heat loss in electrical power circuits are the drawbacks of the sliding
mode control.

Backstepping is a newly developed technique to control the nonlinear systems with
parameter uncertainty, particularly those systems in which the uncertainty does not satisfy
matching conditions. Though the conventional backstepping is successfully applied to the
control of PMSM drivers recently, it usually makes the designed controllers’ structure to be
very complex.

In recent years, fuzzy logic control (FLC) [15–17] has been found one of the most
popular and conventional tools in functional approximations. An FLC has strong ability of
handling uncertain information and can be easily used in the control of systems which is
ill-defined or too complex to have a mathematical model. The essential part of an FLC is
a set of the linguistic control rules related by the dual concepts of fuzzy implication and the
compositional rule of inference [18]. Classically, fuzzy variables have been adjusted by expert
knowledge and trial and error. It provides an effective way to design control system that is
one of the important applications in the area of control engineering.

In this paper, an adaptive fuzzy control method is developed to control chaos in
the permanent magnet synchronous motor drive systems via backstepping technology.
During the controller design process, fuzzy logic systems are employed to approximate
the nonlinearities of the chaotic PMSM drive system; the adaptive fuzzy controllers are
constructed via backstepping. Compared with the conventional backstepping, the designed
fuzzy controller has a simple structure, which can suppress the chaos of PMSM and track the
reference signal generated by a reference model quite well.

2. Mathematical Model of Chaotic PMSM
Drive System and Preliminaries

The dimensionless mathematical model of PMSM with the smooth air gap can be described
as follows [1]:

dω

dt
= σ

(
iq −ω

)
− T̃L,

diq

dt
= −iq − idω + γω + ũq,

did
dt

= −id + iqω + ũd,

(2.1)

where ω, id and iq are state variables, which denote angle speed and the d − q axis currents,
respectively. σ and γ are system operating parameters, which are positive. T̃L, ũd, and ũq
stand for the d − q axis voltages and load torque, respectively.
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Figure 1: Typical chaotic attractor in PMSM with system parameters σ = 5.45 and γ = 20.

In system (2.1), the external inputs are set to zero, namely, T̃L = ũd = ũq = 0 [1]. Then,
the system (2.1) becomes an unforced system:

dω

dt
= σ

(
iq −ω

)
,

diq

dt
= −iq − idω + γω,

did
dt

= −id + iqω.

(2.2)

The modern nonlinear theory such as bifurcation and chaos has been widely used to
study the stability of PMSM driver system. The study found that the PMSM is experiencing
chaotic behavior when the operating parameters σ and γ fall into a certain regime. For
example, the PMSM displays chaos with σ = 5.45 and γ = 20. The typical chaotic attractor is
shown in Figure 1. These chaotic oscillations can destroy the stabilization of the PMSM drive
system. In order to remove or control chaos, we use ud as the manipulated variable which is
desirable for the real application. Then, an adaptive fuzzy control approach is proposed to
control chaos in the PMSM drive system via the backstepping technique. For simplicity, the
following notations are introduced: x1 = ω, x2 = iq, and x3 = id. By using these notations,
the dynamic model of PMSM driver system can be described by the following differential
equations:

ẋ1 = σ(x2 − x1),

ẋ2 = −x2 − x1x3 + γx1,

ẋ3 = −x3 + x1x2 + ud.

(2.3)

The control objective is to design an adaptive fuzzy controller such that the state
variable x1 follows the given reference signal xd, and all the closed-loop signals are bounded.
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To this end, we adopt the singleton fuzzifier, product inference, and the center-defuzzifier to
deduce the following fuzzy rules:

Ri : IF x1 is Fi1 and · · · and xn is Fin THEN y is Bi (i = 1, 2, . . . ,N), (2.4)

where x = [x1, . . . , xn]
T ∈ Rn and y ∈ R are the input and output of the fuzzy system,

respectively F
j

i and Bi are fuzzy sets in R. The fuzzy inference engine performs a mapping
from fuzzy sets in Rn to fuzzy set in R based on the IF-THEN rules in the fuzzy rule base and
the compositional rule of inference. The fuzzifier maps a crisp point x = [x1, . . . , xn]

