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This work is devoted to the stability study of impulsive cellular neural networks with time-varying delays and reaction-diffusion
terms. Bymeans of new Poincaré integral inequality andGronwall-Bellman-type impulsive integral inequality, we summarize some
novel and concise sufficient conditions ensuring the global exponential stability of equilibrium point.The provided stability criteria
are applicable to Dirichlet boundary condition and show that not only the reaction-diffusion coefficients but also the regional
features including the boundary and dimension of spatial variable can influence the stability. Two examples are finally illustrated
to demonstrate the effectiveness of our obtained results.

1. Introduction

Cellular neural networks (CNNs), proposed by Chua and
Yang in 1988 [1, 2], have been the focus of a number of
investigations due to their potential applications in various
fields such as optimization, linear and nonlinear program-
ming, associative memory, pattern recognition, and com-
puter vision [3–7]. As the switching speed of neurons and
amplifiers is finite in the implementation of neural networks,
time delays are inevitable and therefore a type of more
effective models is afterwards introduced, called delayed
cellular neural networks (DCNNs). Actually, DCNNs have
been found to be helpful in solving some dynamic image
processing and pattern recognition problems.

As we all know, all the applications of CNNs and DCNNs
depend heavily on the dynamic behaviors such as stability,
convergence, and oscillatory [8, 9], wherein stability analysis
is a major concern in the designs and applications. Corre-
spondingly, the stability of CNNs and DCNNs is a subject of
current interest and considerable theoretical efforts have been
put into this topic with many good results reported (see, e.g.,
[10–13]).

With reference to neural networks, however, it is note-
worthy that the state of electronic networks is often subject
to instantaneous perturbations which may be caused by a

switching phenomenon, frequency change, or other sudden
noise. On this account, neural networks will experience
abrupt change at certain instants, exhibiting impulse effects
[14, 15]. For instance, according toArbib [16] andHaykin [17],
when a stimulus from the body or the external environment is
received by receptors, the electrical impulses will be conveyed
to the neural net and impulse effects arise naturally in the net.
In view of this discovery,many scientists have shown growing
interests in the influence that the impulsesmay have onCNNs
orDCNNswith a result that a large number of relevant results
have been achieved (see, e.g., [18–24]).

Besides impulsive effects, diffusing effects are also non-
ignorable in reality since the diffusion is unavoidable when
the electrons are moving in asymmetric electromagnetic
fields. Therefore, the model of impulsive delayed reaction-
diffusion neural networks appears as a natural description
of the observed evolution phenomena of several real world
problems. This one acknowledgement poses a new challenge
to the stability research of neural networks.

So far, there have been some theoretical achievements
[25–33] on the stability of impulsive delayed reaction-
diffusion neural networks. Previously, authors of [27–32]
studied the stability of impulsive delayed reaction-diffusion
neural networks and put forward several stability criteria by
impulsive differential inequality and Green formula, wherein
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the reaction-diffusion term is evaluated to be less than zero by
means of Green formula and thereby the presented stability
criteria are shown to be wholly independent of diffusion.
According to this result, we fail to see the influence of
diffusion on stability.

Recently, it is encouraging that, for impulsive delayed
reaction-diffusion neural network, some new stability criteria
involving diffusion are obtained in [25, 26, 33–36]. Mean-
while the estimation of reaction-diffusion term is not merely
less than zero, instead a more accurate one is given; that
is, the reaction-diffusion term is verified to be less than a
negative definite term by using some inequalities together
with Green formula. It is thereby testified that the diffusion
does contribute to the stability of impulsive neural networks.

In [25], the authors quoted the following inequality to
deal with the reaction-diffusion terms:

∫
Ω
∗


𝜕𝜐 (𝑥)
𝜕𝑥
𝑗


2

d𝑥 ≥ 1
𝑙2
𝑗

∫
Ω
∗

𝜐2 (𝑥) d𝑥, (1)

where Ω∗ is a cube |𝑥
𝑗
| < 𝑙
𝑗
(𝑗 = 1, 2, . . . , 𝑚) and 𝜐(𝑥) is

a real-valued function belonging to 𝐶1
0
(Ω∗). We can easily

derive from this inequality that

∫
Ω
∗

|∇𝜐|2d𝑥 ≥ (∫
Ω
∗

𝜐2 (𝑥) d𝑥)(
𝑚

∑
𝑗=1

1
𝑙2
𝑗

) . (2)

For better exploring the influence of diffusion on stability,
we wonder if we can get a more accurate estimate of
reaction-diffusion term. Fortunately, we find the following
new Poincaré integral inequality supporting this idea:

∫
S
|∇𝜐 (𝑥)|2d𝑥 ≥ 4𝑛

𝐵2 ∫S 𝜐
2 (𝑥) d𝑥. (3)

One can refer to Lemma 3 in Section 2 for the details of this
inequality.

On the other hand, it is well known that the theory
of differential and integral inequalities plays an important
role in the qualitative and quantitative study of solution to
differential equations. Up till now, there have been many
applications of impulsive differential inequalities to impul-
sive dynamic systems, followed by lots of stability criteria
provided. However, these stability criteria appear a bit com-
plicated and we wonder if we can deduce relatively concise
stability criteria by using impulsive integral inequalities

Motivated by these, we attempt to, for impulsive delayed
neural networks, employ new Poincaré integral inequality to
further investigate the influence of diffusion on the stabil-
ity and combine Gronwall-Bellman-type impulsive integral
inequality so as to provide some new and concise stability
criteria. The rest of this paper is organized as follows. In
Section 2, the model of impulsive cellular neural networks
with time-varying delays and reaction-diffusion terms as well
as Dirichlet boundary condition is outlined; in addition,
some facts and lemmas are introduced for later reference.
In Section 3, we provide a new estimate on the reaction-
diffusion term by the agency of new Poincaré integral
inequality and then discuss the global exponential stability

of equilibrium point by utilizing Gronwall-Bellman-type
impulsive integral inequality with a result of some novel
and concise stability criteria presented. To conclude, two
illustrative examples are given in Section 4 to verify the
effectiveness of our obtained results.

2. Preliminaries

Let 𝑅
+
= [0,∞) and 𝑡

0
∈ 𝑅
+
. Let 𝑅𝑛 denote the n-dimen-

sional Euclidean space, and let Ω = ∏𝑚
𝑖=1
[𝑑
𝑖
, 𝑘
𝑖
] be a fixed

rectangular region in𝑅𝑚 and𝑀 := max{𝑘
𝑖
−𝑑
𝑖
: 𝑖 = 1, . . . , 𝑚}.

As usual, denote

𝐶1
0
(Ω) = {𝜐 | 𝜐 and 𝐷

𝑗
𝜐 = 𝜕𝜐

𝜕𝑥
𝑗

are continuous on Ω,

𝜐|𝜕Ω = 0, 1 ≤ 𝑗 ≤ 𝑚} .
(4)

Consider the following impulsive cellular neural network
with time-varying delays and reaction-diffusion terms:

𝜕𝑢
𝑖 (𝑡, 𝑥)
𝜕𝑡 =

𝑚

∑
𝑠=1

𝜕
𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖 (𝑡, 𝑥)
𝜕𝑥
𝑠

) − 𝑎
𝑖
𝑢
𝑖 (𝑡, 𝑥)

+
𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (𝑡, 𝑥)) +

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥))

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑥 ∈ Ω,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,
(5)

𝑢
𝑖
(𝑡
𝑘
+ 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) ,

𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , (6)

where 𝑛 corresponds to the numbers of units in a neural
network; 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
)T ∈ Ω, 𝑢

𝑖
(𝑡, 𝑥) denotes the state

of the 𝑖th neuron at time 𝑡 and in space 𝑥; 𝐷
𝑖𝑠
= const > 0

represents transmission diffusion of the 𝑖th unit; activation
function 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥)) stands for the output of the jth unit at

time 𝑡 and in space 𝑥; 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, and 𝑎

𝑖
are constants: 𝑏

𝑖𝑗
indicates

the connection strength of the jth unit on the 𝑖th unit at time
𝑡 and in space 𝑥, 𝑐

𝑖𝑗
denotes the connection weight of the jth

unit on the 𝑖th unit at time 𝑡−𝜏
𝑗
(𝑡) and in space 𝑥, where 𝜏

𝑗
(𝑡)

corresponds to the transmission delay along the axon of the
jth unit, satisfying 0 ≤ 𝜏

𝑗
(𝑡) ≤ 𝜏(𝜏 = const) and ⋅𝜏

𝑗
(𝑡) < (1 −

(1/ℎ)) (ℎ > 0), and 𝑎
𝑖
> 0 represents the rate with which the

𝑖th unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
time 𝑡 and in space 𝑥. The fixed moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) are

called impulsive moments meeting 0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅

and lim
𝑘→∞

𝑡
𝑘
= ∞; 𝑢

𝑖
(𝑡
𝑘
+ 0, 𝑥) and 𝑢

𝑖
(𝑡
𝑘
− 0, 𝑥) represent

the right-hand and left-hand limit of 𝑢
𝑖
(𝑡, 𝑥) at time 𝑡

𝑘
and

in space 𝑥, respectively. 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) stands for the abrupt

change of 𝑢
𝑖
(𝑡, 𝑥) at the impulsive moment 𝑡

𝑘
and in space

𝑥.
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Denote by 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑), 𝑢 ∈ 𝑅𝑛, the solution of

system (5)-(6), satisfying the initial condition

𝑢 (𝑠, 𝑥; 𝑡
0
, 𝜑) = 𝜑 (𝑠, 𝑥) , 𝑡

0
− 𝜏 ≤ 𝑠 ≤ 𝑡

0
, 𝑥 ∈ Ω, (7)

and Dirichlet boundary condition

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑) = 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω, (8)

where the vector-valued function 𝜑(𝑠, 𝑥) = (𝜑
1
(𝑠, 𝑥), . . . ,

𝜑
𝑛
(𝑠, 𝑥))T is such that ∫

Ω
∑𝑛
𝑖=1

𝜑2
𝑖
(𝑠, 𝑥)d𝑥 is bounded on [𝑡

0
−

𝜏, 𝑡
0
].
The solution 𝑢(𝑡, 𝑥) =𝑢(𝑡, 𝑥; 𝑡

0
, 𝜑) = (𝑢

1
(𝑡, 𝑥; 𝑡

0
, 𝜑), . . . ,

𝑢
𝑛
(𝑡, 𝑥; 𝑡

0
, 𝜑))T of problem (5)–(8) is, for the time variable 𝑡, a

piecewise continuous function with the first kind discontinu-
ity at the points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous from

the left; that is, the following relations are true:

𝑢
𝑖
(𝑡
𝑘
− 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) ,

𝑢
𝑖
(𝑡
𝑘
+ 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) . (9)

Throughout this paper, the normof 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑) is defined

by

𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)2Ω =
𝑛

∑
𝑖=1

∫
Ω

𝑢2
𝑖
(𝑡, 𝑥; 𝑡

0
, 𝜑) d𝑥. (10)

Before proceeding, we introduce two hypotheses as fol-
lows:

(H1) 𝑓
𝑖
(∙) : 𝑅 → 𝑅 satisfies 𝑓

𝑖
(0) = 0, and there exists a

constant 𝑙
𝑖
> 0 such that |𝑓

𝑖
(𝑦
1
) − 𝑓
𝑖
(𝑦
2
)| ≤ 𝑙
𝑖
|𝑦
1
− 𝑦
2
|

for all 𝑦
1
, 𝑦
2
∈ 𝑅 and 𝑖 = 1, 2, . . . , 𝑛.