T ∈ Rn

into a fuzzy set Ax in R. The defuzzifier maps a fuzzy set in R to a crisp point in R. Since
the strategy of singleton fuzzification, center-average defuzzification, and product inference
is used, the output of the fuzzy system can be formulated as

y(x) =

∑N
j=1 Wj

∏n
i=1μFji

(xi)
∑N

j=1

[∏n
i=1μFji

(xi)
] , (2.5)

where Wj is the point at which fuzzy membership function μBj (Wj) achieves its maximum
value, and it is further assumed that μBj (Wj) = 1. Let pj(x) =

∏n
i=1μFji

(xi)/
∑N

j=1[
∏n

i=1μFji
(xi)],

S(x) = [p1(x), p2(x), . . . , pN(x)]T , and W = [W1, . . . ,WN]T , then the fuzzy logic system
above can be rewritten as

y(x) =WTS(x). (2.6)

If all memberships are taken as Gaussian functions, then the following lemma holds.

Lemma 2.1 (see [19]). Let f(x) be a continuous function defined on a compact set Ω. Then for any
scalar ε > 0, there exists a fuzzy logic system in the form of (2.6) such that

sup
x∈Ω

∣∣f(x) − y(x)
∣∣ ≤ ε. (2.7)

3. Adaptive Fuzzy Controller with the Backstepping Technique

In this section, we will develop an adaptive fuzzy control approach to control chaos in PMSM
drive system via the backstepping. The backstepping design procedure contains 3 steps.
At each design step, a virtual control function αi (i = 1, 2) will be constructed by using an
appropriate Lyapunov function. At the last step, the real controller is constructed to control
the system.

Step 1. For the reference signal xd, define the tracking error variable as z1 = x1 − xd. From the
first differential equation of (2.3), the error dynamic system is given by ż1 = σ(x2 − x1) − ẋd.
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Choose Lyapunov function candidate as V1 = (1/2)z2
1, then the time derivative of V1 is

computed by

V̇1 = z1ż1 = z1σ

(
x2 − x1 −

ẋd
σ

)
. (3.1)

Construct the virtual control law α1 as

α1(x1, xd, ẋd) = −k1z1 + x1 +
ẋd
σ
, (3.2)

where k1 is a positive constant. By using (3.2), (3.1) can be rewritten in the following form:

V̇1 = −k1σz
2
1 + σz1z2 = −k1z

2
1 + σz1z2, (3.3)

with k1 > 0 being a design parameter and z2 = x2 − α1.

Step 2. Differentiating z2 gives

ż2 = ẋ2 − α̇1 = −x2 − x1x3 + γx1 − α̇1. (3.4)

Now, choose the Lyapunov function candidate as V2 = V1 + (1/2)z2
2. Obviously, the

time derivative of V2 is given by

V̇2 = V̇1 + z2ż2 = −k1z
2
1 + z2

(
σz1 − x2 − x1x3 + γx1 − α̇1

)
. (3.5)

In the realistic model of PMSM, limited to the work conditions, the parameter γ is unknown.
So it cannot be used to construct the control signal. Thus, let γ̂ be the estimation of γ . The
corresponding adaptation laws will be specified later. The virtual control α2 is constructed as

α2(Z2) = −
1
x1

(
−k2z2 − σz1 + x2 − γ̂x1 + α̇1

)
, (3.6)

where k2 > 0 is a positive design parameter and Z2 = [x1, x2, xd, ẋd, ẍd, γ̂]
T . Adding and

subtracting α2 in the bracket in (3.5) shows that

V̇2 = −k1z
2
1 − k2z

2
2 − x1z2z3 − z2

(
γ̂ − γ

)
x1, (3.7)

with z3 = x3 − α2.

Step 3. Differentiating z3 results in the following differential equation:

ż3 = ẋ3 − α̇2 = −x3 + x1x2 + ud − α̇2. (3.8)
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Choose the Lyapunov function candidate as V3 = V2 + (1/2)z2
3. Furthermore, differentiating

V3 yields

V̇3 = V̇2 + z3ż3 = V̇2 + z3(−x3 + x1x2 + ud − α̇2)

= −k1z
2
1 − k2z

2
2 − z2

(
γ̂ − γ

)
x1 + z3

(
f3 + ud

)
,

(3.9)

where

α̇1 = ẋ1 − ẋd = σ(x2 − x1) − ẋd,

α̇2 =
2∑

i=1

∂α2

∂xi
ẋi +

2∑

i=0

∂α2

∂x
(i)
d

x
(i+1)
d +

∂α2

∂γ̂
˙̂γ

=
∂α2

∂x1
σ(x2 − x1) +

∂α2

∂x2

(
−x2 − x1x3 + γx1

)
+

2∑

i=0

∂α2

∂x
(i)
d

x
(i+1)
d +

∂α2

∂γ̂
˙̂γ,

f3(Z) = −x3 + x1x2 − x1z2 − α̇2,

Z =
[
x1, x2, x3, xd, ẋd, ẍd, γ̂

]T
.

(3.10)

Notice that f3 containing the derivative of α2, therewithal, the unknown parameter γ
appears in the expression of f3. This will make the classical adaptive backstepping design
become very complex and troubled, and the designed control law ud will have a complex
structure. To avoid this trouble and simplify the control signal structure, we will employ
the fuzzy logic system to approximate the nonlinear function f3. As shown later, the design
procedure of ud becomes simple, and ud is of a simple structure.

According to Lemma 2.1, for any given ε3 > 0, there exists a fuzzy logic system
WT

3 S(Z) such that

f3(Z) =WT
3 S(Z) + δ3(Z), (3.11)

where δ3(Z) is the approximation error and satisfies |δ3| ≤ ε3. Consequently, a straightfor-
ward calculation produces the following inequality:

z3f3(Z) = z3

(
WT

3 S(Z) + δ3(Z)
)
≤ 1

2l23
z2

3‖W3‖2S2 +
1
2
l23 +

1
2
z2

3 +
1
2
ε2

3. (3.12)

Thus, it follows immediately from substituting (3.6) into (3.9) that

V̇3 ≤ −k1z
2
1 − k2z

2
2 − z2

(
γ̂ − γ

)
x1 +

1
2l23

z2
3‖W3‖2S2 +

1
2
l23 +

1
2
z2

3 +
1
2
ε2

3 + z3ud. (3.13)
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At this present stage, the control law ud is designed as

ud = −k3z3 −
1
2
z3 −

1
2l23

z3θ̂S
2, (3.14)

where θ̂ is the estimation of the unknown constant θ which will be specified later. Define
θ = ‖W3‖2. Furthermore, using equality (3.14), it can be verified easily that

V̇3 ≤ −
3∑

i=1

kiz
2
i +

1
2l23

z2
3

(
‖W3‖2 − θ̂

)
ST (Z)S(Z) +

1
2
l23 +

1
2
ε2

3 + z2
(
γ − γ̂

)
x1. (3.15)

Introduce variables γ̃ and θ̃ as

γ̃ = γ̂ − γ,

θ̃ = θ̂ − θ,
(3.16)

and choose the Lyapunov function candidate as

V = V3 +
1

2r1
γ̃2 +

1
2r2

θ̃2, (3.17)

where ri, i = 1, 2 are positive constants. By differentiating V and taking (3.15)–(3.17) into
account, one has

V̇ ≤ −
3∑

i=1

kiz
2
i +

1
2l23

z2
3θ̃S

T (Z)S(Z) + z2
(
γ − γ̂

)
x1 +

1
2
l23 +

1
2
ε2

3 +
1
r1
γ̃ ˙̂γ +

1
r2
θ̃ ˙̂θ

= −
3∑

i=1

kiz
2
i +

1
2
l23 +

1
2
ε2

3 +
1
r1
γ̃
(
−r1z2x1 + ˙̂γ

)
+

1
r2
θ̃

[

− 1
2l23

z2
3S

T (Z)S(Z) + ˙̂θ

]

.

(3.18)

According to (3.18), the corresponding adaptive laws are chosen as follows:

˙̂γ = r1z2α̇1 −m1γ̂ ,

˙̂θ =
1

2l23
z2

3S
T (Z)S(Z) −m2θ̂,

(3.19)

where mi, for i = 1, 2 and l3 are positive constants.
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Figure 2: The ω curve of the chaotic PMSM drive system without ud.