(H2) 𝑃
𝑖𝑘
(∙) : 𝑅 → 𝑅 is continuous and 𝑃

𝑖𝑘
(0) = 0, 𝑖 =

1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . ..
According to (H1) and (H2), it is easy to see that problem

(5)–(8) admits an equilibrium point 𝑢 = 0.
Definition 1 (see [25]). The equilibrium point 𝑢 = 0 of
problem (5)–(8) is said to be globally exponentially stable if
there exist constants 𝜅 > 0 and 𝜛 ≥ 1 such that

𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)Ω ≤ 𝜛 𝜑Ωe−𝜅(𝑡−𝑡0), 𝑡 ≥ 𝑡
0
, (11)

where ‖𝜑‖2
Ω
= sup

𝑡
0
−𝜏≤𝑠≤𝑡

0

∑𝑛
𝑖=1

∫
Ω
𝜑2
𝑖
(𝑠, 𝑥)d𝑥.

Lemma 2 (see [37] Gronwall-Bellman-type Impulsive Inte-
gral Inequality). Assume that

(A1) the sequence {𝑡
𝑘
} satisfies 0 ≤ 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅, with

lim
𝑘→∞

𝑡
𝑘
= ∞,

(A2) 𝑞 ∈ 𝑃𝐶1[R
+
,R] and 𝑞(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 =

1, 2, . . .,
(A3) 𝑝 ∈ 𝐶[R

+
,R
+
] and for 𝑘 = 1, 2, . . .,

𝑞 (𝑡) ≤ 𝑐 + ∫
𝑡

𝑡
0

𝑝 (𝑠) 𝑞 (𝑠) d𝑠 + ∑
𝑡
0
<𝑡
𝑘
<𝑡

𝜂
𝑘
𝑞 (𝑡
𝑘
) , 𝑡 ≥ 𝑡

0
, (12)

where 𝜂
𝑘
≥ 0 and 𝑐 = const. Then,

𝑞 (𝑡) ≤ 𝑐 ∏
𝑡
0
<𝑡
𝑘
<𝑡

(1 + 𝜂
𝑘
) exp(∫

𝑡

𝑡
0

𝑝 (𝑠) d𝑠) , 𝑡 ≥ 𝑡
0
. (13)

Lemma 3 (see [38] Poincaré integral inequality). Let S =
∏𝑛
𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] be a fixed rectangular region in R𝑛 and 𝐵 :=

max{𝑏
𝑖
− 𝑎
𝑖
: 𝑖 = 1, . . . , 𝑛}. For any 𝜐(𝑥) ∈ 𝐶1

0
(S),

∫
S

𝜐2 (𝑥) d𝑥 ≤ 𝐵2
4𝑛 ∫S |∇𝜐 (𝑥)|

2 d𝑥. (14)

Remark 4. According to Lemma 2.1 in [25], we know if S is
a cube |𝑥

𝑗
| < 𝑙
𝑗
(𝑗 = 1, 2, . . . , 𝑚) and 𝜐(𝑥) is a real-valued

function belonging to 𝐶1
0
(S), then

∫
S


𝜕𝜐 (𝑥)
𝜕𝑥
𝑗


2

d𝑥 ≥ 1
𝑙2
𝑗

∫
S

𝜐2 (𝑥) d𝑥, (15)

which yields

∫
S
|∇𝜐|2d𝑥 ≥ (∫

S

𝜐2 (𝑥) d𝑥)(
𝑚

∑
𝑗=1

1
𝑙2
𝑗

) . (16)

Through the simple example as follows, we can find that in
some cases the estimate ∫

S
|∇𝜐(𝑥)|2d𝑥 ≥ (4𝑛/𝐵2) ∫

S
𝜐2(𝑥)d𝑥

shown in Lemma 3 can do better. Let S = [0, 1] × [0, 2], we
derive from Lemma 2.1 in [25] that

∫
S
|∇𝜐|2d𝑥 ≥ (∫

S

𝜐2 (𝑥) d𝑥)(
𝑚

∑
𝑗=1

1
𝑙2
𝑗

) = 5
4 ∫S 𝜐

2 (𝑥) d𝑥,
(17)

whereas the application of Lemma 3 of this paper will give

∫
S
|∇𝜐 (𝑥)|2d𝑥 ≥ 4𝑛

𝐵2 ∫S 𝜐
2 (𝑥) d𝑥 = 2∫

S

𝜐2 (𝑥) d𝑥, (18)

which is obviously superior to ∫
S
|∇𝜐|2d𝑥 ≥ (5/4)

(∫
S
𝜐2(𝑥)d𝑥).

3. Main Results

Theorem 5. Provided that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2;

(3) there exists a constant 𝛾 > 0 satisfying 𝛾+𝜆+ℎ𝜌e𝛾𝜏 > 0
as well as 𝜆 + ℎ𝜌e𝛾𝜏 < 0, where 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 −

2𝑎
𝑖
+ ∑𝑛
𝑗=1
(𝑏2
𝑖𝑗
+ 𝑐2
𝑖𝑗
)) + 𝜌, 𝜌 = 𝑛max

𝑖=1,...,𝑛
(𝑙2
𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌e𝛾𝜏)/2.



4 Abstract and Applied Analysis

Proof. Multiplying both sides of (5) by𝑢
𝑖
(𝑡, 𝑥) and integrating

with respect to spatial variable 𝑥 onΩ, we get
d (∫
Ω
𝑢2
𝑖
(𝑡, 𝑥) d𝑥)
d𝑡

= 2
𝑚

∑
𝑠=1

∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖 (𝑡, 𝑥)
𝜕𝑥
𝑠

) d𝑥

− 2𝑎
𝑖
∫
Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥

+ 2
𝑛

∑
𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡, 𝑥)) d𝑥

+ 2
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥)) d𝑥

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2, . . . .

(19)

Regarding the right-hand part of (19), the first term
becomes by using Green formula, Dirichlet boundary con-
dition, Lemma 3, and condition (1) of Theorem 5

2
𝑚

∑
𝑠=1

∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖 (𝑡, 𝑥)
𝜕𝑥
𝑠

) d𝑥

= −2
𝑚

∑
𝑠=1

∫
Ω

𝐷
𝑖𝑠
(𝜕𝑢𝑖 (𝑡, 𝑥)𝜕𝑥

𝑠

)
2

d𝑥

≤ −8𝑚𝐷
𝑀2 ∫

Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥 ≜ −𝜒∫

Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥.

(20)

Moreover, From (H1), we have

2
𝑛

∑
𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡, 𝑥)) d𝑥

≤ 2
𝑛

∑
𝑗=1

𝑏𝑖𝑗
 ∫
Ω

𝑢𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡, 𝑥))
 d𝑥

≤ 2
𝑛

∑
𝑗=1

∫
Ω

𝑙
𝑗

𝑏𝑖𝑗
 𝑢𝑖 (𝑡, 𝑥)

𝑢𝑗 (𝑡, 𝑥)
 d𝑥

≤
𝑛

∑
𝑗=1

∫
Ω

(𝑏2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗
𝑢2
𝑗
(𝑡, 𝑥)) d𝑥,

(21)

2
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥)) d𝑥

≤ 2
𝑛

∑
𝑗=1

𝑐𝑖𝑗
 ∫
Ω

𝑢𝑖 (𝑡, 𝑥) 𝑓𝑗 (𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥))
 d𝑥

≤ 2
𝑛

∑
𝑗=1

∫
Ω

𝑙
𝑗

𝑐𝑖𝑗
 𝑢𝑖 (𝑡, 𝑥)

𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥)
 d𝑥

≤
𝑛

∑
𝑗=1

∫
Ω

(𝑐2
𝑖𝑗
𝑢
𝑖

2 (𝑡, 𝑥) + 𝑙2
𝑗
𝑢2
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥)) d𝑥.

(22)

Consequently, substituting (20)–(22) into (19) produces

d (∫
Ω
𝑢2
𝑖
(𝑡, 𝑥) d𝑥)
d𝑡

≤ −𝜒∫
Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥 − 2𝑎𝑖 ∫

Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥

+
𝑛

∑
𝑗=1

∫
Ω

(𝑏2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗
𝑢2
𝑗
(𝑡, 𝑥)) d𝑥

+
𝑛

∑
𝑗=1

∫
Ω

(𝑐2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗
𝑢2
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥)) d𝑥

(23)

for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2, . . ..

Define a Lyapunov function𝑉
𝑖
(𝑡) as𝑉

𝑖
(𝑡) = ∫

Ω
𝑢2
𝑖
(𝑡, 𝑥)d𝑥.

It is easy to find that 𝑉
𝑖
(𝑡) is a piecewise continuous function

with the first kind discontinuous points 𝑡
𝑘
(𝑘 = 1, 2, . . .),

where it is continuous from the left, that is, 𝑉
𝑖
(𝑡
𝑘
− 0) =

𝑉
𝑖
(𝑡
𝑘
) (𝑘 = 1, 2, . . .). In addition, we also see

𝑉
𝑖
(𝑡
𝑘
+ 0) ≤ 𝑉

𝑖
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . , (24)

as𝑉
𝑖
(𝑡
0
+ 0) ≤ 𝑉

𝑖
(𝑡
0
) and the following estimate derived from

condition (2) of Theorem 5:

𝑢2
𝑖
(𝑡
𝑘
+ 0, 𝑥) = (−𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑢

𝑖
(𝑡
𝑘
, 𝑥))2

= (1 − 𝜃
𝑖𝑘
)2𝑢2
𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝑢2

𝑖
(𝑡
𝑘
, 𝑥) ,

𝑘 = 1, 2, . . . .
(25)

Put 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. It then results from (23)
that

d𝑉
𝑖 (𝑡)
d𝑡 ≤ −𝜒∫

Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥 − 2𝑎𝑖 ∫

Ω

𝑢2
𝑖
(𝑡, 𝑥) d𝑥

+
𝑛

∑
𝑗=1

∫
Ω

(𝑏2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗
𝑢2
𝑗
(𝑡, 𝑥)) d𝑥

+
𝑛

∑
𝑗=1

∫
Ω

(𝑐2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗
𝑢2
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥)) d𝑥