4. Stability Analysis

To address the stability analysis of the resulting closed-loop system, substitute (3.19) into
(3.18) to obtain that

V̇ ≤ −
3∑

i=1

kiz
2
i +

1
2
l23 +

1
2
ε2

3 −
m1

r1
γ̃ γ̂ − m2

r2
θ̃θ̂. (4.1)

For the term −γ̃ γ̂ , one has −γ̃ γ̂ ≤ −γ̃(γ̃ + γ) ≤ −(1/2)γ̃2 + (1/2)γ2. Similarly, −θ̃θ̂ ≤
−(1/2)θ̃2 + (1/2)θ2 holds. Consequently, by using these inequalities, (4.1) can be rewritten
in the following form:

V̇ ≤ −
3∑

i=1

kiz
2
i −

m1

2r1
γ̃2 − m2

2r2
θ̃2 +

1
2
l23 +

1
2
ε2

3 +
m1

2r1
γ2 +

m2

2r2
θ2

≤ −a0V + b0,

(4.2)

where a0 = min{2k1,2k2,2k3,m1, m2} and b0 = (1/2)l23 + (1/2)ε2
3 + (m1/2r1)γ2 + (m2/2r2)θ2.

Furthermore, (4.2) implies that

V (t) ≤
(
V (t0) −

b0

a0

)
e−a0(t−t0) +

b0

a0
≤ V (t0) +

b0

a0
, ∀t � t0. (4.3)
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Figure 3: The id curve of the chaotic PMSM drive system without ud.

As a result, all zi (i = 1, 2, 3), γ̃ , and θ̃ belong to the compact set

Ω =
{(

zi, γ̃ , θ̃
)
| V ≤ V (t0) +

b0

a0
, ∀t � t0

}
. (4.4)

Namely, all the signals in the closed-loop system are bounded. Especially, from (4.3) we have

lim
t→∞

z2
1 ≤

2b0

a0
. (4.5)

From the definitions of a0 and b0, it is clear that to get a small tracking error by taking ri
sufficiently large and li and εi small enough after giving the parameters ki and mi.

5. Simulation

In order to illustrate the effectiveness of the proposed results, the simulation will be
conducted to control chaos in PMSM drive system with two sets. First we tested the chaotic
PMSM drive system with ud = 0, which are shown in Figures 2, 3, and 4. Then the proposed
adaptive fuzzy approach in this paper is used to control the chaotic PMSM system, which are
shown in Figures 5, 6, 7, and 8. The control parameters are chosen as follows:

k1 = 2, k2 = 20, k3 = 15, r1 = r2 = 15, m1 = m2 = 0.005, l3 = 0.2. (5.1)
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Figure 4: The iq curve of the chaotic PMSM drive system without ud.
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Figure 5: The ω curve of the chaotic PMSM drive system with ud.
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Figure 6: The iq curve of the chaotic PMSM drive system with ud.
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Figure 7: The id curve of the chaotic PMSM drive system with ud.
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Figure 8: The curve of the controller ud.

And the fuzzy membership functions are:

μF1
i
= exp

[
−(x + 5)2

2

]

, μF2
i
= exp

[
−(x + 4)2

2

]

,

μF3
i
= exp

[
−(x + 3)2

2

]

, μF4
i
= exp

[
−(x + 2)2

2

]

,

μF5
i
= exp

[
−(x + 1)2

2

]

, μF6
i
= exp

[
−(x − 0)2

2

]

,
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μF7
i
= exp

[
−(x − 1)2

2

]

, μF8
i
= exp

[
−(x − 2)2

2

]

,

μF9
i
= exp

[
−(x − 3)2

2

]

, μF10
i
= exp

[
−(x − 4)2

2

]

,

μF11
i
= exp

[
−(x − 5)2

2

]

.

(5.2)

Give the reference signals xd = 5 and the simulation is carried out for the PMSM drive system.
Compared two sets figures, it is seen clearly that the proposed controller can suppress the
chaos in PMSM drive system and good tracking performance has been achieved successfully.

6. Conclusion

Based on backstepping technique, an adaptive fuzzy control scheme is proposed to control
chaos in the permanent magnet synchronous motor drive systems. The proposed controllers
guarantee that the tracking error converges to a small neighborhood of the origin, and all
the closed-loop signals are bounded. The simulation results are provided to demonstrate the
effectiveness and feasibility of the proposed method.
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