≤ (−𝜒 − 2𝑎
𝑖
+
𝑛

∑
𝑗=1

𝑏2
𝑖𝑗
+
𝑛

∑
𝑗=1

𝑐2
𝑖𝑗
)𝑉
𝑖 (𝑡)

+ max
𝑖=1,...,𝑛

(𝑙2
𝑖
)
𝑛

∑
𝑗=1

𝑉
𝑗 (𝑡)

+ max
𝑖=1,...,𝑛

(𝑙2
𝑖
)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ .
(26)
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Choose𝑉(𝑡) of the form𝑉(𝑡) = ∑𝑛
𝑖=1

𝑉
𝑖
(𝑡). From (26), one

reads

d𝑉 (𝑡)
d𝑡 ≤ 𝜆𝑉 (𝑡) + 𝜌

𝑛

∑
𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,
(27)

where 𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+ ∑𝑛
𝑗=1
(𝑏2
𝑖𝑗
+ 𝑐2
𝑖𝑗
)) + 𝜌 and 𝜌 =

𝑛max
𝑖=1,...,𝑛

(𝑙2
𝑖
).

Now construct 𝑉∗(𝑡) = e𝛾(𝑡−𝑡0)𝑉(𝑡) again, where 𝛾 > 0
satisfies 𝛾 + 𝜆+ ℎ𝜌e𝛾𝜏 > 0 and 𝜆+ ℎ𝜌e𝛾𝜏 < 0. Evidently,𝑉∗(𝑡)
is also a piecewise continuous function with the first kind
discontinuous points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous

from the left, that is, 𝑉∗(𝑡
𝑘
− 0) = 𝑉∗(𝑡

𝑘
) (𝑘 = 1, 2, . . .).

Moreover, at 𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), we find by use of (24)

𝑉∗ (𝑡
𝑘
+ 0) ≤ 𝑉∗ (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (28)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. By virtue of (27), one has

d𝑉∗ (𝑡)
d𝑡 = 𝛾e𝛾(𝑡−𝑡0)𝑉 (𝑡) + e𝛾(𝑡−𝑡0) d𝑉 (𝑡)

d𝑡
≤ 𝛾e𝛾(𝑡−𝑡0)𝑉 (𝑡)

+ (𝜆𝑉 (𝑡) + 𝜌
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))) e𝛾(𝑡−𝑡0)

= (𝛾 + 𝜆)𝑉∗ (𝑡) + 𝜌e𝛾(𝑡−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(29)

Choose small enough 𝜀 > 0. Integrating (29) from 𝑡
𝑘
+ 𝜀

to 𝑡 gives

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡𝑘 + 𝜀) + (𝛾 + 𝜆)∫
𝑡

𝑡
𝑘
+𝜀

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡

𝑡
𝑘
+𝜀

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,

(30)

which yields, after letting 𝜀 → 0 in (30),

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡𝑘 + 0) + (𝛾 + 𝜆)∫
𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(31)

Next we will estimate the value of 𝑉∗(𝑡) at 𝑡 = 𝑡
𝑘+1

, 𝑘 =
0, 1, 2, . . .. For small enough 𝜀 > 0, we put 𝑡 = 𝑡

𝑘+1
− 𝜀. An

application of (31) leads to, for 𝑘 = 0, 1, 2, . . .,
𝑉∗ (𝑡
𝑘+1

− 𝜀) ≤ 𝑉∗ (𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1
−𝜀

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡
𝑘+1
−𝜀

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠.
(32)

If we let 𝜀 → 0 in (32), there results

𝑉∗ (𝑡
𝑘+1

− 0) ≤ 𝑉∗ (𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡
𝑘+1

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠,

𝑘 = 0, 1, 2, . . . .

(33)

Note that 𝑉∗(𝑡
𝑘+1

− 0) = 𝑉∗(𝑡
𝑘+1

) is applicable for 𝑘 =
0, 1, 2, . . .. Thus,

𝑉∗ (𝑡
𝑘+1

) ≤ 𝑉∗ (𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡
𝑘+1

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠
(34)

holds for 𝑘 = 0, 1, 2, . . .. By synthesizing (31) and (34), we then
arrive at

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(35)

This, together with (28), results in

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ∫
𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠
(36)

for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . ..
Recalling assumptions that 0 ≤ 𝜏

𝑗
(𝑡) ≤ 𝜏 and

∙𝜏
𝑗
(𝑡) <

(1 − (1/ℎ))(ℎ > 0), we obtain
∫
𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑
𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

=
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘) 𝜌e

𝛾(𝜃+𝜏
𝑗
(𝑠)−𝑡
0
)𝑉
𝑗 (𝜃) 1

1 − ∙𝜏
𝑗 (𝑠)

d𝜃

≤ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃.

(37)
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Hence,

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(38)

By induction argument, we reach

𝑉∗ (𝑡
𝑘
) ≤ 𝑉∗ (𝑡

𝑘−1
) + (𝛾 + 𝜆)∫

𝑡
𝑘

𝑡
𝑘−1

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
𝑘
−𝜏
𝑗
(𝑡
𝑘
)

𝑡
𝑘−1
−𝜏
𝑗(𝑡𝑘−1) e

𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠,

...

𝑉∗ (𝑡
2
) ≤ 𝑉∗ (𝑡

1
) + (𝛾 + 𝜆)∫

𝑡
2

𝑡
1

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
2
−𝜏
𝑗
(𝑡
2
)

𝑡
1
−𝜏
𝑗(𝑡1) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠,

𝑉∗ (𝑡
1
) ≤ 𝑉∗ (𝑡

0
) + (𝛾 + 𝜆)∫

𝑡
1

𝑡
0

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
1
−𝜏
𝑗
(𝑡
1
)

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠.

(39)

Therefore,

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡0) + (𝛾 + 𝜆)∫
𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠

≤ 𝑉∗ (𝑡
0
) + (𝛾 + 𝜆)∫

𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠

= 𝑉∗ (𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫

𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(40)

Since

ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝑠−𝑡
0
)𝑉
𝑗 (𝑠) d𝑠

≤ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
0

𝑡
0
−𝜏

𝑉
𝑗 (𝑠) d𝑠

= ℎ𝜌e𝛾𝜏 ∫
𝑡
0

𝑡
0
−𝜏

(
𝑛

∑
𝑗=1

∫
Ω

𝜑2
𝑗
(𝑠, 𝑥) d𝑥) d𝑠

≤ 𝜏ℎ𝜌e𝛾𝜏𝜑
2

Ω
,

(41)

we claim

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡0) + 𝜏ℎ𝜌e𝛾𝜏𝜑
2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫
𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .

(42)

According to Lemma 2, we know

𝑉∗ (𝑡) ≤ (𝑉∗ (𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏𝜑

2

Ω
)

× exp {(𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡
0
)} , 𝑡 ≥ 𝑡

0

(43)

which reduces to
𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)Ω

≤ √1 + 𝜏ℎ𝜌e𝛾𝜏 𝜑Ω exp{(𝜆 + ℎ𝜌e
𝛾𝜏

2 ) (𝑡 − 𝑡
0
)} ,

𝑡 ≥ 𝑡
0
.
(44)

This completes the proof.

Remark 6. According toTheorem 5, we see that the diffusion
can really influence the stability of equilibrium point 𝑢 = 0
of problem (5)–(8), wherein the factors embrace not only the
reaction-diffusion coefficients but also the regional features
including the dimension and boundary of spatial variable.
Owing to the employ of new Poincaré integral inequality,
in this paper, the estimation of reaction-diffusion terms is
superior to that in [25] in some cases, and this will be helpful
to further know the influence of diffusion on stability. What
is more, from condition (1) ofTheorem 5, we also see that the
dimension of spatial variable has an impact on the stability
while this is not mentioned in [25].

Remark 7. Among the three conditions ofTheorem 5, condi-
tion (3) is critical and therefore we must ensure the existence
of constant 𝛾 > 0. Fortunately, it is not difficult to find that
there must exist a constant 𝛾 > 0 satisfying condition (3) if
𝜆 < −ℎ𝜌 which is easily checked.
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Theorem 8. Providing that one has the following:
(1) let 𝐷 = min{𝐷

𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0;
(3) inf

𝑘=1,2,...
(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exists a constant 𝛾 > 0 which satisfies 𝛾 + 𝜆 +

ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0, where
𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑𝑛
𝑗=1
(𝑏2
𝑖𝑗
+ 𝑐2
𝑖𝑗
)) + 𝜌 and 𝜌 =

𝑛max
𝑖=1,...,𝑛

(𝑙2
𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).
Proof. Define Lyapunov function 𝑉 of the form 𝑉(𝑡) =
∑𝑛
𝑖=1

𝑉
𝑖
(𝑡), where 𝑉

𝑖
(𝑡) = ∫

Ω
𝑢2
𝑖
(𝑡, 𝑥)d𝑥. Obviously, 𝑉(𝑡) is a

piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the

left, that is, 𝑉(𝑡
𝑘
− 0) = 𝑉(𝑡

𝑘
) (𝑘 = 1, 2, . . .). Furthermore,

when 𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), it follows from condition (2) of

Theorem 8 that
𝑢2
𝑖
(𝑡
𝑘
+ 0, 𝑥) − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥)

= (1 − 𝜃
𝑖𝑘
)2𝑢2
𝑖
(𝑡
𝑘
, 𝑥) − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢2

𝑖
(𝑡
𝑘
, 𝑥) .

(45)

Thereby,

𝑉 (𝑡
𝑘
+ 0) ≤ 𝛼𝑉 (𝑡

𝑘
) + 𝑉 (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (46)

Construct another Lyapunov function 𝑉∗(𝑡) = e𝛾(𝑡−𝑡0)
×𝑉(𝑡), where 𝛾 > 0 satisfies 𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 +
ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0. Then, 𝑉∗(𝑡) is also a piecewise
continuous function with the first kind discontinuous points
𝑡
𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the left, and for

𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), it results from (46) that

𝑉∗ (𝑡
𝑘
+ 0) ≤ 𝛼𝑉∗ (𝑡

𝑘
) + 𝑉∗ (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (47)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .. Following the same
procedure as inTheorem 5, we get

𝑉∗ (𝑡) ≤ 𝑉∗ (𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(48)

The relations (47) and (48) yield

𝑉∗ (𝑡) − 𝑉∗ (𝑡𝑘)

≤ 𝛼𝑉∗ (𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(49)

By induction argument, we reach

𝑉∗ (𝑡
𝑘
) − 𝑉∗ (𝑡

𝑘−1
)

≤ 𝛼𝑉∗ (𝑡
𝑘−1

) + (𝛾 + 𝜆)∫
𝑡
𝑘

𝑡
𝑘−1

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌𝑒𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
𝑘
−𝜏
𝑗
(𝑡
𝑘
)

𝑡
𝑘−1
−𝜏
𝑗(𝑡𝑘−1) e

𝛾(𝜃−𝑡
0
)𝑉
𝑗 (𝜃) d𝜃,

...

𝑉∗ (𝑡
2
) − 𝑉∗ (𝑡

1
)

≤ 𝛼𝑉∗ (𝑡
1
) + (𝛾 + 𝜆)∫

𝑡
2

𝑡
1

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
2
−𝜏
𝑗
(𝑡
2
)

𝑡
1
−𝜏
𝑗(𝑡1) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃,

𝑉∗ (𝑡
1
) − 𝑉∗ (𝑡

0
)

≤ 𝛼𝑉∗ (𝑡
0
) + (𝛾 + 𝜆)∫

𝑡
1

𝑡
0

𝑉∗ (𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
1
−𝜏
𝑗
(𝑡
1
)

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃.

(50)

Hence,

𝑉∗ (𝑡) − 𝑉∗ (𝑡0)

≤ 𝛼𝑉∗ (𝑡
0
) + (𝛾 + 𝜆)∫

𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠 + ℎ𝜌e𝛾𝜏

×
𝑛

∑
𝑗=1

∫
𝑡−𝜏
𝑗
(𝑡)

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃 + 𝛼 ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
)

≤ 𝛼𝑉∗ (𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫

𝑡

𝑡
0

𝑉∗ (𝑠) 𝑑𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑
𝑗=1

∫
𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0) e
𝛾(𝜃−𝑡

0
)𝑉
𝑗 (𝜃) d𝜃 + 𝛼 ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
)

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .
(51)

Introducing ℎ𝜌e𝛾𝜏∑𝑛
𝑗=1

∫𝑡0
𝑡
0
−𝜏
𝑗
(𝑡
0
)
e𝛾(𝜃−𝑡0)𝑉

𝑗
(𝜃)d𝜃 ≤ 𝜏ℎ𝜌e𝛾𝜏

×‖𝜑‖2
Ω
as shown in the proof of Theorem 5 into (51), (51)

becomes

𝑉∗ (𝑡) − 𝑉∗ (𝑡0)
≤ 𝛼𝑉∗ (𝑡

0
) + 𝜏ℎ𝜌e𝛾𝜏𝜑

2

Ω
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+ (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫
𝑡

𝑡
0

𝑉∗ (𝑠) d𝑠 + 𝛼 ∑
𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
)

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .
(52)

It then results from Lemma 2 that, for 𝑡 ≥ 𝑡
0
,

𝑉∗ (𝑡) ≤ ((𝛼 + 1)𝑉∗ (𝑡0) + 𝜏ℎ𝜌e𝛾𝜏𝜑
2

Ω
)

× ∏
𝑡
0
<𝑡
𝑘
<𝑡

(1 + 𝛼) exp ((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡0))

= ((𝛼 + 1)𝑉∗ (𝑡0) + 𝜏ℎ𝜌e𝛾𝜏𝜑
2

Ω
)

× (1 + 𝛼)𝑘 exp ((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡0)) .

(53)

On the other hand, since inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇, one has
𝑘 ≤ (𝑡

𝑘
− 𝑡
0
)/𝜇. Thereby,

(1 + 𝛼)𝑘 ≤ exp{ ln (1 + 𝛼)𝜇 (𝑡
𝑘
− 𝑡
0
)}

≤ exp{ ln (1 + 𝛼)𝜇 (𝑡 − 𝑡
0
)}

(54)

and (53) can be rewritten as

𝑉∗ (𝑡) ≤ ((𝛼 + 1)𝑉∗ (𝑡0) + 𝜏ℎ𝜌e𝛾𝜏𝜑
2

Ω
)

× exp((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 + ln (1 + 𝛼)
𝜇 ) (𝑡 − 𝑡

0
))
(55)

which implies
𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)Ω

≤ √(𝛼 + 1 + 𝜏ℎ𝜌e𝛾𝜏)𝜑Ω
× exp(12 (𝜆 + ℎ𝜌e

𝛾𝜏 + ln (1 + 𝛼)
𝜇 ) (𝑡 − 𝑡

0
)) ,

𝑡 ≥ 𝑡
0
.

(56)

The proof is completed.

As

2
𝑛

∑
𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓 (𝑢𝑗 (𝑡, 𝑥)) d𝑥

≤
𝑛

∑
𝑗=1

∫
Ω

(𝜀
1
𝑏2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗

𝜀
1

𝑢2
𝑗
(𝑡, 𝑥)) d𝑥,

2
𝑛

∑
𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓 (𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥)) d𝑥

≤
𝑛

∑
𝑗=1

∫
Ω

(𝜀
2
𝑐2
𝑖𝑗
𝑢2
𝑖
(𝑡, 𝑥) + 𝑙2

𝑗

𝜀
2

𝑢2
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥)) d𝑥

(57)

hold for any 𝜀
1
, 𝜀
2
> 0. In the sequel, analogous to the proofs

of Theorems 5 and 8 we arrive at the following.

Theorem 9. Provided that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2;

(3) there exist constants 𝛾 > 0 and 𝜀
1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 < 0, where
𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑𝑛
𝑗=1
(𝜀
1
𝑏2
𝑖𝑗
+ 𝜀
2
𝑐2
𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌e𝛾𝜏)/2.
Remark 10. According to Theorem 5, we know that there
must exist constant 𝛾 > 0 satisfying condition (3) of
Theorem 9 if there are constants 𝜀

1
, 𝜀
2
> 0 such that 𝜆 < −ℎ𝜌.

Theorem 11. Assume that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0;
(3) inf

𝑘=1,2,...
(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + ln(1 + 𝛼)/𝜇 < 0,
where 𝜆 = max

𝑖=1,⋅⋅⋅,𝑛
(−𝜒 − 2𝑎

𝑖
+∑𝑛
𝑗=1
( 𝜀
1
𝑏2
𝑖𝑗
+ 𝜀
2
𝑐2
𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).

Further, on the condition that |𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
×

(𝑡
𝑘
, 𝑥)|, where 𝜃2

𝑖𝑘
≤ (𝛼 − 1)/2 and 𝛼 ≥ 1, we obtain, for

𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . .),

𝑢2
𝑖
(𝑡
𝑘
+ 0, 𝑥) − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥)

= (𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) + 𝑢

𝑖
(𝑡
𝑘
, 𝑥))2 − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 2(𝑢
𝑖
(𝑡
𝑘
, 𝑥))2 + 2(𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)))2 − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥)

≤ (2 + 2𝜃2
𝑖𝑘
) (𝑢
𝑖
(𝑡
𝑘
, 𝑥))2 − 𝑢2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 𝛼𝑢2
𝑖
(𝑡
𝑘
, 𝑥) .

(58)

Identical with the proof of Theorem 8, we reach the
following.

Theorem 12. Assume that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) |𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|, where 𝜃2

𝑖𝑘
≤ (𝛼 − 1)/2

and 𝛼 ≥ 1;
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(3) inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0,
where 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑𝑛
𝑗=1
(𝜀
1
𝑏2
𝑖𝑗
+ 𝜀
2
𝑐2
𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙2
𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).
Remark 13. Different fromTheorems 5–11, the impulsive part
in Theorem 12 could be nonlinear and this will be of more
applicability. Actually, Theorems 5–11 can be regarded as the
special cases of Theorem 12.

4. Examples

Example 14. Consider system (5)–(8) equipped with 𝑃
𝑖𝑘
(𝑢
𝑖(𝑡

𝑘
, 𝑥)) = 1.343𝑢

𝑖
(𝑡
𝑘
, 𝑥). Let 𝑛 = 2,𝑚 = 2,Ω = [0, 1.5]×[0, 2],

𝜏
𝑗
(𝑡) = (3/4) arctan(𝑡), 𝑎

1
= 𝑎
2
= 6.5, (𝐷

𝑖𝑠
)
2 × 2

= ( 1.2 2.3
2.2 1.5

),
(𝑏
𝑖𝑗
)
2 × 2

= ( −0.23 1.3
−0.14 3.2

), (𝑐
𝑖𝑗
)
2 × 2

= ( −0.1 −0.2
0.25 −0.13

), and 𝑓
𝑗
(𝑢
𝑗
) =

(√2/4)(|𝑢
𝑗
+ 1| − |𝑢

𝑗
− 1|).

For 𝑀 = 2 and 𝐷 = 1.2, we compute 𝜒 = 4.8. This,
together with 𝑙

𝑖
= √2/2, yields

𝜌 = 𝑛max
𝑖=1,...,𝑛

(𝑙2
𝑖
) = 1, (59)

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+
𝑛

∑
𝑗=1

(𝑏2
𝑖𝑗
+ 𝑐2
𝑖𝑗
)) + 𝜌 = −6.461. (60)

Let ℎ = 4. Since 𝜆 = −6.461 < −4 = −ℎ𝜌, we conclude
from Theorem 5 that the equilibrium point 𝑢 = 0 of this
system is globally exponentially stable.

Example 15. Consider system (5)–(8) equipped with 𝑃
𝑖𝑘
(𝑢
𝑖(𝑡

𝑘
, 𝑥)) = arctan(0.5𝑢

𝑖
(𝑡
𝑘
, 𝑥)). Let 𝑛 = 2, 𝑚 = 2, 𝜏

𝑗
(𝑡) =

(1/𝜋) arctan(𝑡), Ω = [0, 1.5] × [0, 2], 𝑎
𝑖
= 6.5, (𝐷

𝑖𝑠
)
2 × 2

=
( 1.2 2.3
2.2 3.5

), (𝑏
𝑖𝑗
)
2 × 2

= ( −0.23 1.3
−0.14 3.2

), (𝑐
𝑖𝑗
)
2 × 2

= ( −0.1 −0.2
0.25 −0.13

),
𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
− 1|), and 𝑡

𝑘
= 𝑡
𝑘−1

+ 2𝑘.
For 𝑀 = 2 and 𝐷 = 1.2, we compute 𝜒 = 4.8. This,

together with 𝑙
𝑖
= √2/2 and 𝜀

1
= 𝜀
2
= 1, yields

𝜌 = 𝑛
𝜀
2

max
𝑖=1,...,𝑛

(𝑙2
𝑖
) = 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+
𝑛

∑
𝑗=1

( 𝜀
1
𝑏2
𝑖𝑗
+ 𝜀
2
𝑐2
𝑖𝑗
))

+ 𝑛
𝜀
1

max
𝑖=1,...,𝑛

(𝑙2
𝑖
) = −6.461.

(61)

Letting 𝜏 = 0.5, ℎ = 4, 𝜇 = 2, and 𝛼 = 1.5, we can find
𝛾 = 0.78 satisfying

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 = 0.2269 > 0,

𝜆 + ℎ𝜌e𝛾𝜏 + ln (1 + 𝛼)
𝜇 = −0.0949 < 0. (62)

It is then concluded from Theorem 12 that this system is
globally exponentially stable.
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